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Abstract

Many collections of data do not come pack-
aged in a form amenable to the ready applica-
tion of machine learning techniques. Never-
theless, there has been only limited research
on the problem of preparing raw data for
learning, perhaps because widespread differ-
ences between domains make generalization
difficult. This paper focuses on one com-
mon class of raw data, in which the enti-
ties of interest actually comprise collections
of (smaller pieces of) homologous data. We
present a technique for processing such col-
lections into high-dimensional vectors, suit-
able for the application of many learn-
ing algorithms including clustering, nearest-
neighbors, and boosting. We demonstrate
the abilities of the method by using it to im-
plement similarity metrics on two different
domains: natural images and measurements
from ocean buoys in the Pacific.

1. Introduction

A quick perusal of the UCI repository of machine
learning data sets (Blake & Merz, 1999) reveals that
the most frequently cited entries consist of data that
are condensed into a convenient format easily digested
by most machine learning algorithms. Typically such
data consist of a set of instances, perhaps already di-
vided into subsets for training and testing. Each in-
dividual instance is described by a set of features X ,
including a class feature that the learning algorithm
must predict accurately.

Although the data sets in the UCI repository provide
a convenient testbed for new ideas in machine learn-
ing, they do not fully represent the difficulty of solv-
ing problems encountered in the real world. Often the
hardest part of applying learning methods to a previ-
ously unexamined task is the codification of the prob-
lem in a form that machine learning algorithms can
handle. This step has already been performed on most
of the repository data, and usually there is no access
to the original form of the data set or documentation
on how it was transformed. Thus there is need for re-

search and discussion on the analysis of data in a more
natural format.

Some types of raw data may not even be amenable to
expression in the standard feature-value format, and
therefore require special treatment. For example, some
tasks involve learning properties of entities that are
themselves made up of an arbitrary number of similar
components. As a concrete example, consider inves-
tigating properties of credit accounts, where each ac-
count is represented as the set of transactions posted
to the account. This paper focuses on such collec-
tive entities, or ensembles, in particular when the con-
stituent components, or records, happen to have a con-
cise featural description. Instead of devising features
that summarize the ensemble as a whole, which can ob-
scure useful information, we adopt a description that
preserves important details of each individual record.
The algorithm presented in this paper automatically
generates a feature vector of uniform size from any
ensemble, provided that the component records have
a standard feature-vector description. This provides
a novel way to look at data from many domains, in-
cluding computer event logs, transactional data such
as credit card histories, and other areas where ensem-
ble data are involved. We present insight from imple-
mentations of the technique in two different domains:
natural images and ocean measurements.

This work is far from the first to look at descriptions
of data other than the canonical feature-value repre-
sentation. Researchers in case-based reasoning often
adopt complex or unusual case descriptions (Kolod-
ner, 1993). For example, Branting (1991) looks at legal
cases represented as graphs. Additionally, the field of
reinforcement learning may be thought of as employing
data in a nonstandard format (Kaelbling et al., 1996).
While dealing with nonstandard data representations,
these fields have not focused on the type of ensemble
data examined here.

The remainder of this paper describes our treatment
of ensemble data. Section 2 gives a description of the
algorithms for processing and comparing data ensem-
bles. Section 3 presents the two test domains and ex-
amines the performance of the system on them. Fi-
nally, Section 4 concludes with a discussion of possible
directions for future research.



2. Handling Ensemble Data

We address domains in which the task requires learn-
ing properties of ensembles of records, where each en-
semble may contain an arbitrary number of records.
Furthermore, we assume that each record is described
by a simple feature vector. To be precise, we will give
a formal description of such an ensemble before de-
scribing how it is processed.

A record is an arbitrary set of m feature-value
pairs, r = {(x1, y1), (x2, y2), ..., (xm, ym)}, where X =
{x1, x2, ..., xm} is a consistent set of features shared by
all records in the data, and the yj are values of those
features. (In some domains, features may be missing
from some records, and thus the features of r form
a subset Xr ⊆ X .) An ensemble is simply a collec-
tion (possibly a weighted collection) of records, i.e., a
set of ordered pairs {(r1, w1), (r2, w2), . . . , (rne , wne)}
where ri is a record and wi ∈ R+ is a positive real
weight. As a concrete example, in a credit card do-
main each ensemble might represent one account. Its
component records would be the charges posted to
the account, each described by a feature set, such
as {amount, charge date, payment date}. Some ac-
counts would have fewer charges posted than others.

2.1 Data Preparation

Processing of ensemble data into a more manageable
form takes place in two steps. First, we express the
individual records in a discrete space M, which is a
discretization of the original feature space. Once this
is done, a one-to-one function transforms the entire
ensemble into a vector in a high-dimensional space F .
Vectors in this space may be thought of as joint his-
tograms of the original record feature values. All sub-
sequent processing takes place in F , which is better
suited to the application of standard machine learning
techniques.

Records are mapped into space M by discretizing each
feature xj . Points in M are tuples of the discretized
feature values. Thus, to map a record to a point m in
M we simply determine the appropriate bin for each
of its feature values. For the credit card example just
described, a hypothetical record might map to a point
like ($50-100,Jun99,Oct99). The discretization of fea-
ture value for the results reported in this paper has
been done by hand, but automated techniques exist
and might be applied (Fayyad & Irani, 1993).

Ensembles are represented as a set of ordered pairs,
each consisting of a point in M and an associated posi-
tive weight. (Weights arise naturally in some domains,
or can be set uniformly to one if not needed. If two or
more records are described by the same m, they are
represented by a single ordered pair with weight equal
to the sum of the individual weights.) We refer to this

as the M-representation RM(e) of the ensemble e.

RM(e) = {(m1, w1), (m2, w2), ..., (mne , wne)} (1)

where ne is the number of records in the ensemble, and
wi ∈ R+ is a weight.

Space F has exactly one dimension corresponding to
each point of space M. Thus F is equivalent to R

NF
+ ,

where the dimensionality NF is the product of the
number of bins used for all the features X . For ex-
ample, in the simple credit account domain described
above, there might be ten bins for the amount feature,
and 20 each for the two date features, giving F a total
of 10 · 20 · 20 = 4000 dimensions. Each of these dimen-
sions represents a particular range of values for trans-
action amount, charge date, and payment date. We
establish a one-to-one correspondance between points
in M and the standard orthonormal basis vectors of
F . Thus there exists a bijective mapping f between
M-representations and vectors in F .

f (RM(e)) =
ne∑
i=1

wiF (mi) (2)

where F (m) is the mapping from points in M to basis
vectors of F . This means that ensembles with unique
M-representations also have a unique representation
in F .

2.2 An Example

A concrete example may illustrate the creation of
F -representations. Suppose that an account in the
credit-card domain has the following transactions
posted (ignoring interest charges for simplicity):

Date Action
June 16, 1999 Charge $75
September 2, 1999 Charge $20
September 28, 1999 Charge $35
October 13, 1999 Paid $130

An M-representation for this account would be

{(($50-100,Jun99,Oct99),1),
(($0-50,Sep99,Oct99),2)}.

This corresponds to the F -vector

e($50−100 ,Jun99 ,Oct99 ) +2e($0−50 ,Sep99 ,Oct99 )

where e(amount,charge date,payment date) is the basis vec-
tor in one of the dimensions of F , as described by the
subscript.

2.3 Vector Comparisons

In many applications, the significant information re-
sides in the distribution of he records in M space
rather than the actual number of records. If this is so,



then the natural distance metric to use is the cosine
metric, which measures the angular deviation between
two vectors and ignores their length. The cosine met-
ric has been extensively used for text retrieval (Salton,
1989). Thus in F space, the distance between two vec-
tors f1 and f2 is

DF(f1, f2) = cos−1

(
f1 · f2√

(f1 · f1)(f2 · f2)

)
(3)

While the plain cosine difference metric may work well
in some situations, a number of considerations suggest
the use of a slightly more complicated form than Equa-
tion 3. If continuous variables are discretized to form
M space, then their relative ordering is lost. Even for
discrete variables, some pairs of values indicate greater
similarity than others. We would like to capture this
information in the ensemble distance metric, and can
do so by modifying Equation 3 to include a similarity
matrix with cross terms:

DF(f1, f2) = cos−1


 fT

1 Sf2√(
fT
1 Sf1

) (
fT
2 Sf2

)

 . (4)

Here S is a matrix whose off-diagonal entries account
for the varying similarity of different feature values.
It should be a symmetric matrix so that distances are
symmetric, and can be devised to have a Cholesky fac-
torization S = TT T. Under these conditions, Equa-
tion 4 can also be interpreted as the simple cosine dif-
ference between two transformed vectors Tf1 and Tf2.

The choice of S will greatly affect distance measure-
ments and therefore any results based upon them. We
describe the system that we have used for generating
suitable matrices, but numerous alternative possibil-
ities also exist. Our approach has the advantage of
allowing the user significant control over how much in-
dividual features contribute to the final distance, with-
out an overly complex interface.

We form T (and hence S) as the Kronecker prod-
uct (or direct matrix product) of smaller matrices
{T1,T2, ...,Tm}, each corresponding to one of the fea-
tures xj . Each entry in the Kronecker product matrix
is the product of exactly one entry from each of the
Kronecker factor matrices. Intuitively, this represents
the cross terms in T, corresponding to the match be-
tween two points in M (or components in F), as the
product of the cross terms of the Tj matrices, each
representing the match in one individual feature. Thus
using the Kronecker product allows us to focus on one
feature at a time, and also allows for significant com-
putational efficiencies as explained in Section 2.4.

Each Tj is a square matrix of a size equal to the num-
ber of bins in the discretization of xj . For features that
were originally continuous, we use cross terms that de-
cay exponentially with the distance between the bin
centers:

Tj(k, l) = (pj)∆j(y
′
k,y′

l). (5)

Here ∆j(y′
k, y′

l) is the distance between the centers of
bins k and l, and pj ∈ [0, 1] is a parameter that con-
trols the size of the cross terms. If pj = 0, then only
exact matches are allowed, while pj = 1 means that
any value of feature xj matches all others equally well.
Intermediate values of pj result in better matches for
closer values. Thus the setting of pj is a knob by which
the user can exert control over the system. Although
neither of the example data sets we examine in Sec-
tion 3 contain discrete features, Tj matrices for dis-
crete features can be created via an analogous pro-
cess, by using something like the value-difference met-
ric (Stanfill & Waltz, 1986).

2.4 Practical Concerns

Scalability is a valid concern in the system so far out-
lined, but perhaps not as large a concern as might at
first appear. Clearly, restraint must be used in dis-
cretizing features, since the dimensionality of F is the
product of the number of bins in each feature. Never-
theless, the technique scales sufficiently for the analysis
of interesting problems, as the experiments of Section 3
demonstrate. Here we explain a few key optimizations
that make operations in F more feasible.

The slowest calculation to perform in a straightforward
manner is multiplication by S. Normally this would be
an N2

F operation, where NF is the dimensionality of
F . However, by using S that is a Kronecker product,
the matrix multiplication can be computed in time lin-
ear in NF (Graham, 1981). (Essentially, the result
is calculated through repeated multiplications by the
smaller Sj matrices.) Furthermore, when comparing
one ensemble represented by vector f1 to many others,
the product f1S need only be computed once. For fixed
S the denominator in Equation 4 can be precomputed;
thus the calculation of multiple cosine differences can
be quite fast. Under ideal circumstances, it amounts
to one array lookup and two floating point operations
per record.

3. Implementation and Evaluation

The algorithms described in the previous section define
a similarity metric on arbitrary ensembles of records.
As yet we have said nothing about how to evaluate the
technique, nor what role it might play in a complete
learning system. Fortunately, similarity lies at the
heart of many learning systems. Nearest-neighbor al-
gorithms, clustering, retrieval, and even sophisticated
techniques like boosting all apply naturally in a suit-
able metric space, such as F . To evaluate the use-
fulness of the F -representation of ensembles, we must
show that a proposed metric promotes effective learn-
ing. In particular, if entities with similar properties
tend to be mutually similar under the cosine metric,
then those properties can be successfully learned. This
paper will look at some simple similarity-based tasks



as an indication that more complex algorithms based
on similarity may also use the cosine metric success-
fully. Thus the transformations described in this paper
can provide the first stage of a potential learning sys-
tem, packaging raw ensemble data for analysis by a
standard learning algorithm.

Although it is easy to conceive of domains where data
are structured as ensembles of records, actually ac-
quiring such data is more difficult. In many cases,
domains that fit the ensemble paradigm are described
using summary information, with the raw data in en-
semble form not available. For example, the UCI ma-
chine learning repository contains a credit screening
domain, but information on individual accounts is con-
densed into sixteen features and there is no listing of
transactions. Nevertheless, some candidate domains
can be found. We describe the application of the tech-
niques described above to two tasks: image retrieval
in collections of natural images, and analysis of ocean
climate measurements from the Pacific. The point of
these evaluations is to show that machine learning can
be done under the ensemble of records paradigm. Be-
cause the two domains differ significantly, each task
reveals different aspects of the approach.

3.1 Natural Images

The ideas presented in this paper were first developed
as part of an effort to improve on current algorithms
for image retrieval. In the spirit of Impressionist art,
images can be viewed as collections of many small
patches with differing color, texture, and spatial prop-
erties. Visually similar images should comprise similar
collections of patches, so a means of comparing patch
collections would imply a means of comparing images.
This observation motivates the current work.

To prepare an image for comparison, we first divide
it into about 500 small patches using a simple local
segmentation scheme (Felzenszwalb & Huttenlocher,
1998) and arbitrarily divide further any large regions
generated. Next we record for each patch the values of
color (in the Hue-Saturation-Value color space), tex-
ture (as measured by a local filter), and spatial loca-
tion (normalized to the image dimensions). These are
discretized to produce the M-representation of the im-
age. We use 28 color bins, 21 spatial bins, and three
texture bins. Finally, after conversion to F space, we
compare the image with others using Equation 4. Our
S is created as described in Section 2.3, with the spread
parameters ranging from 0.1 to 0.001. We adjusted the
parameters by hand in a small pilot study, using a gra-
dient descent approach.

We evaluate the ensemble-based algorithm on several
tasks, in comparison with both a baseline approach
(color histograms (Swain & Ballard, 1991)) and a
state-of-the-art algorithm (color correlograms (Huang
et al., 1997)) designed specifically for image retrieval.

Our approach does consistently better than the base-
line and competes well with the specialized retrieval
algorithm.

The first test we apply uses artificially altered or de-
graded images as queries, with the task of retrieving
the original from a collection of 19,000 images. (All
images come from a commercially available collection
published by Corel.) The query alterations come in
three flavors: Crop, where 50% of the image area is
trimmed around the borders, Jumble, where the image
is broken into 16 rectangular tiles that are reshuffled
at random, and Low-Con, where the image contrast is
degraded. We test using a randomly selected sample
of 1000 query images, and record the rank at which the
original is retrieved. The two sets of numbers listed for
the ensemble technique represent varying conditions:
the first uses a default setting for S, while the second
uses an S that is chosen to be more appropriate to the
specific task (i.e., ignoring features that are not use-
ful.) The latter case simulates tasks in which domain
knowledge is available a priori to guide the selection
of S.

The results, in Table 1, look more or less as one might
expect. The histogram of the ranks is quite skewed
and exhibits a long tail: most originals are recovered
at a relatively low rank, but a few are not. To capture
this behavior, two numbers are listed for each con-
dition. The median rank represents the bulk of the
cases, while the mean rank reveals the severity of the
tail. Standard deviation (σ) is also given in the table,
although due to the skewed distributions it shows the
same trend as the mean.

The histogram method does worse than the others,
except on the Jumble alteration, which of course does
not affect the color histogram at all. The ensemble ap-
proach with default S does worse on this task because
unlike the other techniques it incorporates spatial fea-
tures explicitly representing the position of elements
that are moved around in this test. However, when S
is tuned to the task by smoothing out the spatial fea-
ture, it does much better. The tuned ensemble method
does well on all three tasks.

We also look at two versions of a classification task
where images come from one of several visually self-
similar categories. Although the category definitions
are somewhat arbitrary, this task provides some in-
dication of whether using one image as a query will
retrieve a related image. Because the top hits are
generally most important for image retrieval, we fo-
cus on the top images retrieved rather than the
full recall-precision curves. (The test is equivalent
to one-nearest-neighbor classification under leave-one-
out cross validation.) For this task we augment the
patch descriptions with an additional feature measur-
ing similarity to neighboring patches in the image.
This feature records whether the patch matches the
color and texture of all, some, a few, or none of its



Table 1. Rank of target for altered-image queries, out of
19,000 images. (Lower numbers are better.)

Crop Jumble Low-Con
Histogram median 18 (1) 86.5

mean 126.6 (1) 350.3
σ 310.0 (1) 795.5

Correlogram median 1 1 5
mean 12.4 2.0 83.6

σ 53.7 6.4 288.7
Ensemble median 1 26 1

(Default) mean 38.9 205.2 18.2
σ 181.4 529.6 155.6

Ensemble median 1 1 1
(Tuned) mean 17.0 1.2 22.6

σ 103.9 1.8 242.6

neighbors. (The ease with which newly constructed
descriptive features may be incorporated is a conve-
nient feature of the ensemble approach.) The results
are shown in Table 2. The ensemble approach per-
forms better than the baseline overall, and competes
favorably with the algorithm specialized for image re-
trieval on both of the two test sets.

3.2 Ocean Buoy Measurements

Besides the experiments with natural images, we
also examine climate measurements taken from ocean
buoys moored in the equatorial Pacific Ocean (Bay,
1999). This is a natural domain for application of
the ensemble approach, since each buoy measurement
forms a unit that must be aggregated with others to
form a picture of the climate conditions at any one
time. The buoy data set offers an interesting con-
trast with the natural image data: it derives directly
from physical measurements rather than calculations,
it contains examples of missing data, and it covers the
study area in an irregular manner. Furthermore the
goal is not retrieval or classification, but detection of
patterns in the data. Thus although ensemble meth-
ods still form the core of our approach, the specifics
will differ somewhat from the previous case.

The ocean buoy data span the period from March 1980
to June 1998, during which time there were four ma-
jor El Nino events recorded (1982-83, 1986-87, 1991-
92, and 1997-98). Buoys take measurements of wind
speed and direction, humidity, and temperatures of the
air and sea, along with the date and location where the
measurement was taken. However, not all buoys are
equipped for all types of measurements, and there are
gaps in the data, particularly in 1980 and 1983. New
buoys were deployed throughout the study period, par-
ticularly around 1985-89 and 1991-93.

Table 2. Comparison of ensemble technique with other im-
age retrieval methods on classification task. Numbers in-
dicate the percentage of queries that retrieve a similarly
classed image as the top rank. The tests employ 1100 and
1600 images, respectively.

Category Hist. Corr. Ensemble
Airshows 57 59 65
Bald Eagles 55 70 70
Brown Bears 35 35 43
Mountains 76 82 78
Cheetahs, etc. 62 76 66
Deserts 47 57 52
Elephants 81 76 85
Fields 46 43 54
Night Scenes 68 70 71
Polar Bears 49 66 54
Sunsets 68 75 64
Tigers 97 100 99
Overall 63.4 68.6 68.3
Candy 59 80 69
Cars 57 63 90
Caves 34 48 42
Churches 33 37 39
Divers 71 75 61
Doors 39 52 64
Gardens 72 62 61
Glaciers 51 74 74
Hawks 60 69 57
MVs 33 42 57
Models 41 57 66
People 19 20 25
Ruins 40 48 53
Skiing 52 65 56
Stained Glass 74 84 76
Sunrises 52 60 68
Overall 49.2 58.5 59.9

We discretize the buoy measurements as follows:
longitude, five bins; zonal and meridional winds, seven
bins each; humidity, eleven bins; air and sea temper-
atures, fifteen bins each. In addition, we include an
extra bin for missing values of each feature except lon-
gitude. This gives a total of 983,040 dimensions in our
final space F . (Note that the latitude measurements
hardly vary, so we do not consider this feature in the
representation.)

To form ensembles we aggregate all buoy measure-
ments made over a calendar month; in theory this
should give a picture of the ocean climate during that
month. (If the climate changes over a shorter period of
time, we might want to aggregate over a shorter times-
pan, but a month seems suitable since the duration of
an El Nino episode is about one year.) We also need
to choose S; we experimented with different settings,
starting with pj = 0.1 for each feature. Although the



results are qualitatively similar for a wide range of S
matrices, we get the clearest results with settings that
focus on longitude and temperature. This is unsur-
prising since El Nino events are identified primarily as
a rise in sea surface temperatures in the eastern Pacific
(McPhaden et al., 1999).

After calculating the pairwise differences between
months, the first trend that appears is a striking de-
pendence on measurement date (Figure 1a). This
turns out to result from the addition of buoys over
time. One might expect the buoys to be added in a
random fashion, but in fact the positions of the new
buoys tend steadily westward (Figure 1b). This af-
fects the measurements because the Western Pacific is
warmer than the Eastern Pacific. Thus the character
of the ocean described by the buoy measurements is
significantly different in 1980 than in 1990, and the
cosine metric reveals this fact.
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Figure 1. Addition of buoys over time. In (a), the ma-
trix of similarity between months (represented by back-
ground shading, with dark indicating greater similarity)
shows close correlation with the number of buoy measure-
ments taken each month (foreground curve). Months are
most similar to those with a similar number of measure-
ments. In (b), the longitude of measurements is plotted
versus time, revealing a westward trend in later dates.

To account for the nonuniform deployment of buoys,
we perform comparisons between months using only
measurements from buoys that exist in both months.

This procedure eliminates the gross time dependence
exhibited in Figure 1a, although there are hints of
weaker trends remaining over time. We may now look
for other patterns in the data.

Since there are only four El Nino events during the
span of the measurements, setting up a supervised
learning task seems overzealous. However, if El Nino
events are present in the data, they should present a
distinctive pattern that is self-similar and unlike the
data of other years. To test this hypothesis, we can
plot the cosine scores of an El Nino period compared to
all other observations. The result is somewhat noisy,
so we smooth locally to get the curve shown in Fig-
ure 2. This plot shows clear dips in 1982-83, 1986-87,
1991-92, and 1997-98, all El Nino years. Given such a
curve, it is straightforward to define a classifier simply
by selecting an appropriate similarity threshold.

A closer look at the curve reveals a few more interest-
ing observations. The 1991-92 El Nino was followed
by two years of lingering El Nino effect, and this also
appears in the curve. On the other hand, the 1982-83
El Nino was noted as the strongest of the century, and
the size of the dip in the curve does not really reflect
this. Missing data in the latter half of 1983 probably
causes this effect by narrowing the minimum, which is
then filled in by smoothing.
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Figure 2. Comparison of month-by-month data with 1982-
83 El Nino period (smoothed). Local minima reveal other
El Nino events in 1986-87, 1991-92, and 1997-98.

As a comparison, we also plot a curve for the La Nina
year 1995-96 in Figure 3. La Nina is the opposite of
El Nino, so this curve should show minima in differ-
ent spots. Indeed, the curve is high during El Nino
years, but dips down during the La Nina year 1988-
89. It also shows a fairly significant minimum around
1984-85, which was not classified as a La Nina episode.
However, since this immediately follows the 1982-83 El
Nino, there may well have been weak La Nina condi-
tions that year that were not severe enough to warrant
official classification. In any case, the plot shows that
a classifier with an appropriate threshold could still
detect both La Ninas without false positives.
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Figure 3. Comparison of month-by-month data with 1995-
96 La Nina period (smoothed). Local minima reveal an-
other La Nina in 1988-89 and a spurious signal in 1984-85.

Experience with the ocean data provides numerous
insights regarding the ensemble method. The tech-
nique can clearly help in discerning patterns in physi-
cal raw data, but the application process may not be
completely straightforward. Researchers need to re-
main alert to biases that may affect the records making
up the ensembles being compared, as with the place-
ment of new buoys. Also, since the El Nino pattern
was originally identified through other means, it is not
clear that the ensemble of records machinery provides
any new insight in this case. The pattern exists in the
data, and with enough perseverance can be detected
though techniques using summary features. Neverthe-
less, as a test of the ensemble technique in a physically
motivated domain the positive results are encouraging.

4. Discussion and Conclusion

The experiments described in this paper merely be-
gin to examine what can be done with data orga-
nized as ensembles of records. Once ensembles are
expressed in F -space, virtually any machine learning
technique can be adopted. For example, any two vec-
tors f1 and f2 in F define a linear classifier based upon
sign (fnew · (f1 − f2)). Collections of such simple clas-
sifiers can be used to build decision trees, do boosting,
and create other large-margin classifiers. We expect
that other machine learning technology can be simi-
larly applied.

The work described herein owes a debt to the field of
text and information retrieval, which makes heavy use
of the cosine metric (Salton, 1989). In one sense, our
approach is an extension of that work, with an ensem-
ble of records analogous to a bag of words. Thus ad-
vances in text retrieval may lead to insights applicable
to ensembles of records. There is also some similar-
ity between this work and multiple instance learning
(Maron & Ratan, 1998). The latter uses collections
that can contain many elements irrelevant to the tar-
get concept, whereas we assume that each record in an
ensemble contributes to its identity.

In conclusion, analysis of raw data has often been over-
looked in academic research but is crucial in real-world
applications. This paper has presented a fresh ap-
proach to looking at one class of raw data. We describe
algorithms for handling entities that can be organized
in an ensemble of records paradigm. Beyond its suc-
cess on specific data sets, this approach provides the
machine learning community with a novel viewpoint
for looking at raw data. Evidence of a need for more
such viewpoints exists: although it is not hard to come
up with domains structured as ensembles of records, it
is difficult to find existing data sets organized in this
manner. By and large, existing data sets are already
processed into formats that fit existing paradigms. A
principal contribution of this work, therefore, is the ex-
pansion of our viewpoint to include a new paradigm.
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