Chronological Profiling for Paleography

ABSTRACT

This paper approaches manuscript dating from a Bayesian perspective. Prior work on paleographic date recovery has generally sought to predict a single date for a manuscript. Bayesian analysis makes it possible to estimate a probability distribution that varies with respect to time. This in turn enables a number of alternative analyses that may be of more use to practitioners. For example, it may be useful to identify a range of years that will include a document's creation date with a particular confidence level. The methods are demonstrated on a selection of Syriac documents created

Nicholas R. Howe and Stephanie Xie

DOCUMENTS

(1) Secure character samples from each manuscript) Cluster character shapes within categories (unsupervised) Take histograms of cluster membership by document and character

(4) Use chi-squares to determine probability that two observed cluster histograms are drawn from the same underlying distribution (writing style)

TEMPORAL PROFILES

(5) Probability that two manuscripts are written in the same style is joint odds that all corresponding characters share underlying distributions (6) Likelihood of production in a given year proportional to

proximity of dates for manuscripts written in a similar style) Normalize total likelihood over study period

800 1000 1200 600 • W_{90} : Boundaries of 90% conf. int. (506-845 CE) Year • Y_{ML}: Minimizes predicted error (639 CE) • Y_{P50}: Year at 50th percentile cum. prob. (590 CE) • Y_{MAP}: Year with maximal likelihood (565 CE) Y_{GT}: Actual date of manuscript (553 CE)

Temporal prot 400 600 800 1000 1200 Year

EXPERIMENTS

- 125 securely dated Syriac manuscripts collected from libraries around the world.
- 6-10 samples per character segmented by hand from each manuscript
- Leave-one-out experimental structure

If profiles are accurate, true date should show even distribution across probability levels. Actual distribution shows excess extreme cases (left) Eliminating documents with insufficient training

$\Theta_i(y) = P(y|D_i) = \frac{P(D_i|y)P(y)}{P(D_i)} \qquad P(\mathcal{H}_i|\Psi) = \sum_t r_t(y)P(\mathcal{H}_i|\psi_{tj})$ $P(\mathcal{H}_i|\psi_{tj}) = \prod_{j} P(H_{ij}|\psi_{tj})$ $P(D_i|y) \stackrel{\text{\tiny def}}{=} P(\mathcal{H}_i|\Psi(y))$ $\Theta_i(y) = P(y|D_i) = v \sum_t r_t(y) \left(\prod_i P(H_{ij}|\psi_{tj}) \right)$

CONCLUSION

Styles of writing persist over time. When dating

data gives nearly uniform distribution (right)

documents based on their style, it may therefore be more appropriate to produce a probability distribution over possible creation dates than to assign a single date estimate. Experiments with Syriac documents show a mean uncertainty of ±116 years over the 1000-year study period.

