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One-Shot Learning 

                                                      

Single example is all you get (usually) 
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One-Shot Learning 

Flexibility is essential – no planar transformations 
 

Handwriting varies – must generalize to match 

Single example is all you get (usually) 
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Part-Structured Models 

• Used for photographic 
object recognition 

• Detected parts arranged 
in approximate spatial 
configuration 
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Part-Structured Models 

• Used for photographic 
object recognition 

• Detected parts arranged 
in approximate spatial 
configuration 

• Successful fit identifies 
required parts near 
expected position 
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Inkball Models 

• Model = Closely spaced inkballs forming curve 
• Part = Ball of ink 
• Tree structure 
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Inkball Models 

• Model = Closely spaced inkballs forming curve 
• Part = Ball of ink 
• Tree structure 

• Connections are 
flexible links 
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Part-Structured Inkball Models for  
One-Shot Handwritten Word Spotting 

 
 

So, now you know. 
 
 

…but how do we use these models 
 for word spotting? 
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Configurations 

• Configuration = 2D position for each ball 
• Rest/default configuration derived from example 
• Altering configuration modifies shape 

Rest Configuration  Alternate Configurations 
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Configuration Energy 

• Match of model to image has two terms: 
Internal deformation:   
how far from default? 

Observational deformation: 
 how far from ink skeleton? 
 𝐸𝜉(Q, C) 𝐸𝜔(C,Ω) 
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One-Shot Word Spotting 

1. Infer inkball model from word sample 
 
 

2. Efficiently identify model configurations with 
low energy in target document 
 
 

3. Confirm candidates via reverse match 
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Efficient Energy Minimization 

• Consider simplest case:  single-node model 
– Observation deformation is only term in play 
– Compute the energy for all possible configurations 

Distance to closest ink is just a distance transform 

Target image 
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Efficient Energy Minimization 

• Consider simplest case:  single-node model 
– Observation deformation is only term in play 
– Compute the energy for all possible configurations 

Distance to closest ink is just a distance transform 

Blue 
== 

Low energy 
== 

Good match 
Target image 

DT2 
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Efficient Energy Minimization 

• Slightly harder case: barbell model 
– Still observation terms only (fixed separation) 
– Energy is sum of offset distance transforms: 
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Efficient Energy Minimization 

• Slightly harder case: barbell model 
– Still observation terms only (fixed separation) 
– Energy is sum of offset distance transforms: 

Sum 

Energy functional: 
Shows energy of model w.r.t. 

possible root node placements  

Offset equals default 
separation of  nodes 

in model 
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Efficient Energy Minimization 

• More complication: springy barbell 
– Internal deformation term enters picture 
– Use generalized distance transform on offset energy 

GDT 

Energy on 
grid points 

with optimal 
observation

/ 
deformation 

tradeoff 
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(Squared) Distance Transform 

• Minimum of upward paraboloids extending 
from ink pixels only, rooted at zero 

1D Example: 

4 1 0 1 4 4 1 0 0 1 1 

Note: Computational complexity grows linearly with number of pixels 
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Generalized Distance Transform 

• Minimum of upward paraboloids at every pixel 
but rooted at pixel value 
– Still linear complexity in  number of pixels 

 
 
 

• Intuition: 
The local value can be beaten by a better one nearby 

0 6 5 4 6 4 8 0 8 6 2 0 

0 1 4 4 5 4 1 0 1 3 1 0 
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Efficient Energy Minimization 

• General case: node + arbitrary  structure 
– Translate energy of child structure(s) by offset 
– Apply generalized distance transform 
– Add to single-node energy 

? 
? 
… 
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Model Matching Visualization 

• Demonstration with simple example: 
Match model a to image 
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Model Matching Visualization 

Single Node 
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Model Matching Visualization 

Translate 
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Model Matching Visualization 

GDT 

Single Node 
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Model Matching Visualization 

Sum Single Node 
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Model Matching Visualization 
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Model Matching Visualization 

Sum 
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Model Matching Visualization 

Sum 

Su
bt

re
e 
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Model Matching Visualization 

Translate 

Tr
an

sla
te
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Model Matching Visualization 

GDT 

GD
T 
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Model Matching Visualization 

GDT 

GD
T 

Single Node 
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Model Matching Visualization 

Single Node Sum 
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Model Matching Visualization 
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Parallel GDT 

• Optimum model fit requires: 
– One translation per node 
– One GDT per node 

• Work scales with number of image pixels 
• Fast parallel computation on graphics 

processing unit (GPU) 
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Configuration Recovery 

• Energy optimization/model matching is just 
big dynamic programming problem 

• Trace back DP winner to recover configuration 
• Useful for display/localization 
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Sample Result:  Query = democracy 

Note: left/right color scales do not match. 
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Sample Result:  Query = democracy 

Images courtesy 
of canceled 
ICDAR Word 

Spotting Contest 

Note: left/right color scales do not match. 
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Match Confirmation 

• Model matches ink, ignores noise/context 
– Will match and to Alexandria: 
– Will match bird to bind: 

• Whitespace not considered in model 
• Expedient heuristic:  Confirm top hits by 

reverse match 
– Build model of target area & match to query 
– Match energy is greater of the two directions 

(scaled by number of nodes) 
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Experimental Data Sets 

George Washington (GW20) 
• 20 pages; 4685 words 
• English cursive script 

Parzival 
• 47 pages; 18,918 words 
• German medieval lettering 
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Methodology 

• Used train/test split from Frinken et al. [PAMI’12] 

• Each non-stopword in training set is a query 
– Some appear multiple times in training set 
– Run retrieval on all instances & take high scores 

• Reverse match uses segmented words 
• Recall-Precision curves averaged for all queries 

– Threshold may vary from query to query 
– Cross-query calibration still requires research 
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George Washington 
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George Washington 

Notes: 
• 93.4% Average Precision 

[84% is prior best] 
• 78.9% Precision at 100% Recall 
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Parzival 
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Parzival 

Notes: 
• 88.2% Average Precision 

[94% is prior best] 
• 68.4% Precision at 100% Recall 
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Parzival 

Notes: 
• 88.2% Average Precision 

[94% is prior best] 
• 68.4% Precision at 100% Recall 

Not bad for such a simple model! 
• No learning… 
• No language model… 

…different yet still good. 
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Caveat Lector 

• Some dependence on handwriting style 
– Intrinsic letter forms can vary 
– Cross-style spotting requires more research 

• Limited invariance to scale & rotation 
– Match model scale to text in document 
– Correct skew/rotation prior to spotting 

• Speed not yet real-time for large collections 
– Roughly 2 Mpixel/second for most words 
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Part-Structured Promise 

• Powerful matching/retrieval tool 
– Part models could be more complex 

• Requires no training, language modeling, etc. 
– Easily applied to new languages, figures, etc. 

• Intuitive pixel-level correspondences 
– Starting point for further processing? 

• Reference code on my web page 
– I welcome opportunities to collaborate! 

http://cs.smith.edu/~nhowe/research/code/ 
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Thank You 
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Rare Words 

• Performs well with single training examples 

1 

2 

3 

4 

Singleton 
training 
example 

All three 
instances in 
target set 

rank at top 
of retrieval 

list 
…

 

GW20: 25.4% of queries are singletons  60.2% precision at full recall 
Parzival:  31.8% of queries are singleton  69.5% precision at full recall 
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Building PSM from Image 

1. Find skeleton                
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Building PSM from Image 

1. Find skeleton 1. Find skeleton 
2. Select endpoints & 

junctions 
 

1. Find skeleton 
2. Select endpoints & 

junctions 
3. Add points chosen 2r 

from included points 
 

1. Find skeleton 
2. Select endpoints & 

junctions 
3. Add points chosen 2r 

from included points 
4. Additional points to fill 

remaining gaps 
 

1. Find skeleton 
2. Select endpoints & 

junctions 
3. Add points chosen 2r 

from included points 
4. Additional points to fill 

remaining gaps 
5. Form tree by greedily 

connecting closest pairs 
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Online vs. Offline Models 

• Online query allows 
model structure to 
follow actual stroke 

• Offline query must use 
ad hoc model structure 
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Some Matches 
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Caveat Lector 

• Some dependence on handwriting style 
– Intrinsic letter forms can vary 
– Cross-style spotting requires more research 

• Limited invariance to scale & rotation 
– Match model scale to text in document 
– Correct skew/rotation prior to spotting 

• Speed not yet real-time for large collections 
– Roughly 2-3 Mpixel/second for most words 
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