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Problem Background

• 2D video offers 
limited clues about 
actual 3D motion.

• Humans interpret 2D 
video easily.

• Goal:  Reliable 3D 
reconstructions from 
standard single-camera 
input.
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Research Progress

• Multi-camera trackers available:
1996: Gavrila & Davis; Kakadiaris & Metaxas

• Potential single-camera trackers:
1995: Goncalves et. al.
1997:  Hunter, Kelly & Jain; Wachter & Nagel
1998:  Morris & Rehg; Bregler & Malik

• Previous work: treated as measurement 
problem, not inference problem.
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Challenges

• Single camera
⇒ 3D ambiguity

(underconstrained problem)
⇒ Foreshortening
⇒ Self-occlusion

• Unmarked video (no tags)
⇒ Appearance changes
⇒ Shadowing
⇒ Clothing wrinkles
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Overview of Approach 

• Two stages to tracking, each challenging:

2D Tracking 3D Reconstruction
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2D Tracking

Predict 2D Pose, Model

Compare with Image

Refine 2D Pose

2D Pose
+ Model = Rendering

• Repeat for each frame.
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2D Tracking Details

• Pose for first frame is given.
• Model derived from past frames.

– We use “part map” models.
• For each frame, begin at low 

resolution and refine.
• Rendering must account for self-

occlusions.  (need 3D feedback!)
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Occlusion

• Must compute hidden pixels given pose.
• Only visible pixels matched with image.

• Model for hidden regions not updated.
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2D Tracking Performance

• Simple example, no occlusion:

Lines show
tracked limb
positions.
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3D Reconstruction

• Motion divided into short movements, 
informally called snippets.  (11 frames long)

• Assign probability to 3D snippets by analyzing 
knowledge base.

• Each snippet of 2D observations is matched to 
the most likely 3D motion.

• Resulting snippets are stitched together to 
reconstruct complete movement.
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Learning Priors on Human Motion

• Collect known 3D motions, form snippets.
• Group similar movements, assemble matrix.
• SVD gives Gaussian probability cloud that 

generalizes to similar movements.
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Posterior Probability

• Bayes’ Law gives probability of 3D snippet 
given the 2D observations:

• Training database gives prior,  P(snip).
• Assume normal distribution of tracking 

errors to get likelihood, P(obs|snip).

P(snip | obs) = k P(obs | snip) P(snip)
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Posterior Probability (cont.)

• Posterior is a mixture of multivariate
Gaussian.

• Take negative log and minimize to find 
solution with MAP probability.

• Good solution can be found using off-the-
shelf numerics package.
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Stitching

• Snippets overlap by 5 frames.
• Use weighted mean of overlapping snippets.



November 30, 1999 NIPS 1999 15

Sample Results:  Test Data

• Test on known 3D data:

Observation Reconstruction Comparison
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Sample Results:  Test Data

• Results on wave clip shown earlier:
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Sample Results:  Real Footage

• Can reconstruct even imperfect tracking:
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Conclusion

• Treat 3D estimation from 2D video as an 
inference problem.

• Need to improve models
– Body appearance ⇒ better rendering/tracking
– Motion ⇒ better reconstruction

• Reliable single camera 3D reconstruction is 
within our grasp.
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Final Video

(Hand-tracked points, automatic reconstruction)
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2D Tracking Equation

• Must find pose parameters β that minimize 
matching energy:
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2D Tracking Performance

• Simple example, no occlusion:
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Sample Results:  Test Data

• Test on known 3D data:

Original ReconstructionObservations



November 30, 1999 NIPS 1999 24

Sample Results:  Test Data

• Results on wave clip shown earlier:
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Sample Results:  Real Footage

• Can reconstruct even imperfect tracking:
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