Data as Ensembles of Records: Representation and Comparison

Nicholas R. Howe

Cornell University Department of Computer Science

Motivation

• Many ML algorithms assume data are expressed as *feature-value* pairs:

 $((f_1, v_1), (f_2, v_2), \dots, (f_n, v_n))$

• Some data aren't easily expressed in this format.

\Rightarrow Need to look at other representations.

Ensembles of Records

- Some data have a collective structure:
 - Documents as collections of words.
 - Accounts as collections of transactions.
 - Episodes as collections of events.
- \Rightarrow *Ensembles* as collections of *records*.
- Number of records per ensemble varies.
- Records have simple description.

Roadmap

- Tools for dealing with ensemble data:
 - Uniform representation.
 - Metric for comparison.
- Application to two domains:
 - Pacific Ocean climate data.
 - Image classification and retrieval.
- Conclusions.

Representation

 \Leftrightarrow

• Analogy:

Document as bag of words Ensemble as bag of records

- $\Rightarrow \text{ Represent ensemble by histogram of records.}$
 - Discretize record features.
 - Each record maps to bin corresponding to its discretized feature values.

ICML 2K Nicholas R. Howe

An Example

- Accounting domain.
- Each transaction is one record.
- Record is described \$35.00
 by the amount and the dates of charge and payment.

Account History			
Amount	Charge Date	Paid Date	
\$75.00	06/16/99	10/13/99	
\$20.00	09/02/99	10/13/99	
\$35.00	09/28/99	10/13/99	

• Discretize amount in \$50 units, dates by month.

- e.g., \$50-99, \$100-149, Jun99, Sep00, etc.

Example (cont.)

Account History			
Amount	Charge Date	Paid Date	
\$75.00	06/16/99	10/13/99	= (\$50-99,Jun99,Oct99)
\$20.00	09/02/99	10/13/99	= (\$0-49,Sep99,Oct99)
\$35.00	09/28/99	10/13/99	= (\$0-49,Sep99,Oct99)

Vector representation: (...,0,0,1,0,...,0,2,0,0,...) (\$50-99, Jun99, Oct99) (\$0-49, Sep99, Oct99) (\$50-99, Sep99, Oct99)

12/6/2007

Comparison

• Compare ensembles using cosine metric: $\begin{pmatrix} \mathbf{f}^{T}\mathbf{S}\mathbf{f} \end{pmatrix}$

$$D(\mathbf{f}_1, \mathbf{f}_2) = \cos^{-1} \left(\frac{\mathbf{f}_1^{\mathrm{T}} \mathbf{S} \mathbf{f}_2}{(\mathbf{f}_1^{\mathrm{T}} \mathbf{S} \mathbf{f}_1) (\mathbf{f}_2^{\mathrm{T}} \mathbf{S} \mathbf{f}_2)} \right)$$

(Recall analogy to documents as bags of words.)

- Note generalization using **S** matrix:
 - -S = I gives standard cosine metric.
 - Other values of **S** allow adjustments to metric.

Comparison: S Matrix

• Discretization of record features may lose order/similarity information.

- e.g., \$50-99 is closer to \$0-49 than \$950-999.

 Such relationships may be encoded in off-diagonal terms of S.

first value

(lighter \Rightarrow more similar)

Generating the S Matrix

• S assembled from feature matrices S_i.

- Terms of S_j are a function of the distance between bin centers in feature f_j .
 - e.g., Gaussian or exponential decay.

Alternate View of S Matrix

- Cholesky factorization of S: $S = T^T T$
- Cosine metric of modified vectors:

$$D(\mathbf{f_1}, \mathbf{f_2}) = \cos^{-1} \left(\frac{(\mathbf{T}\mathbf{f_1})^{\mathrm{T}} (\mathbf{T}\mathbf{f_2})}{\left((\mathbf{T}\mathbf{f_1})^{\mathrm{T}} (\mathbf{T}\mathbf{f_1}) \right) \left((\mathbf{T}\mathbf{f_2})^{\mathrm{T}} (\mathbf{T}\mathbf{f_2}) \right)} \right)$$

ICML 2K Nicholas R. Howe

Optimizations

• Structure of **S** makes **f**₁^T**Sf**₂ calculation fast.

$$D(\mathbf{f}_1, \mathbf{f}_2) = \cos^{-1} \left(\frac{\mathbf{f}_1^{\mathrm{T}} \mathbf{S} \mathbf{f}_2}{(\mathbf{f}_1^{\mathrm{T}} \mathbf{S} \mathbf{f}_1) (\mathbf{f}_2^{\mathrm{T}} \mathbf{S} \mathbf{f}_2)} \right)$$

- (Order $n_1 n_2$, where n_1 and n_2 are the number of records that went into \mathbf{f}_1 and \mathbf{f}_2 .)
- $\mathbf{f}_1^{\mathrm{T}} \mathbf{S} \mathbf{f}_1$ and $\mathbf{f}_2^{\mathrm{T}} \mathbf{S} \mathbf{f}_2$ can be cached.
- Nearest neighbor search can be pruned by projection onto lower-dimensional spaces.

 β is lower bound on α .

Experiments

- Pacific Ocean buoy measurements:
 - Data from NOAA meteorological buoys. (Available from UCI KDD repository.)
 - Contains four El Nino episodes.
- Image classification experiments:
 - Images from Corel stock photo collection.
 - Two sets of visually-similar categories.
- Many other data sets are proprietary.

Pacific Ocean Data

- Data from March 1980 to June 1998.
 - Some missing data.
- Features and discretization:
 - Longitude, 5 bins.
 - Zonal & meridional winds, 7 bins each.
 - Humidity, 11 bins.
 - Air & sea temperatures, 15 bins each.
 - \Rightarrow Total dimensionality: 983,040 bins.
- Ensemble = aggregated measurements over onemonth intervals.

First Pass Results

buoy addition over time:

Strongest trend is a surprising dependence on measurement date.

12/6/2007

ICML 2K Nicholas R. Howe 15

Ocean Data: Final Results

• After accounting for buoy addition, we can detect El Nino and La Nina events.

Image Classification

- Two sets of test images:
 - 12 and 16 categories of ~100 images each.
- Features and discretization:
 - Color, 28 bins.
 - Texture (mean gradient), 3 bins.
 - Location, 25 bins.
 - Regional similarity, 4 bins.
- \Rightarrow Total dimensionality: 8400 bins.

Sample images

Airshows

Caves

Elephants

Polar Bears

Skiers

Stained Glass

12/6/2007

Classification Results

Comparison with two specialized image metrics:

- Outperforms baseline (green).
- Competitive with advanced image metric (blue).

12/6/2007

Summary

- Developed representation and metric for one nonstandard data format.
- Demonstrated use of these tools on two domains.
 - Results show approach is effective.
 - Competitive with specialized tools in image domain.

Future Work

- Extend to more advanced ML techniques. – e.g., boosting.
- Detection of sub-patterns in ensemble data.

• Develop similar approaches for other nonstandard data.