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ABSTRACT

Optical flow in monocular video can serve as a key for rec-
ognizing and tracking the three-dimensional pose of human
subjects. In comparison with prior work using silhouettes as
a key for pose lookup, flow data contains richer information
and in experiments can successfully track more difficult se-
quences. Furthermore, flow recognition is powerful enough
to model human abilities in perceiving biological motion
from sparse input. The experiments described herein show
that a tracker using flow moment lookup can reconstruct
a common biological motion (walking) from images con-
taining only point light sources attached to the joints of the
moving subject.

1. INTRODUCTION

Human beings rely on vision to determine where other peo-
ple are and what they are doing, both in the real world
and in media such as television and film. By compari-
son, computers fall short even in simply tracking the three-
dimensional pose of a human being moving in a short video.
Although current articulated pose trackers can follow very
simple movements, they make errors when presented with
more difficult sequences [2]. They also may require more
coddling: some systems rely on multiple cameras, human
initialization, ora priori appearance models, and they typi-
cally require large amounts of computational time. Clearly,
great room exists for improvement.

Intense research interest has focused to date on trackingof
human pose, as evidenced by a recent survey [7]. Some of
the newest approaches, based upon lookup or recognition
of known poses from their silhouettes, have shown great
success in tracking both hands [9, 13] and entire humans
[4, 8]. However, silhouettes suffer from several drawbacks
when used as the sole source of pose information. Most no-
tably, they cannot provide feedback about body parts that do
not abut the silhouette border. More subtly, silhouettes pro-
vide limited cues about the movement direction of rotating
bodies. To address these shortcomings, this paper investi-
gates optical flow as a cue for recognition-based tracking,
either alone or in conjunction with silhouette cues. In con-
trast to silhouettes, optical flow provides strong informa-

tion about rotating bodies, and can also reveal the motion of
body parts whose silhouettes are entirely surrounded by oth-
ers. Its strengths therefore complement those of silhouettes.
Although optical flow has been used for human detection
and verification [11, 14], it has received little attention as a
general means of tracking pose.

Using flow to recognize pose (i.e.,flow lookup) proves
interesting in another context as well. Psychological evi-
dence dating back to the 1970s indicates that people can
recover the pose of familiar biological forms in motion [5]
from extremely sparse data, specifically images consisting
only of isolated points that move as though attached to the
joints of an articulated figure. Although this phenomenon
has been explained as a bottom-up detection of pairs of
rigidly-connected points leading to the construction of a hu-
man figure [3], this theory cannot account for details such as
orientation-specificity. (Upside-down walkers are far more
difficult to interpret than those in a normal orientation [12].)
This paper develops the alternative possibility that human
observers rely directly on the optical flow of the points in
recognizing biological motion. Flow lookup seems to offer
a convenient explanation for these phenomena, if it can in-
deed recover human motion from images of moving point
sets. The experiments presented in Section 3 indicate that it
can.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the flow lookup algorithm and its imple-
mentation, and Section 3 presents related experiments. Sec-
tion 4 concludes with a discussion and possible future work.

2. ALGORITHM

This work adopts the general approach used for other
recognition-based trackers, summarized hereafter for the
reader’s convenience. The video input undergoes some
preprocessing to extract relevant features from each image
frame (e.g., silhouettes or flow fields). These features be-
come the keys used to retrieve known poses from a library.
Because the library will typically not contain an exact match
to the observed pose, and because the extracted features
may not clearly differentiate the true pose from other poses
with similar feature values, a collection of potential poses



may be retrieved for each frame. This guards against situa-
tions where the correct pose is not the top-ranked hit using
the chosen feature set. Once a small collection of poten-
tial poses has been identified for each frame, the collec-
tion of observations forms a temporal Markov chain, and
the Viterbi algorithm (forward-backward chaining) can find
the sequence of poses that minimizes an objective func-
tion. Typically, the objective function chosen will have both
“smoothness” and “data” terms, and penalizes sequences
that change pose sharply between adjacent frames or do not
closely match the observations. This paper adopts an ob-
jective function used in previous work [4], and follows that
work in other details except as noted below.

2.1. Working with flow

Three issues must be addressed before optical flow can be
used for recognition. First, the flow must be measured in the
input video. Second, flow information must also be associ-
ated with each library pose. Finally, a method must be cho-
sen for comparing the observed flows to the library flows.

Flow measurement techniques have received extensive
research attention that need not be replicated here, since
comprehensive surveys are available [1]. Although many
methods could serve equally well, this work uses Krause’s
algorithm based upon polynomial fitting [6], which pro-
duces a 2-d flow vector for each pixel. Under the assump-
tion of a static camera, flow in background regions is set to
zero to suppress noise.

Adding flow information to the pose library is not diffi-
cult, assuming that the library is populated using data gath-
ered in a motion capture studio. The captured motion can
generate reasonable flow values if a model of body shape
is available (as would be needed to generate artificial sil-
houettes). To infer the flow, simply compute the position of
corresponding points visible on the body surface in two suc-
cessive frames, and then determine the resultant observed
motions in the camera image plane. This method has been
used elsewhere [14] and produces flows that look quite re-
alistic.

When selecting a measure for flow comparison, storage
and processing requirements must be considered. Retaining
every flow field in its entirety would require large amounts
of storage and extensive processing during lookup. Instead,
this work compares flow fields based upon standardized
central moments of each component of the flow field (see
Figure 1). This simultaneously reduces storage require-
ments and increases retrieval speed. (Note that the flow
moments used need not be rotationally invariant because
gravity imposes a fixed orientation on the tracked scene. A
human figure upside-down is clearly not equivalent to one
rightside-up.) Euclidean distance serves for the comparison
of the moment vectors from two flow fields.

m00 =

∑
Fx(x, y)

|P | (1)

m10 =

∑
(x − x)Fx(x, y)∑

|x − x| (2)

m01 =

∑
(y − y)Fx(x, y)∑

|y − y| (3)

m20 =

∑
(x − x)2Fx(x, y)∑

|x − x|2
(4)

m11 =

∑
(x − x)(y − y)Fx(x, y)∑

|(x − x)(y − y)| (5)

m02 =

∑
(y − y)2Fx(x, y)∑

|y − y|2
(6)

Fig. 1. Equations used to compute moments of thex com-
ponent of a flowF . All sums are overP , the set of coordi-
nates(x, y) of foreground pixels. A similar set of equations
yields six moments of they componentFy.

2.2. Flow fields from point sources

Although standard practice guides the computation of op-
tical flow from ordinary video, the moving points of light
used in research onbiological motion displaysrequire spe-
cial treatment. To serve as a model of biological vision, an
algorithm can use no information or assumptions about the
input not available to the human visual system. In particu-
lar, the observed point locations mustnot be used directly
to infer parameters of an articulated human body model. In
the experiments to follow, the moving point images serve
solely to infer a series of optical flow fields.

Flow information is extrapolated from points where it is
known (the visible moving points) to regions where it is un-
known (the dark background) via a simple heuristic. The
flow at any given location is taken as the mean flow of the
nearby visible points, weighted by a Gaussian function of
their distance. Furthermore, flow at locations farther than a
threshold distance from any visible point is set to zero. Pro-
viding that flow discontinuities are rare, and that the visible
points are well distributed over the subject, this heuristic
approach produces an adequate estimate of the flow field.

3. EXPERIMENTS

The experiments that appear below assess the promise and
performance of flow lookup for three-dimensional pose
tracking. As a validation of the technique, the first exper-
iment shows that flow lookup alone can track a circular
walking example as well as or better than silhouette lookup.
A second experiment combines flow and silhouette lookup.
The final set of experiments focuses on biological motion
displays. Under the assumptions detailed above regarding
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Fig. 2. Improved tracking ofCircleWalkclip (closeup). The
silhouette-based tracker loses the legs in frames 50-80, but
the flow-based tracker does not.

the conversion of moving point data into flow fields, the
results show that flow lookup can successfully recover the
underlying motion from this sparse data source, when the
motion is familiar (i.e., similar to a set of known examples).

3.1. Flow lookup for standard video

Other work has examined the strengths and weaknesses
of trackers based upon silhouette lookup [4]. This sec-
tion therefore compares suchSiLotrackers with those based
upon flow lookup (FloLo). An existing SiLo implementa-
tion [4] serves as the control.

The CircleWalk clip forms a good basis for compari-
son, because it includes walking motions from changing
points of view, and has appeared in several previous works
[4, 10]. It shows a woman walking in a circular pattern, for
about 140 frames. Figure 2 displays the results in a crucial
segment. (Video animations of this and subsequent clips
may be found at the author’s web page,http://www.cs.

smith.edu/˜nhowe/research/flowtrack .) The SiLo
tracker loses track of the legs as the subject’s direction of
travel becomes aligned with the line-of-sight axis (around
frame 50) and does not regain it again until around frame
80. This is partly due to a failure to separate the legs dur-
ing silhouette extraction, but mostly may be attributed to
fact that changes to the silhouette boundary are small and
nondescript during this period. The small frame-to-frame
changes allow the smoothness term to dominate the Markov
chain solution, and the pose appears frozen in place. By
comparison, the FloLo tracking result has no trouble with
this portion of the sequence, and matches every movement
of the legs. On the other parts of the clip, the two methods
give roughly comparable (good) results.

For complex motions, combining flow and silhouette
lookup yields better tracking of rotational motions. (This

F
r.

95

F
r.

11
0

F
r.

10
0

F
r.

11
5

F
r.

10
5

F
r.

12
0

SiLo RGB Hybrid SiLo RGB Hybrid

Fig. 3. Improved tracking ofDancerclip (closeup). The
hybrid tracker correctly identifies the direction of rotation.

hybrid method works by pooling the sets of candidates gen-
erated by each lookup technique.) TheDancer[4] clip con-
tains a difficult 180 degree leaping turn. Although the SiLo
tracker alone can capture the gist of this motion (using a li-
brary of dance poses), it gets the direction of rotation back-
wards on the turn. Adding flow lookup corrects the rotation
direction, as shown in Figure 3.

Some caution is necessary when using flow lookup. As is
the case with silhouette extraction, the algorithms that cal-
culate optical flow can make errors. This results in a set
of candidate poses retrieved from the library using a flawed
query. If the error is small, the set returned by the flawed
query will be close enough to the correct pose that smooth-
ing techniques can correct for it. If the error is large, then
it may take a number of frames to recover (perhaps ten or
so [4]). Second, the size of the pose library needed for flow
lookup may be larger than for silhouette lookup, since it
is possible for identical silhouettes to have different flows.
The library must include representatives of all the motions
to be recognized in order for the lookup approach to suc-
ceed.

3.2. Flow lookup for biological motion displays

The biological motion display used in this experiment
comes from previously unseen motion capture data. A sin-
gle walking sequence of 300 frames provides the spatial lo-
cations of selected body points (fifteen joints plus five limb
termini) in each frame. Rendering these points from a par-
ticular viewpoint provides a synthetic biological motion dis-
play. Figure 4 shows results for the classic side-view walker.
(Similarly successful results using a rear view of a walker
are not shown due to space constraints.) Although the clip
contains several walking cycles, the results are nearly iden-
tical and only one cycle is shown. The flow lookup algo-
rithm correctly reproduces all the fundamental features of
the motion. The tracked figure walks in step with the orig-
inal, although the reconstruction is a little jerkier, with the
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Fig. 4. Reconstruction of biological motion from point dis-
plays: Sideways walking.

feet tending to stay together longer. This may be due in
part to the mechanism chosen for generating the regional
flow field: when points with different velocities are close to-
gether (as when the feet cross), they tend to average out and
cancel each other. Nevertheless, this difficulty did not cause
the system to lose track of any limbs, and the reconstructed
motion is quite clearly a walk. By contrast, a control experi-
ment (also not shown) using a non-walking point display in-
put generates an unrecognizable result. Thus the algorithm
can recognize walking behavior when it is present, but will
not hallucinate it when not present.

4. CONCLUSION

The results in this paper demonstrate that flow lookup can
be a powerful tool for recovering the three-dimensional pose
and motion of a familiar articulated figure such as a human
being. In particular, the experiments show that this mecha-
nism is powerful enough to duplicate the ability of human
beings to recognize familiar motion given extremely sparse
point-motion input. Whether humans employ similar tech-
niques or some other mechanism has not been established,
but should lead to interesting future research.

As a technique for use in computer analysis of standard
video, flow lookup also shows promise. It produces qualita-
tively better tracking results than silhouette lookup for some
motions where silhouette lookup fails. Furthermore, it can
combine with silhouette lookup to form a hybrid algorithm
employing a pool of potential poses chosen via both tech-
niques. In this manner, each mechanism provides a backup
in case the other should fail, and their different strengths can
complement each other.
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