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Abstract

Computers should be able to detect and track the articulated 3-D pose of a human
being moving through a video sequence. Incremental tracking methods often prove
slow and unreliable, and many must be initialized by a human operator before
they can track a sequence. This paper describes a simple yet effective algorithm
for tracking articulated pose, based upon looking up observations (such as body
silhouettes) within a collection of known poses. The new algorithm runs quickly,
can initialize itself without human intervention, and can automatically recover from
critical tracking errors made while tracking previous frames in a video sequence.

Key words: monocular tracking, articulated tracking, pose tracking, silhouette
lookup, failure recovery

1 Introduction

Researchers have worked for decades towards the goal of a computer system
that can track the articulated pose of a moving human being from monocular
video input (1; 2; 3). An effective pose tracking system would immediately
enable applications in security, ergomonics, human-computer interaction, and
many other fields. Yet a recent study concluded that none of the automated
tracking methods tested could successfully track a moderately difficult exam-
ple (4). Recovery from tracking errors therefore deserves more than the scant
research attention it has received (5) to date. Furthermore, currently popular
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approaches based upon particle tracking are slowed by the need to propagate
multiple samples at each frame. Research into non-incremental, recoverable
tracking mechanisms therefore fills a pressing need.

This paper develops a lookup-based approach to pose tracking, focusing in
particular on silhouette lookup. This approach, hereafter referred to as SiLo

tracking, offers significant advantages over currently popular methods using
parameter optimization and particle tracking algorithms. The SiLo tracker
described in Section 2 requires no human input for initialization. Even if it
makes grave errors during difficult sections of a video, it can automatically re-
cover to track the correct pose on subsequent frames. Furthermore, although
the implementation described here is not optimized for speed, the approach in-
vites significantly faster implementations than those based upon optimization
and particle tracking.

Several developments contribute to enable these advances. The many-to-one
silhouette-to-pose relationship has in the past proved a barrier to the develop-
ment of silhouette-based trackers. The new technique exploits temporal con-
tinuity to choose the best hypothesis among multiple candidate poses at each
frame, via a Markov chain formulation. Relieved of the burden of finding the
perfect match, simple yet effective metrics make feasible the rapid retrieval of
candidate silhouettes. Finally, smoothing and optimization based upon poly-
nomial splines ensure that the tracked output forms a plausible human motion
that matches the observations.

The sections that follow describe each of these contributions in more detail.
Section 2 describes the SiLo tracking algorithm and places it in the context of
previous work. Section 3 describes experimental results using the algorithm.
Section 4 concludes with an analysis of the approach’s strengths and weak-
nesses, and a discussion of future work.

2 SiLo Tracking

The algorithm described below takes as its input raw video from a single fixed
viewpoint, assumed for simplicity to contain a single human being entirely
within the camera frame and unoccluded by other objects. Multiple subjects,
partial visibility, and camera motions make the already challenging problem
more difficult. Although this paper will at times indicate how such additional
complications might be addressed, they fall beyond its focus, and the experi-
ments will all use input that conforms to the assumptions listed above.

For each frame Fi in the input video, the algorithm produces as output a
vector Θi, specifying the pose of a parameterized articulated model of the
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human body. (The model includes head, neck, torso, upper and lower arms and
legs, hands and feet. It uses 35 parameters to specify the angular orientations
of the fifteen rigid body parts, plus two for translation in the image plane
and one for scaling.) Data from the input video pass through multiple stages
during generation of the output pose: background subtraction and silhouette
extraction, silhouette lookup, Markov chaining, and smoothing. The sections
below describe each of these stages.

2.1 Silhouette Extraction

A number of cues distinguish the human being in a video from the background.
These may include appearance, motion, and heat emission (if infrared cameras
are available (6)). The experiments below use motion segmentation because
there exist well-studied techniques that are straightforward to apply under
appropriate conditions (i.e., static camera and background). Any of a number
of techniques may be used to model the background and perform background
subtraction (7; 8), including some that can identify human subjects mov-
ing against dynamic backgrounds (9). The experiments presented below use
a static estimation of the background, generated by robustly measuring the
mean and deviance of each pixel over time while excluding outliers. In applica-
tions where temporal batch processing is impractical, one of the dynamically
updated background models cited above can be used instead without other
significant changes to the algorithm. Regardless of the background model cho-
sen, comparing that model with each frame of the video yields a set of pixels
that deviate strongly; these are labeled as foreground and the remaining pix-
els as background. Further operations on the pixel labels mitigate small errors
and yield the observed silhouette for that frame. Simple morphological oper-
ations have commonly been used for such cleanup, but this work instead uses
a graph-based method that yields slightly cleaner silhouette boundaries (10).
Under the assumptions stated above, foreground pixels should correspond to
the human subject in the frame. However, there are occasionally small errors
due to poor contrast, reflection, shadowing, and other effects. If the set of
foreground pixels is disjoint, then the subsequent processing steps work with
the largest connected foreground component. Figure 1 shows some sample
silhouettes, including some examples of the (rare) failures.

2.2 Silhouette Lookup

Successful silhouette lookup requires two ingredients: a knowledge base of sil-
houettes associated with known poses, and an efficient heuristic for comparing
the known silhouettes with those observed in the video input. This work uses
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Fig. 1. Sample silhouette extractions, showing some of the failure modes. At left,
reflection causes an extra spot (removed in postprocessing). At center and right,
hair is labeled as background.

Fig. 2. Body model for artificial renderings (shown: foot). Parts are rendered as
smoothly-varying extrusions between ellipsoidal endpoints with aligned axes, gen-
erating realistic body shapes from simple pose parameters.

data from the CMU Motion Capture Database to populate the knowledge
base, or silhouette library. Motion-captured poses are transformed to a stan-
dard scale and orientation, then artificially rendered from different viewpoints
using a generic body model. (See Figure 2.) For each pose, the library stores
silhouettes computed from multiple views. The experiments described herein
use 36 parallel projections at 10◦ intervals of azimuth around the subject and
0◦ of elevation, but other views can easily be included depending upon the
anticipated camera viewpoint.

Early versions of the system simply stored all views for every frame of motion-
captured data, leading to redundancy in the silhouette library. Storing the
silhouettes of multiple nearly-identical poses degrades performance in several
ways. Clearly, it increases search time. More subtly, it can decrease the inde-
pendence of the top hits retrieved from the library for a particular query, so
that the effective number of candidate poses retrieved is lower than the num-
ber requested. This means that the correct pose is less likely to be among the
k top hits retrieved, for any fixed k. For this reason, during library construc-
tion each new pose must be compared against all those currently stored, and
discarded if it fails to differ significantly from some pose already in the library.
Since the motion of a single body part can change the silhouette, a pose is
considered significantly different if either endpoint of any body part differs by
more than a chosen threshold. (The amount of frame-to-frame change observed
in typical motion capture data motivates the choice of both this threshold and
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Fig. 3. Turning angle representation for a simple shape (a). For this figure, the
perimeter trace (b) starts at the bottom of the curved section and proceeds coun-
terclockwise. The turning angle metric measures the area between two such traces,
(c).

the number of different views generated for each pose.)

Once stored in the library, silhouettes must be retrieved using one or more
shape retrieval heuristics. Many common heuristics used for general shape re-
trieval prove insufficiently sensitive to the precise orientation of arms and legs,
which are crucial in this application. Furthermore, while many shape retrieval
heuristics strive for rotation invariance, gravity ensures that rotation is highly
significant for human poses. This work incorporates two heuristic similarity
measures: the turning angle metric and the chamfer distance. Although both
work individually, a combination of the two (using summed retrieval ranks
(11)) appears most effective.

The turning angle metric is sensitive to the length and orientation of ex-
tended limbs, and has been shown to correlate well with human notions of
shape similarity (12). In brief, the turning angle metric measures the integral
of the difference between two normalized functions, where each function is de-
rived from a silhouette by taking the tangent trace made during one complete
circuit around the silhouette’s border (see Figure 3). A single trace records
the tangent angle at equally-spaced points around the silhouette, beginning
at the highest point (usually the top of the head) and proceeding clockwise.
Typically around 150 points are sampled, depending on the compactness of
the shape. Because the turning angle metric is not rotation invariant, its use
here assumes that a common rotational reference point exists; standard film-
ing convention justifies making this assumption. (The vertical axis in physical
space corresponds with the y axis in most videos.) The expedient of using the
topmost point to start implies a minor instability if two separate body parts
are close to topmost, but this difficulty may be addressed by ensuring that
the silhouette library includes separate examples of similar poses where each
distinct part gets to be topmost. Using this approach, no unusual problems
appear in the experiments for sequences where the arms rise above the head.
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The chamfer distance compares two sets of pixels (the boundaries of the sil-
houettes, in this case) by taking the sum of the distances from each pixel in
one set to the nearest pixel in the other set.

ξ(S1, S2) =
∑

p∈S1

min
q∈S2

d(p, q) (1)

Note that this is related to the Hausdorff metric, which takes a maximum
rather than a sum. It is asymmetric, i.e., ξ(S1, S2) 6= ξ(S2, S1). For silhou-
ette retrieval, the experiments below use the chamfer distance between the
boundary points of the observed silhouette and the boundary of the library
silhouettes. This one-way chamfer distance can be found rapidly by precom-
puting the distance transform of the observed silhouette boundary and using a
chain-code representation of each library silhouette boundary to sample from
it.

Using the selected comparison heuristic or combination of heuristics, each
silhouette extracted from the input frames identifies a set of silhouettes in
the knowledge base that appear closest to the observed silhouette: the library
“hits”. The poses associated with these hits become the candidates in the next
processing phase (Markov chaining). Depending on the coverage density in the
silhouette library, the number of hits within a fixed similarity threshold varies
widely at different points in a video clip. As a supplement or alternative to
using a fixed threshold, the number of hits can be ki confined to lie within
bounds kmin and kmax, such that kmin < ki < kmax at all frames. In practice,
setting kmin = kmax ≈ 50 often works satisfactorily, but this depends on the
density of coverage in the library.

If the library population is sparse (due to a scarcity of relevant motion capture
data), it can be augmented via the notion of kinetic jumps (14). Simply put,
a family of related poses can generate identical silhouettes under orthograhic
projection, and thus a number of candidate poses can be generated from a
single library pose. The simplest example involves a simultaneous left-right
inversion of the pose and reflection of the line-of-sight axis (see Figure 4).
Thus a set of library retrievals may be augmented by computing the family
of kinetic jumps, then pruning physically impossible and duplicate poses. In
practice, this can be useful if the library coverage is sparse, but produces little
or no benefit when the poses of interest are densely represented in the library.

The discussion above has assumed that simple linear search will suffice for re-
trieval of the candidate silhouettes. Indeed, the metrics used can be computed
rapidly enough that linear search is used for all of the experiments presented
below. However, retrieval speed becomes significant if operation near real-time
speeds is desired, or if the pose library becomes sufficiently large. Including
many different types of motion in the pose library will swell its size, as will
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Fig. 4. Right-left ambiguity for silhouettes. The two poses on the left produce exactly
the same silhouette when viewed from the side under orthographic projection. The
transformation from one pose to the other is called a kinetic jump.

including sihouettes seen from nonzero camera elevations.

Some research has looked at sub-linear retrieval using parameter-sensitive
hashing (15) or the triangle inequality (16), resulting in techniques which
can be applied here. For the tracking application one can also take advantage
of the temporal connections between frames to restrict the number of poses
that must be examined. Poses very dissimilar to the candidates for the pre-
vious frame will be rejected in the chaining phase (as described below), and
therefore need not be considered for retrieval. If the pose library is augmented
during creation so that each entry contains a table of pointers to all other poses
within a chosen similarity threshold, then these pointer tables may be used to
quickly search the subset of poses that are most similar to the candidates from
the previous frame. Consideration of the maximum plausible human motion
in a single frame suggests a suitable threshold choice. Judicious use of these
strategies should allow the implementation of much larger pose libraries in
practical applications.

2.3 Markov Chaining

Because the relationship of possible poses to observed silhouettes is many-
to-one, and the retrieved poses are only approximate matches to the actual
observations, silhouette lookup returns multiple possible poses for a single ob-
served silhouette. There exist techniques that implement one-to-one mappings
of silhouettes to poses (17), but these will have difficulty when they encounter
a pose that differs from the one embodied by their mapping, as must happen
sooner or later. Nevertheless, any tracker must ultimately weed through the
profusion of possible poses to settle on a single most likely pose in each frame,
and Markov chaining provides the appropriate mechanism.

Markov chaining exploits the temporal dependency of human motion to elim-
inate unlikely pose sequences, retaining the single chain of poses (one for each
frame) that simultaneously maximizes both the per-frame match to the obser-
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vations and the temporal similarity between successive frames. The problem
may be stated in terms of error minimization, with the goal of minimizing the
function E stated below.

E =
n∑

i=0

ζ (Θi, Si) + λ
n∑

i=1

∆ (Θi, Θi−1) (2)

Here n represents the number of frames in the video, ζ represents the matching
error between the silhouette corresponding to the pose parameters Θi and the
observations in a given frame Si, ∆ represents the motion difference between
two different sets of pose parameters, and λ serves as a weighting factor. The
remainder of this section discusses the choice of functions for ζ and ∆.

One potential choice for ζ is the energy function used to rank silhouettes
for retrieval. Although an asymmetric chamfer distance was used for rapid
retrieval, at this stage the number of poses to be considered is small enough
to allow the use of the symmetric function, and this provides greater sensitivity
to the precise silhouette observations. Thus the chaining stage uses a ζ that
applies Equation 1 symmetrically over the border pixels of the two silhouettes:

Let PΘi
= BorderPoints(Render(Θi))

and PSi
= BorderPoints(Si);

ζ (Θi, Si)= ξ (PΘi
, PSi

) + ξ (PSi
, PΘi

) (3)

The choice of motion difference function ∆ offers an array of possibilities
depending upon the degree of physical realism desired. The simplest functions
merely reward solutions that change as little as possible from one frame to the
next, perhaps in terms of each joint’s angular parameters weighted by the mass
and moment of inertia of the affected portions of the body. A more physically
realistic criterion would measure the change in linear and angular momentum
of body parts in 3-D space, or perhaps the power required to transition between
frames. However, properly implementing any criterion based upon change in
velocity or momentum requires the use of a stochastic chain with two-state
memory in place of a Markov chain, which increases the complexity of the
computation. In most cases, the simpler format yields excellent results, and the
extra computation of the more physically plausible models appear unnecessary.
Except for the synthetic-data experiment, all the results presented below use
the simpler difference function.

∆(1) =
∑

j∈Parts

Mj |∂xj(Θi, Θi−1)| + Ij |∂ϕj(Θi, Θi−1)| (4)

Here Mj and Ij are the mass and moment of inertia, respectively, of the jth
body part, while ∂xj and ∂ϕj are the translation and rotation of the part
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between the poses specified by parameters Θi−1 and Θi. By contrast, the two-
frame function looks like the following.

∆(2) =
∑

j∈Parts

Mj |∂xj(Θi, Θi−1) − ∂xj(Θi−1, Θi−2)|

+Ij |∂ϕj(Θi, Θi−1) − ∂ϕj(Θi−1, Θi−2)| (5)

As noted above, using the simplified ∆(1) makes the sequence of frame poses
into a Markov chain, where the likelihood of a particular pose in frame i

depends only upon the pose assigned for frame i−1, and not on the pose in any
preceding frames. The minimum of Equation 2 can be found efficiently using a
forward-backward (Viterbi) dynamic programming algorithm, given the finite
set of ki possible solutions at each frame generated during silhouette lookup.
This minimum-energy solution serves as the basis for further smoothing and
optimization.

As a final note, although the Markov-chain approach works for most normal
cases, it can run into trouble if poor quality video input leads to intermittent
failures of the foreground segmentation. A single frame with a gross error in
the observed silhouette can cause all the poses retrieved for that frame to be
far from any of the retrieved poses in the surrounding frames. This situation
will be readily apparent as a spike in the Markov chain energy at that frame. If
detected (perhaps by examining the per-frame transition energy ∆(Θi, Θi−1)),
the situation can be dealt with in one of two ways. One possibility is to al-
low “skipped” frames in the chaining process, computing the energy for the
skipped frames by interpolation. (This can be viewed as augmenting the set of
retrieved poses for a particular frame with additional candidates generated via
linear combinations of two retrieved poses, one from a preceding frame and one
from a succeeding frame.) Allowing skipped frames increases the complexity
of the chaining process, but has been implemented and run successfully.

Another approach is simply to require some or all of the candidate poses to lie
near the poses generated for the previous frame, by choosing the best matches
from a restricted set of silhouettes selected for their proximity. Including a
near-neighbor for each pose from the preceding frame will ensure continuity,
but may waste resources on candidate solutions with low probability, while
leaving insufficient resources for the more likely solutions. This is analogous
to the problem faced by particle-tracking methods (18), which solve it by
weighting the chance of perpetuating any given trajectory according to how
well it fits the data available. For the experiments herein, a pool of candidates
is chosen from the subset of all poses lying near some candidate from the
preceding frame, without requiring a nearby candidate for every preceding
pose. This allows for continuity of the best trajectories while allowing the
more unlikely trajectories to die out. Nevertheless, if all the new candidates
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Fig. 5. Schematic illustration of candidate pose selection for a new frame. One pool
of candidates (A) is chosen from those lying near the candidates for the preceding
frame (dots; gray area shows eligible neighborhood). A second pool is chosen without
restriction (B), and may be any distance from the preceding frame’s candidates.

are selected in this manner, then the ability to recover from tracking errors
may suffer. (The solution may get trapped in an unlikely area of parameter
space far from the true solution.) Thus it also makes sense to include in the
pool of candidates some poses chosen without restriction, to allow recovery
from gross errors. Figure 5 illustrates these considerations schematically. (The
reader may recall that Section 2.2 also proposed restricting the candidate pool
to poses near the previous frame’s candidtates, for faster library searches. If
speed is essential, then the inclusion of unrestricted candidate poses for error
recovery may be performed only periodically, rather than at every frame.)

As a note, the experimental results presented in Section 3.4 suggest that the set
of retrieved candidate solutions tends to converge to the most likely possibil-
ities rather than diverge. Indeed, there is usually substantial overlap between
the candidates chosen with and without restriction. If a low-quality foreground
segmentation is ambiguous enough to permit many different candidate poses,
then tracking may not be feasible in any case.

2.4 Smoothing and Optimization

Markov chain minimization produces a solution that is consistent both from
frame to frame and with observations made at each frame. However, it is
still made up of poses retrieved from the knowledge base, which typically do
not exactly match the poses in the true solution. Usually, a rendering of the
proposed solution appears jerky and occasionally inconsistent with the input
video where no pose in the knowledge base exactly matches the true pose.
Two final processing steps address these concerns.

The first step eliminates jerkiness through a temporal smoothing of the Markov
chain solution. The vector Θi of pose parameters at frame i can be decomposed
into its individual components, each viewed as deriving from a one-dimensional
function of the frame number θj(i) plus some error εj(i). Assuming that the
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Fig. 6. Sample smoothing of single parameter dimension θj(i). The final curve (solid
line) smooths out the individual Markov chain points (crosses). Two of the overlap-
ping spline curves are shown (dotted lines).

underlying component functions θj should be smooth, θj(i) can be modeled as
a series of smoothly interpolated overlapping polynomial splines (see Figure 6).
Taking Θ′

i = (θ1(i), θ2(i), ..., θm(i)) eliminates the error term and yields a
smoothed solution. The experiments described in this paper build the θj(i)
using quadratic splines of eleven frames in length and smoothly overlapped by
five frames. (Examination of real motion capture data indicates that splines of
this sort can readily model real human motion with negligible error.) Given a
frame rate of 30 Hz, eleven-frame splines enforce smoothness over a timescale
of about one-third of a second.

It is worth noting that the use of splines in this capacity causes trouble if the
mapping from parameters Θi to joint positions contains singularities. In such
cases, pose represented by the smoothed spline curve may differ greatly from
the unsmoothed pose despite the small distance in parameter space. This
work uses an Euler-like representation of the joint angles, and encountered
such problems in its early stages. The joint angle repesentation employed
herein has since been modified to ensure that the singularities occur outside
the range of motion for each individual joint. (As an alternative, one might
use quaternions or another singularity-free joint angle representation, but this
would increase the number of parameters needed and thus significantly slow
the optimization step described below.)

The result of the smoothing process may still not exactly match the observed
silhouettes in all places, depending upon how closely the poses in the knowl-
edge base can match the actual poses observed. Parametric optimization can
increase the match between the observations and the proposed solution. This
is implemented as a simplex search via Matlab’s fminsearch function, since the
discreteness of the silhouette observations makes gradient-based search unre-
liable. To maintain the smoothness of the solution, the optimization proceeds
on the parameters of the m polynomial splines (created during the smoothing
process described above) that generate a smoothed block of eleven frames at
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once. The energy criterion is simply Equation 3 summed over all 11 frames:

E =
i0+10∑

i=i0

ζ (Θi, Si) (6)

Optimization typically takes much longer than the preceding steps for a rela-
tively small improvement in the accuracy of the results, so applications (such
as activity and gait recognition) not needing extreme precision may choose
to forego it. Furthermore, if allowed to proceed to a conclusion, optimiza-
tion may in certain cases discover physically unlikely poses that nevertheless
exhibit slightly lower energy than much more physically probable ones. Incor-
porating a term in the energy equation to evaluate a priori pose likelihood
would discourage such behavior. Unfortunately, good probabilistic models of
human pose are still a subject of research. A more expedient way to avoid the
problem is to cut off optimization before it has the chance to explore poses too
far from the initial solution. In this manner, optimization corrects gross mis-
matches between the proposed solution and the observations without straying
too far from known poses.

2.5 Related Work

A large body of work on pose tracking precedes this paper, dating back to the
early 1980’s (1; 2; 19; 20; 21; 22; 23). A 2001 survey lists many contributions
(3), and divides the work into categories according to the problem addressed
and approach taken. This section will focus on other research into full 3-D

articulated pose reconstructions from monocular video input, since that is the
target of the current work.

Recent efforts have used models of probable poses and motions, appearance
models for body parts, and sophisticated optimization routines together with
particle-based tracking algorithms (21; 22; 14). As mentioned previously, ap-
proaches of this sort encounter difficulties with initialization and error recov-
ery, and can be slow to operate due to the number of samples that need to be
maintained. More recent work uses bottom-up detection of body parts based
upon appearance priors to locate and track subjects (24; 25). This can allow
for automatic initialization without the use of background subtraction, but
usually introduces other assumptions about the appearance of the tracking
subjects (e.g., body parts have coherent appearance). Assembling people from
their parts is difficult, and while the initial results appear promising, more
research is necessary to define the full capabilities of the approach.

There has been some prior interest in using silhouettes for pose recognition (26;
27; 28), but the reported results do not present completed 3-d reconstructions
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of video clips. One exception does include results for a single very short (19-
frame) sequence (23). The latter work is similar in spirit to that described
here, using edge images instead of silhouettes to retrieve a single pose per
frame. It applies a completely different retrieval metric (shape context (29))
and does not address the issues of frame-to-frame chaining considered herein.
A more complete comparison of the two methods would make an interesting
subject for future research. Another recent paper develops an elegant method
for regression from silhouettes to poses (17), but by implicitly defining the
silhouette-to-pose relationship as one-to-one, it limits the variety of human
poses that it can handle.

Recent research has also looked at the use of silhouettes for tracking hand
pose (30; 31). The hand-tracking work makes the one-to-one assumption, and
further differs from the results presented herein by presuming that only a small
number of key poses (e.g., sign-language symbols) need be precisely identified,
with intervening frames filled in via interpolation. In a similar vein, repetitive
full-body motions such as walking have been reduced to a small number of
key poses, with the problem further constrained by a learned model of the
transition probabilities (32). By contrast, this work uses a knowledge base
with broad coverage to retrieve the best matches for every frame, allowing
the motion to develop arbitrarily without having to pass through key poses.
The large number of degrees of freedom in the human body would seem to
inhibit the identification of key poses in free-form motion such as dance. (On
the other hand, key poses have also been applied for full-body estimation in
certain limited domains, for example in the analysis of tennis serves (33).)

The use of silhouette lookup here shares some ideas in common with recent
work by Shakhnarovich et. al. on lookup-based approaches to pose estimation
(15). Their work uses edge features rather than silhouettes, applied to the
rapid estimation of upper-body pose from single images rather than videos.
They use parameter-sensitive hashing to achieve sub-linear retrieval speeds,
and increase the precision of the retrieval prediction, by interpolating between
the top retrieval results. Both of these ideas should prove equally useful with
silhouette lookup, although the Markov chaining and smoothing steps already
achieve results similar to those of the interpolation process.

Finally, some previous work has looked at the use of temporal Markov chains
for simpler problems. Kwatra et. al. use temporal chains to label body parts
protruding from the edges of human silhouettes, and for generating simple
pose descriptors such as standing, sitting, bowing, etc. (34). This work uses
similar ideas, but takes them much further.
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3 Experimental Results

Quantitative evaluation of 3-d pose reconstruction is notoriously difficult, and
standard test sets have yet to emerge. It is difficult to obtain ground truth
calibrated with real video. This section therefore begins with quantitative re-
sults for synthetic input for which ground truth is known. Further experiments
apply the methods described above to real video clips without ground truth,
but representing a wider range in difficulty.

3.1 Synthetic Data

Synthetic input can be easily generated from motion capture data, using the
same renderer that produces library silhouettes. This experiment uses a fresh
set of motion-capture data, not made available to the system during library
generation. The renderer generates a sequence of foreground silhouettes, one
for each frame, and these then serve as the queries for the lookup stage. Be-
cause the test sequence was not seen by the system during library creation,
the library should not contain any exact matches to the test silhouettes. The
chosen sequence shows one hundred frames of a person walking in side view
(much like the Walk-Straight clip described later).

Figure 7 summarizes a comparison of the tracking results with ground truth.
Twenty points of interest on the body form the basis of the comparison. The
figure displays the root-mean-square deviation of the tracked solution from
the ground truth in the camera plane and along the line of sight. Units are
pixels (by comparison, the human figure is around 150 pixels tall). Because the
reconstruction of coordinates along the line of sight can only be determined
only up to a constant term, the reconstuction is normalized along this axis
so that the mean position over the entire sequence equals that of the ground
truth. The errors displayed are therefore residuals reflecting differences in limb
position and orientation between the reconstructed pose and the ground truth.

The figure reveals several interesting patterns. While the line-of-sight error is
the greatest, it is within a factor of two of the visible dimensions. It rises at
the extremities of the body, due to accumulation of errors at previous joints
in the kinematic chain. The two image-plane dimensions exhibit the highest
error in the arms, which are frequently occluded by the body and therefore
more difficult to reconstruct accurately.

Synthetic data can also answer questions about the importance of the body
model used for tracking. Figure 8 shows three variant inputs created from
the ground truth sequence, simulating both under- and overweight subjects,
and increased noise in the background subtraction. Below each input appears
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Fig. 7. RMS error in the reconstruction of selected body points for a 100-frame
sequence of synthetic data, as compared to ground truth. By comparison, the human
figure used for this experiment is approximately 150 pixels tall.

Normal Thin Heavy Noisy

Horizontal 1.5 1.2 3.4 1.1

Vertical 1.0 1.4 1.2 0.9

Line-of-sight 1.9 1.9 3.4 1.7

Fig. 8. Synthetic data with varying body models: Sample silhouettes (top), with
RMS error averaged over all body points (bottom).

the mean error observed in a reconstruction using the standard body model.
All the experiments yield qualitatively correct results, clearly reproducing the
walking behavior. The quantitative results are also mostly similar, with minor
variation for three of the four inputs. Only the overweight walker gave the
system noticeable difficulty, evident in a greater variation from the ground
truth.

3.2 Real Video Data

Four video clips range from easy to more difficult to track. Walk-Straight shows
a subject walking from right to left, while Walk-Circle shows the same subject
walking in a circle. Both clips were originally generated and used to test other
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Fig. 9. Walk-Straight clip and its reconstructed pose in selected frames.

tracking algorithms (22), although lack of a ground truth precludes quantita-
tive comparisons. Two other clips, Dancer-Leap and Dancer-Arabesque, show
a ballet dancer performing short routines. The turning of the dancer’s body
in these clips makes them difficult for many tracking algorithms to follow.

Figures 9-12 summarize the tracking results for the trial clips. The system
tracks Walk-Straight well, making no significant errors. On the other two clips
the system tracks the bulk of the sequence with high fidelity, but tracking
failures appear at several points. Analysis of the failures reveals two distinct
modes: ambiguity problems (where the silhouette cannot distinguish between
a multitude of plausible solutions) and retrieval problems (where lookup in the
knowledge base returns no poses matching the actual motion). The discussion
below examines each in turn.

3.3 Error Analysis

Ambiguity problems appear in the latter third of Walk-Circle: the tracked
motion and the true motion suffer from a right-left reversal. This cannot be
completely avoided in any system based solely upon silhouette measurements;
mathematically, a simultaneous left-right inversion of the pose and reflection
about the line-of-sight axis produces an identical silhouette, as illustrated in
Figure 4. Similar ambiguities cause problems in the Dancer-Leap clip when
the dancer’s body turns. The tracked silhouette matches the observations, but
close inspection shows that the tracked direction of rotation does not match
reality. It is possible that the use of additional cues beyond silhouette matching
(such as optical flow) could control this source of error.

Retrieval failure appears in the Walk-Circle clip around frame 30, as the sub-
ject turns away from the camera. Close investigation of the frames immediately
following the point of error indicates that none of the poses returned during the
retrieval step are close matches for the actual pose. Indeed, the next 40 frames
or so consist of poses for which the retrieval metric does not adequately dis-
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Fig. 10. Walk-Circle clip and its reconstructed pose in selected frames.
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Fig. 11. Dancer-Arabesque clip and its reconstructed pose in selected frames.

tinguish the correct pose amongst a multitude of incorrect poses with similar
silhouettes. The continuity term of Equation 2 dominates, and the recovered
pose track is correspondingly confused. Research into different silhouette re-
trieval mechanisms might address this problem, but there also appears to be a
particular problem with figures moving toward or away from the camera: the
limb movements in such cases often do not produce silhouettes that are very
distinct from one another. Nevertheless, around frame 80 the tracker recovers:
a sequence of frames provide good matches, and the tracked motion closely
resembles the actual motion once more. The spontaneous recovery shows that
the system can regain the correct track even after essentially losing it com-
pletely. The Dancer-Arabesque clip also shows intermittent tracking failures
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Fig. 12. Dancer-Leap clip and its reconstructed pose in selected frames.

and recoveries. However, in this case it is caused not by a failure to retrieve
the best existing poses from the library, but simply because some of the poses
in this sequence have no close correspondances in the pose library. Expand-
ing the amount of motion capture footage available at library creation would
presumably address this problem.

3.4 Incremental Behavior Analysis

The algorithm used for these experiments processes video clips in batch mode,
rather than incrementally frame by frame. Although batch analysis offers
computational advantages (4), the algorithm can also be modified to allow
incremental processing. One may reasonably ask whether such a change will
influence the solution. In particular, how far down the Markov chain does a
choice made at one frame show any effect in practice? The experiments in this
section investigate this question empirically for the Walk-Straight clip, and
find that the answer in most cases is fewer than ten frames.

Figure 13 shows the results of an experiment designed to test how quickly
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Fig. 13. Convergence of the SiLo tracker under divergent starting conditions. The
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rapidly over time, despite the initial frame’s constraint to a randomly chosen pose
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Fig. 14. End effects for the SiLo tracker. Running the Markov chain reconstruction
on prefix subclips of Walk-Straight yields a solution that may be compared to that
for the full clip. No solutions differed by more than eight final frames.

the Markov chain solution converges from an erroneous initial starting point,
chosen at random from the pose library and repeated over 1000 trials. The
plot shows that after only ten frames, all starting points converge on two
fairly stable (and high-quality) solutions, and after 45 frames all reach the
same solution, regardless of initial conditions.

Given that the Markov chain solution converges quickly regardless of the start-
ing point, one might also ask how the endpoint of the chain can affect the final
result. This is particularly important for incremental processing, since theo-
retically, the addition or deletion of a few frames at the end of a clip could
change the entire Markov chain solution back to the initial frame. Fortunately,
Figure 14 shows empirically that choosing a different endpoint affects at most
the last ten frames or so. This suggests that incremental processing is fea-
sible, with the proviso that results less than one-half second old should be
considered temporary. Applications requiring stable results can implement a
half-second delay, as the solution for the most recent frames awaits the arrival
of additional data before commitment.
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4 Conclusion

The SiLo tracker demonstrates successful self-initialization and error-recovery
for three-dimensional pose tracking from monocular video. It infers realistic
depth information missing from the two-dimensional input. Like many other
current algorithms for monocular 3-D pose tracking, it makes some errors,
but unlike most techniques it can recover automatically and regain the correct
track on subsequent frames without human intervention.

Despite the positive results presented in this paper, silhouette lookup remains
an essentially simple approach to a difficult problem. The tracker described in
the preceding sections uses no models of motion or body appearance (other
than those implicit in the knowledge base). Any method based upon silhou-
ettes alone lacks the ability to explicitly track body parts with no edges inci-
dent on the silhouette’s outline, and cannot distinguish between some classes of
solution (such as those in Figure 4). For this reason, future work should exam-
ine hybrid approaches that augment silhouette lookup with motion models and
incremental, texture-based tracking of individual parts. The two approaches
have complementary strengths, and each may support the other where it is
weak.

The experiments in this paper use activity-specific knowledge bases tailored
towards walking and dancing. Even so, the gaps in the knowledge base some-
times impact negatively on the final tracked pose. For the future, generating a
general-purpose library of poses that achieves even coverage of the parameter
space without redundancy will prove a significant research challenge. Another
related challenge will be to reduce the time required for silhouette lookup by
investigating and incorporating algorithms that offer sublinear retrieval speeds
(15).

The key contribution of this work lies in the message it carries about ap-
proaches to pose tracking: nice results can be achieved by comparatively simple
methods based upon retrieval rather than prediction. Instead of generating re-
sults by incremental frame-after-frame processing, the SiLo tracker combines
simultaneous recognition/retrieval at every frame with subsequent Markov-
based temporal reconciliation. This allows the stronger portions of the input
to dominate the result, rather than the weakest. The SiLo tracker demon-
strates impressive reliability in tracking difficult motions of a single subject in
monocular video. With further research, this may prove only the beginning of
what lookup-based trackers can achieve.
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