
Inkball Models as Features for Handwriting Recognition

Nicholas R. Howe
Smith College

Northampton, Massachusetts, USA
Email: nhowe@smith.edu

Andreas Fischer
University of Fribourg

1700 Fribourg, Switzerland
Email: andreas.fischer@unifr.ch

Baptiste Wicht
University of Fribourg

1700 Fribourg, Switzerland
Email: baptiste.wicht@unifr.ch

Abstract—Inkball models provide a tool for matching and
comparison of spatially structured markings such as hand-
written characters and words. Hidden Markov models offer a
framework for decoding a stream of text in terms of the most
likely sequence of causal states. Prior work with HMM has
relied on observation of features that are correlated with under-
lying characters, without modeling them directly. This paper
proposes to use the results of inkball-based character matching
as a feature set input directly to the HMM. Experiments
indicate that this technique outperforms other tested methods
at handwritten word recognition on a common benchmark
when applied without normalization or text deslanting.

Keywords-Image processing; Image recognition; Optical
character recognition software;

I. INTRODUCTION

Handwritten manuscripts cannot fully enter the digital
world without reliable methods for machine transcription.
Modern modes of scholarship rely upon search and other
transcript-enabled functionality, yet transcription by human
effort consumes too many resources for wide application.
This observation motivates research to improve the accuracy
and reliability of algorithms for automatic recognition of
handwritten text.

Handwriting recognition refers to the process of inferring
a writer’s intended communication based upon observation
of the markings made on a document. The Hidden Markov
Model (HMM) has proven a key tool in this task because it
explicitly models the production of observational data based
upon a sequence of symbolic hidden states. Although an
HMM can be applied to any set of observations, intuition
suggests that features highly correlated with the proposed
set of hidden states will prove more successful than features
with low correlation.

This paper explores the use of inkball models to generate
a spatially varying feature set that is then used to train
an HMM for character recognition. Hidden states in the
HMM correspond to characters in the target language, and
each character has a corresponding inkball model generated
from a protoype of that character. Fit scores for each of the
character models form the feature set that is input to the
HMM at each sequential position.

A. Related Work

Inkball models were previously introduced in word spot-
ting applications [1], and were later used to model individual
character prototypes [2], [3]. This paper adapts the latter
approach by using fit scores of the character prototypes as
input to an HMM. The suggested method is related to the
framework of graph similarity features [4] where graph-
based representations of character prototypes are used to
compute fit scores for HMM-based recognition.

HMM are a standard statistical framework for sequence
recognition tasks. Originally introduced for speech [5], they
have also been widely used for handwriting recognition [6]
based on different handwriting features. Well-known exam-
ples include Marti and Bunke’s geometric features [7] and
the SIFT-like gradient features proposed by Rodriguez and
Perronin [8] and Terasawa and Tanaka [9], respectively. In
this paper, they will serve as references for experimental
comparison with the proposed inkball features.

II. METHOD

Prior work on inkball models has presented them in a
formal mathematical style [1]. This paper adopts a more
operational description, although the method and implemen-
tation remains the same. Each feature fed to the HMM
corresponds to the match fitness of an inkball model rep-
resenting one character prototype, evaluated at the current x
location in the image. The sections below first describe how
character models are selected, then how the match scores
are subsequently computed for each model.

A. Prototype Selection

The first step in developing a recognition engine is to
select a set of prototype graphemes and build inkball models
out of them. In principle these graphemes may range from
parts of characters to constructs over multiple characters.
However, this paper focuses on single-character models as
the most obvious starting point.

Several character selection strategies are tested in Sec-
tion III-E. Although they differ in methodology and diffi-
culty, the results show that the model selection has fairly
little impact on the final results. In particular, more careful
selection strategies perform only slightly better than ad hoc
selection by hand.



The two selection algorithms employed are based upon
k-medoids and information gain, respectively. Both depend
upon a distance measurement δ(c1, c2) taken between pairs
of candidates c1 and c2. In each case we use the two-
way inkball fit described in the following section, and
consider every character in the document (segmented via
an automated algorithm [3]) as a potential candidate.

The k-medoids algorithm adapts k-means to the case
where averaging over several examples is not well-defined.
It proceeds in the same fashion as k-means, except that at
each step the cluster centers are not the actual centroid but
the cluster member that is closest to it. After convergence,
each cluster center becomes a prototype character. Executing
the algorithm requires computation of the mutual distance
between all examples belonging to each character class. The
experiments test up to k = 5.

A second method for selecting prototypes relies upon
information gain. Information gain may be computed as the
difference in entropy of a set before and after a partition
into subsets, and is commonly used to select features in
decision trees. For a given candidate prototype, the distance
to all other characters must be computed, both those of
the same class and of the other classes as well. These
distances can be thresholded to divide the population into
two subsets, and the maximum information gain over all
possible thresholds is computed and stored for each candi-
date prototype. Intuitively, members of the same character
class should be closer together, so thresholding the distances
should tend to improve the purity of the subsets. For each
character class, the candidate with the greatest information
gain becomes the prototype. Additional prototypes can be
selected via a greedy process. Given the partitioning induced
by the already selected prototype(s), a new candidate that
produces the greatest additional information gain across all
the partitions is selected next, and so on.

B. Inkball Model Development

Once a set of character prototypes has been selected, they
are converted to inkball models. An inkball model consists of
overlapping disks of ink arranged in a 2D structure specified
in terms of the expected spatial offset between neighboring
disks. To generate the model corresponding to a particular
character sample, first thin it to single pixel width. Place
disks at all junctions and endpoints, then along the skeleton
according to two rules:

1) If possible, place a new disk on the skeleton at a
distance ρ from its nearest neighbor already in place.

2) Otherwise place a new disk on the skeleton at the
maximum possible distance from those previously
placed, and at least ρ/2 from its nearest neighbor.

Placement stops when it is no longer possible to add new
disks according to either rule.

Links are created greedily between nearest neighbors until
the disks are all joined in a tree structure. The expected offset

for each neighbor pair is taken directly from their relative
positions in the prototype character. If qi is the ith node, and
qi↑ is its parent, then the offset ~ti is the 2D vector specifying
the position of qi relative to qi↑. Assuming without loss of
generality that q1 is the root, ~t1 is undefined. The tree and
associated offsets form the inkball model.

We restrict the model structure to a tree in order to keep
the matching process tractable, as described in the following
section. This means in practice that character prototypes
containing loops must be represented with a break placed
arbitrarily somewhere around the loop. When starting with
online data, the model can be made to follow the pen
trace, which will contain a natural break. This option is not
available with offline data.

C. Inkball Model Fitting

Both model selection and HMM training call for com-
puting the best match between an inkball model and an
arbitrary sample of handwritten text. Qualitatively speaking,
a model fits well to a text image if its nodes lie close
to the skeleton of the observed text when the two are
superimposed. Recognizing that real handwriting always
varies in practice, the model is allowed to deform slightly to
conform better to the image. The match score defined below
thus incorporates both the proximity to observations and the
degree of deformation; a good score is achieved when the
match is close and the deformations small. In most cases, the
goal is to find the configuration with the minimum possible
energy, optionally while also constraining the position of the
root node.

To be more precise, define a configuration C = {v1, ...vn}
of an inkball model Q as a placement of its n nodes with
respect to an image, with ~vi the location of node qi. These
placements in turn give the configuration offsets ~si = ~vi −
~vi↑. Now let Ω represent the Euclidean distance transform of
the thinned text image; in other words, Ω(~vi) is the distance
from ~vi to the nearest skeleton point. The match score of
a single configuration attempts to approximate the negative
log probability of the model given the observation, and is
the weighted sum of two parts: a deformation term Eξ and
a data fidelity term EΩ.

E(Q,C,Ω) = Eξ(Q,C) + λEΩ(C,Ω) (1)

Eξ(Q,C) =

n∑
i=2

‖~si − ~ti‖2 (2)

EΩ(C,Ω) =

n∑
i=1

Ω(~vi)
2 (3)

For simplicity the expressions above drop some normal-
ization coefficients given in prior work [1], since in prac-
tice they are held constant and therefore act merely as a
multiplier to the overall energy function. Given the above
definitions, the fit of a model to a text image is the minimum



value of E over all possible configurations. This value, along
with the configuration that produces it, can be computed
relatively efficiently via the dynamic programming algorithm
given in the next section.

D. Fit Optimization

Functions of 2D position such as Ω can be represented
discretely over a grid, typically sampled at each pixel
location. The same sort of grid can also represent other 2D
functions, such as one that gives the minimal energy over
the set of configurations sharing a root located at ~v:

E(~v) ≡ min
C|~v1=~v

E(Q,C,Ω) (4)

Generalizing this concept further, define a family of func-
tions based on inkball model Q as follows: E(i)(~v) is the
function giving the minimal energy for the subtree of Q that
has root qi, when qi is placed at ~v.

With these definitions in place, the stage is set to describe
the computation of E(~v) via dynamic programming. For the
moment, consider an inkball model with no branches, rooted
at q1 and linked via consecutive qi to the leaf at qn. Think of
the discrete values of ~vi represented by the grid locations as
possible states of qi. The computation on this simple model
is analogous to a Markov chain, with the energies E(i)(~v)
dependent only on E(i+1)(~v) and the transition costs from
~vi+1 to ~vi. E(i)(~v) is the minimum over all possible child
positions ~vi+1 of the child’s energy, plus the transition cost
from ~vi+1 to ~v, added to the intrinsic costs associated with
~vi itself.

E(i)(~v) = min
~u
E(i+1)(~u) + ‖(~u− ~v)−~ti+1‖2 + Ω(~v)2 (5)

Explicitly computing all entities in this minimization would
be impractical, but fortunately an operation called the gen-
eralized distance transform (GDT) computes the answer
efficiently, in a number of operations that rises linearly with
the number of pixels [10]. Representing the GDT as Γ gives
a simplified expression.

E(i)(~v) = Γ
(
E(i+1)(~v − ~ti+1)

)
+ Ω(~v)2 (6)

For the general case where a node may have multiple
children, each contributes to the parent’s energy.

E(i)(~v) = Ω(~v)2 +
∑

j:qj↑=qi

Γ
(
E(j)(~v − ~tj)

)
(7)

A remarkably simple algorithm arises from this equation,
again using discrete grids to represent 2D functions such as
E(i)(~v). In the description below, each capitalized variable
represents such a grid, and the Shift operation translates
the values in the grid by the specified vector, using bicu-
bic interpolation to handle fractional translations. Γ∗ is a
byproduct of the GDT computation and records for each
point in the grid which particular ~u produces the minimum
value in Equation 5.

Figure 1. Several steps in the model fitting process. First row: a
character G prototype and the corresponding model. Second row: a sample
word and the corresponding fit score E(~v) for the model G. Third row:
recovered configurations for two local optima, with warping from the
default configuration shown in red.

for all nodes in postorder traversal do
Initialize: E ← Ω2

for all children j of the current node do
Translate: T ← Shift(E(j),−~tj)
Transform: G← Γ(T )
Optional: L(j) ← Γ∗(T )
Add: E ← E +G

end for
E(i) ← E

end for
The final result of this algorithm E(1) holds the minimum

possible configuration energy for the model as a 2D function
of the root node position. To get the best fit possible across
an entire image, simply take the minimum over the grid. For
a two-way symmetric comparison between two images, take
the maximum of each one-way match.

If desired, the corresponding configuration may be recov-
ered from the L(i) recorded during minimization using the
algorithm below.
~v1 ← arg min~u E(1)(~u)
for all nodes in preorder traversal do

for all children j of the current node do
~vj ← L(j)(~vi) + ~tj

end for
end for
Figure 1 illustrates several steps in the process of building

an inkball model from a prototype and matching it to an
image.

E. HMM Training and Recognition

The experiments use the spatially varying model fit scores
for a set of grapheme prototypes as input to an HMM.
The best fit E(i)

Q (~v) for the character prototype Q naturally
varies with both the x and y position of the root. The HMM



expects a 1D function of the x position, which is achieved
by minimizing over columns.

fQ(x) = min
y
E(i)
Q (x, y) (8)

A number of different grapheme sets are tested, but in each
case the procedures are similar. Each prototype is fit to
segmented words or lines of text using Algorithm 1 above.
The results from Equation 8 for the entire set of prototypes
become the observations available to the HMM.

We use continuous character HMM with a linear topology
and a mixture of Gaussians to model the feature distribution.
Diagonal covariance matrices are considered to reduce the
model complexity. System parameters include the number
of mixtures per state and the number of states per character.
The character models are trained with labeled word images
using the Baum-Welch algorithm and word recognition is
performed with Viterbi decoding [5].

III. EXPERIMENTS

All experiments use the GW20 corpus, a well-
benchmarked set of 20 pages from the correspondance of
George Washington [11]. Setting up for experiments on
additional datasets requires a nontrivial effort because all
possible character samples must be segmented and com-
pared. This paper therefore focuses on the development and
relative comparison of candidate methodologies using the
inkball and HMM combination, for which purpose GW20
suffices handily. Once the foundational investigations are
complete, future work can evaluate the method thoroughly
in comparison with reference methods.

Due to the relatively small size of the database, we
perform a four-fold cross-validation. In each fold, 10 training
pages are used for training the character HMM, 5 valida-
tion pages are used for optimizing system parameters with
respect to the recognition accuracy, and 5 test pages are
used for evaluating the final performance. Finally, the test
set results are averaged over the four cross-validations.

For training, the number of states per character HMM is
adopted from previous work [12]. It corresponds to a fraction
of the estimated mean character width. The number of
mixtures is incremented step-by-step from 1 to 19, retraining
the models four times on the training set in each step.
Afterwards, the number of mixtures M is optimized over
M ∈ {1, 4, . . . , 19} on the validation set with respect to the
recognition accuracy. Finally, the system is evaluated on the
independent test set. Considering a closed vocabulary, each
word image is assigned to one of 1,200 word classes taking
into account equal word priors.

The HTK toolkit1 is used for Baum-Welch training and
Viterbi decoding.

A. Inkball Features

1http://htk.eng.cam.ac.uk

Table I
INKBALL FEATURES (VARIATIONS). WORD ERROR IN PERCENTAGE FOR

FOUR CROSS-VALIDATIONS (CV).

Features CV-1 CV-2 CV-3 CV-4 Average

BL 26.49 20.69 29.81 21.04 24.51
BM 29.90 23.48 32.59 26.03 28.00
S3 27.15 20.86 30.88 21.86 25.19
DC 25.99 24.32 30.55 20.87 25.43
WC 26.32 23.91 30.64 20.05 25.23

In a first experiment, several variants of the inkball
features are computed based on a manually selected set of
prototypes, that is one inkball prototype for each of the 60
characters. Besides the baseline (BL), the following variants
are tested:
• Experiment BM uses a part-structured boundary model

[2] instead of an inkball model.
• Experiment S3 includes three versions of each proto-

type character, scaled to 80%, 100%, and 125% size
respectively.

• Experiment DC adds an additional feature for each
character prototype equal to the derivative of the feature
value with respect to the x coordinate. This is intended
to indicate whether a particular location is near the
center of a character or close to the edge.

• Experiment WC adds an additional feature for each
character prototype equal to the minimum score
achieved by the feature value within a character-width
window around the current x value. Character width is
computed as the standard deviation of the x coordinates
of the character prototype.

The word error results are shown in Table III. On average,
none of the variants significantly outperforms the baseline
features but the results are included for completeness of the
record.

B. Prototype Selection

In principle any character sample may be used as a
prototype, but it is possible that carefully selected prototypes
will give better result. Section II-A described two selection
methods, one based upon the k-medoids (KM) algorithm
and one upon information gain (IG). With each selection
method, it is also possible that using multiple prototypes per
character could improve results, particularly for characters
with more diversity of form. Feature sets KM1 through
KM5 and IG1 through IG3 test this possibility, with the
numeral in each case indicating the number of prototypes
used per character (where available; some appear too rarely).

The outcome of this second experiment is shown in
Table II. The best results are achieved with IG2 when
selecting up to two prototypes per character based on the
information gain criterion, which slightly outperforms the
baseline features. Note that the prototypes have been selected
on the first 10 pages of the manuscript. Although they are



Table II
INKBALL FEATURES (PROTOTYPE SELECTION). WORD ERROR IN

PERCENTAGE FOR FOUR CROSS-VALIDATIONS (CV).

Features CV-1 CV-2 CV-3 CV-4 Average

BL 26.49 20.69 29.81 21.04 24.51
KM1 26.11 22.24 29.88 21.83 25.01
KM2 26.52 21.75 29.88 20.92 24.77
KM3 26.61 20.02 30.12 20.43 24.30
KM4 26.90 20.94 29.07 20.96 24.47
KM5 27.43 20.47 30.19 20.98 24.77
IG1 25.45 20.59 27.82 20.10 23.49
IG2 25.04 19.69 27.98 20.59 23.33
IG3 26.03 20.43 28.40 21.09 23.99

Table III
INKBALL FEATURES WITH TRUNCATED DEFORMATION ENERGY. WORD

ERROR IN PERCENTAGE FOR FOUR CROSS-VALIDATIONS (CV).

Condition CV-1 CV-2 CV-3 CV-4 Average

BL (τ = ∞) 26.49 20.69 29.81 21.04 24.51
T4 (τ = 4) 23.15 18.45 24.86 17.96 21.11
T8 (τ = 8) 22.41 17.79 25.35 17.22 20.69
T16 (τ = 16) 24.30 19.19 27.82 19.03 22.58
T32 (τ = 32) 26.52 21.33 29.14 21.58 24.64
T64 (τ = 64) 27.18 23.15 29.79 22.73 25.71

selected from the test data for cross-validations CV-2 and
CV-3, 60 prototypes represents less than 0.3% that might be
affected, of more than 21,000 characters in the manuscript.
A followup experiment using prototypes selected instead
from the last ten pages shows no significant changes in the
outcome, confirming the insignificance of the prototypes’
source.

C. Modified Deformation Energy

A third experiment looks at a simple modification to the
deformation term of the match score, Eξ. Specifically, Equa-
tion 2 is replaced by a truncated Gaussian. The match thus
penalizes deformations normally until the energy reaches a
threshold τ , after which the penalty stays fixed at τ for all
higher deformation levels. This reflects the intuitive notion
that all sufficiently bad matches should be treated equally.
the

Eξ(Q,C) =

n∑
i=2

min
(
‖~si − ~ti‖2, τ

)
(9)

Table III shows the result for varying levels of τ . The
baseline is effectively τ = ∞. The other experiments T4
through T64 test varying values for τ , with the numeric
suffix indicating the value.

D. Reference Feature Sets

Three different feature sets known to work well in hand-
writing recognition form a control group. All the reference
features are extracted using a C++ keyword spotting tool2.

2https://github.com/wichtounet/word spotting

M01 is a well-established feature set that was originally
proposed for modern handwriting recognition [7]. Using
a horizontal sliding window, nine geometrical features are
extracted at each column of the image, from left to right.
There are three global features per window, the number
of black pixels, its center of gravity and its second order
moment. The six local features are the position and gradient
of the upper and lower contours, the number of transitions
from black to white and the number of black pixels between
the upper and lower contour.

R08 is a set of features inspired from SIFT, proposed
for handwriting word spotting [8]. A square sliding window
moves from left to right over the image extracting 128
features at each column of the image. The features are
extracted by fitting a 4× 4 grid on the window. In each of
the cell, the gradients are quantized into 8 bins of regularly
spaced orientations. Finally, the features of each frame are
normalized so that their component sum to 1.

T09 uses a slit-style Histogram Of Gradients (HOG)
feature for handwriting keyword spotting [9]. A narrow
window slides from left to right, extracting 384 features per
column. A 4×4 grid is fitted on each window and gradients
are accumulated into 16 orientation bins, in each cell, using
the signed gradient. A 4 × 2 block, sliding vertically, is
then used to accumulate and normalize the final features,
generating vertical redundancy.

E. Comparison with the State of the Art

Table IV shows the results of the control experiment,
which compares the proposed inkball features with the three
reference methods. For the inkball features, we show the
both best feature selection method (IG2) and the best setup
using a truncated Euclidean (T8).

The comparison to related work should be approached
cautiously. None of the comparison methods perform as
well as the proposed inkball features under the described
experimental conditions. Relative improvements of 43% on
average are reported for T8 when compared with the best
reference features.

However, it is important to point out that we used a set
of word images made available by [11] that might not be
ideal for the reference features. Especially the geometrical
features from Marti & Bunke [7] rely on normalization
techniques such as skew removal, slant removal, and scaling.
None of these operations have been applied in our exper-
iments. Furthermore, the word images, which have been
extracted from the original pages based on bounding boxes,
often contain parts of other characters and underlines. These
artifacts add noise to the geometrical features, especially
to the contour-related ones. This might explain the low
performance of the Marti & Bunke features, which have
achieved stronger results on the George Washington dataset
in other studies, for example in [12] where a word error



Table IV
COMPARISON WITH REFERENCE FEATURES. WORD ERROR IN

PERCENTAGE FOR FOUR CROSS-VALIDATIONS (CV). IMPROVEMENT IS
INDICATED WITH RESPECT TO BEST REFERENCE.

Features CV-1 CV-2 CV-3 CV-4 Average

M01 [7] 53.71 54.37 60.41 54.61 55.78
R08 [8] 33.91 35.74 42.22 34.08 36.49
T09 [9] 35.75 37.23 41.32 38.55 38.21

Proposed: IG1 25.04 19.69 27.98 20.59 23.33
Improvement 26% 45% 32% 40% 36%
Proposed: T8 22.41 17.79 25.35 17.22 20.69
Improvement 34% 50% 39% 49% 43%

rate of 24.1% is reported when using normalized text line
images and bigram language models.

Although it is not therefore established as the best method
under any circumstances, the results do support the con-
clusion that the proposed inkball features outperform the
reference methods on unnormalized images. This is an
advantage since normalization often is a challenging task
for historical manuscripts and avoiding it may be preferable
in some cases.

IV. CONCLUSION

This paper has proposed a novel use for inkball models,
casting them as input features to a traditional HMM. The
method achieves good results with just one prototype sample
per character class chosen in ad hoc manner. Slightly better
performance can be achieved using prototypes selected to
maximize information gain, but the work required to do this
may outweigh the modest benefit.

More research is necessary to answer fundamental ques-
tions about this approach. The results should be extended
and tested on additional manuscripts and writing styles, and
also compared to the reference algorithms on the deskewed
clean images those methods prefer. A diverse multiwriter
collection will presumably require more prototypes per char-
acter, yet several of the results in Table III hint that adding
features to the HMM can hurt overall performance. This
suggests that a feature selection mechanism may also offer
promising avenues for improvement. Many options remain
to be explored within this new framework.

REFERENCES

[1] N. Howe, “Part-structured inkball models for one-shot hand-
written word spotting,” in International Conference on Doc-
ument Analysis and Recognition, 2013.

[2] N. Howe, A. Yang, and M. Penn, “A character style library for
syriac manuscripts,” in Proceedings of the 2015 Workshop on
Historical Document Imaging and Processing. ACM, 2015.

[3] N. Howe, “Inkball models for character localization and out-
of-vocabulary word spotting,” in International Conference on
Document Analysis and Recognition, 2015.

[4] A. Fischer, K. Riesen, and H. Bunke, “Graph similarity
features for HMM-based handwriting recognition in historical
documents,” in Proc. Int. Conf. on Frontiers in Handwriting
Recognition, 2010, pp. 253–258.

[5] L. R. Rabiner, “A tutorial on hidden Markov models and
selected applications in speech recognition,” Proceedings of
the IEEE, vol. 77, no. 2, pp. 257–285, 1989.

[6] T. Ploetz and G. A. Fink, “Markov models for offline hand-
writing recognition: A survey,” Int. Journal on Document
Analysis and Recognition, vol. 12, no. 4, pp. 269–298, 2009.

[7] U.-V. Marti and H. Bunke, “Using a statistical language
model to improve the performance of an HMM-based cur-
sive handwriting recognition system,” Int. Journal of Pattern
Recognition and Artificial Intelligence, vol. 15, pp. 65–90,
2001.

[8] J. A. Rodrıguez and F. Perronnin, “Local gradient histogram
features for word spotting in unconstrained handwritten doc-
uments,” in Proceedings of the Int. Conf. on Frontiers in
Handwriting Recognition, 2008, pp. 7–12.

[9] K. Terasawa and Y. Tanaka, “Slit style HOG feature for
document image word spotting,” in Proceedings of the IEEE
Int. Conf. on Document Analysis and Recognition. IEEE,
2009, pp. 116–120.

[10] P. Felzenszwalb and D. Huttenlocher, “Distance transforms
of sampled functions,” Theory of Computing, vol. 8, no. 19,
2012.

[11] V. Lavrenko, T. Rath, and R. Manmatha, “Holistic word
recognition for handwritten historical documents,” in Proc.
of the IEEE Workshop on Document and Image Analysis for
Libraries DIAL’04, 2004, pp. 278–287.

[12] A. Fischer, H. Bunke, N. Naji, J. Savoy, M. Baechler, and
R. Ingold, “The HisDoc project. automatic analysis, recog-
nition, and retrieval of handwritten historical documents for
digital libraries.” Beihefte zu Editio, vol. 38, pp. 91–106,
2014.


