Part-Structured Inkball Models for
 One-Shot Handwritten Word Spotting

Nicholas R. Howe

Smith College

Word Spotting (by Example)

5. Wo the Honourable Robert Iinmiddie, Esquire, Governor.

Word Spotting (by Example)

S. To the Honourable Robert Iinmiddie, Esquire, Governor.

Word Spotting (by Example)

S. To the Honourable Robert Sinmiddie Esquire, Governor.

Word Spotting (by Example)
5. Wo the Honowerable Robert Sinmiddie, osquire; forernor.

28. To Rnsign Tllming of he Vigemia Regiment. You are hereby ondered to ackain to
ig's bompany at TFot Dinvedie. baplain Hosgi bompany at Prot Dinrredrie, ... etc.

One-Shot Learning

Single example is all you get (usually)

One-Shot Learning

Single example is all you get (usually)

Handwriting varies - must generalize to match

One-Shot Learning

Single example is all you get (usually)

Handwriting varies - must generalize to match

Flexibility is essential - no planar transformations

Part-Structured Models

- Used for photographic object recognition
- Detected parts arranged in approximate spatial configuration

Part-Structured Models

- Used for photographic object recognition
- Detected parts arranged in approximate spatial configuration
- Successful fit identifies required parts near expected position

Inkball Models

- Model = Closely spaced inkballs forming curve
- Part = Ball of ink
- Tree structure

Inkball Models

- Model = Closely spaced inkballs forming curve
- Part = Ball of ink
- Tree structure
- Connections are flexible links

Part-Structured Inkball Models for One-Shot Handwritten Word Spotting

So, now you know.
...but how do we use these models for word spotting?

Configurations

- Configuration = 2D position for each ball
- Rest/default configuration derived from example
- Altering configuration modifies shape

Rest Configuration

Alternate Configurations

Configuration Energy

- Match of model to image has two terms:

Internal deformation: how far from default?

Observational deformation: how far from ink skeleton?

$$
E_{\omega}(\mathrm{C}, \Omega)
$$

Configuration Energy

- Match of model to image has two terms:

Internal deformation: how far from default?

Observational deformation: how far from ink skeleton?

$$
E_{\omega}(C, \Omega)
$$

$$
\begin{aligned}
& E(Q, C, \Omega)=E_{\xi}(\mathrm{Q}, \mathrm{C})+E_{\omega}(\mathrm{C}, \Omega) \\
& E_{\xi}(\mathrm{Q}, \mathrm{C})=\sum_{j=2}^{m} \frac{\left\|\left(\vec{v}_{j}-\vec{v}_{j f}\right)-\vec{t}_{j}\right\|^{2}}{2 \sigma^{2}} \\
& E_{\omega}(\mathrm{C}, \Omega)=\sum_{i=1}^{m} \min _{\bar{\xi} \in S} \frac{\left\|\overrightarrow{s-\vec{v}_{i}}\right\|^{2}}{2 \hat{\sigma}_{i}^{2}}
\end{aligned}
$$

One-Shot Word Spotting

1. Infer inkball model from word sample

2. Efficiently identify model configurations with low energy in target document

3. Confirm candidates via reverse match

Efficient Energy Minimization

- Consider simplest case: single-node model
- Observation deformation is only term in play
- Compute the energy for all possible configurations Distance to closest ink is just a distance transform

Target image

Efficient Energy Minimization

- Consider simplest case: single-node model
- Observation deformation is only term in play
- Compute the energy for all possible configurations Distance to closest ink is just a distance transform

Target image

Efficient Energy Minimization

- Consider simplest case: single-node model
- Observation deformation is only term in play
- Compute the energy for all possible configurations Distance to closest ink is just a distance transform

Target image

Efficient Energy Minimization

- Consider simplest case: single-node model
- Observation deformation is only term in play
- Compute the energy for all possible configurations Distance to closest ink is just a distance transform

Target image

Efficient Energy Minimization

- Consider simplest case: single-node model
- Observation deformation is only term in play
- Compute the energy for all possible configurations Distance to closest ink is just a distance transform

Target image

Efficient Energy Minimization

- Consider simplest case: single-node model
- Observation deformation is only term in play
- Compute the energy for all possible configurations Distance to closest ink is just a distance transform

Efficient Energy Minimization

- Consider simplest case: single-node model
- Observation deformation is only term in play
- Compute the energy for all possible configurations Distance to closest ink is just a distance transform

Efficient Energy Minimization

- Slightly harder case: barbell model
- Still observation terms only (fixed separation)
- Energy is sum of offset distance transforms:

Efficient Energy Minimization

- Slightly harder case: barbell model
- Still observation terms only (fixed separation)
- Energy is sum of offset distance transforms:

Efficient Energy Minimization

- Slightly harder case: barbell model
- Still observation terms only (fixed separation)
- Energy is sum of offset distance transforms:

Efficient Energy Minimization

- Slightly harder case: barbell model
- Still observation terms only (fixed separation)
- Energy is sum of offset distance transforms:

Efficient Energy Minimization

- Slightly harder case: barbell model
- Still observation terms only (fixed separation)
- Energy is sum of offset distance transforms:

Efficient Energy Minimization

- More complication: springy barbell
- Internal deformation term enters picture
- Use generalized distance transform on offset energy

(Squared) Distance Transform

- Minimum of upward paraboloids extending from ink pixels only, rooted at zero

1D Example:

Note: Computational complexity grows linearly with number of pixels

Generalized Distance Transform

- Minimum of upward paraboloids at every pixel but rooted at pixel value
- Still linear complexity in number of pixels

0	6	5	4	6	4	8	0	8

| 0 | 1 | 4 | 4 | 5 | 4 | 1 | 0 | 1 | 3 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0

- Intuition:

The local value can be beaten by a better one nearby

Efficient Energy Minimization

- General case: node + arbitrary structure - Translate energy of child structure(s) by offset - Apply generalized distance transform - Add to single-node energy

Model Matching Visualization

- Demonstration with simple example: Match model a to image

Model Matching Visualization

Single Node

Model Matching Visualization

Model Matching Visualization

Single Node

Model Matching Visualization

Model Matching Visualization

Model Matching Visualization

Single Node

Model Matching Visualization

Parallel GDT

- Optimum model fit requires:
- One translation per node
- One GDT per node
- Work scales with number of image pixels
- Fast parallel computation on graphics processing unit (GPU)

Configuration Recovery

- Energy optimization/model matching is just big dynamic programming problem
- Trace back DP winner to recover configuration
- Useful for display/localization

A quick brown fox jumps over the lazy dog. Jackdaws love my big sphinx of quartz. Pack my box with five dozen liquor jugs.

Configuration Recovery

- Energy optimization/model matching is just big dynamic programming problem
- Trace back DP winner to recover configuration
- Useful for display/localization

A quick brown fox jumps over the lazy dog. Jackdaws love my big sphinx of quartz. Pack my box with five dozen liquor jugs.

Sample Result: Query = democracy

India, officially the Requibic of Indre, is a country in South Asia. It is the seventh-largest country by geograghical area, the second-mast papulaus ocean on the sarth, the Aplos democrary in the wreld. Bounded by the Indion the east, India has a coastline of on the west, and the bay of Bengal on Pakistan to the west; China, Nepal, 7,57 kilometres. It is baidered by Bangladesh and Burma to the egal, and Bhatan to the nsith; and and the Maldives in the Indian Deandia is in the vicinity of Sri Lanka civilisation and a region of Indian Ocean Home to the Indes Valley subcontinent was identified with ic trade routes and vast empires, the Indwan much of its long history. Far mafor commerial and cultural urealth for Jainism and Sikhism rriginated herefigions, Hinduism, Buddhism, Christianity and Islam arried. here, while 2 oroostrianism, fadaism, the regions dierse culture.

Sample Result: Query =
 demorracy

India, officially the Refuidic of India, is a caygfly in South Asia. It is the seventh-largest cantry by fegraghical arez, the second-mast populaus ccean on the sarth, the Arohl an seencry in the wreld. Bounded by the Indion the east, India has a coastline of 7512 west, and the Bay of Bengal on Pakistan to the west. China Nep 7,557 kilometres. It is bandered by Bangladesh and Burma to Negal, and Bhutan to the noith; and and the Maldives in the Indian Least. India is in the vicinity of Sri Lanka civilisation and a region of Indian Ocean Home to the Indws Valley subcontinent was identified withic trade routes and vast empires, the Indra much of its long history. Far mofor commericial and cultural wealth for Jainism and Sikhism rriginated har religions, Hinduism, Buddhism, Christianity and Islam arried in the while 2 oroostrianism, fadaism, the regionis diverse culture.

Sample Result: Query = democracy

India, officially the Refuidic of India, is a caygfly in South Asia. It is the seventh-largest cantry by pef graghical arey, the second-mast populaus ocean on the sarth, the Aroblon seary in the wreld. Bounded by the Indion the east, India has a coastline of $f 5 r$ west, and the Bay of Bengal on Pakistan to the west. Ching Nepl 7,557 kilometres. It is bandered by Bangladesh and Burma to the egal, and Bhatan to the noith; and and the Moldives in the Indian Dceandio is in the vicinity of Sri Lanko Givilisation and a region of Kistric. Home to the Indw Valley subcontinent was identified with ic trade routes and vast empires, the Inden much of its long history. Farr mofor commerial and cultural wealth for Jainism and Sikhism originated herefigions, Hinduism, Buddhism, Christianity and Islam arried in the, while 2 oroostrianism, fudaism, the regionis diverse culture.

Match Confirmation

- Model matches ink, ignores noise/context
- Will match and to Alexandria: Alex ria
- Will match bird to bind:
- Whitespace not considered in model
- Expedient heuristic: Confirm top hits by reverse match
- Build model of target area \& match to query
- Match energy is greater of the two directions (scaled by number of nodes)

Experimental Data Sets

George Washington (GW20)

- 20 pages; 4685 words
- English cursive script

270. Letters, Onders and Instructions. October inss.

Parzival

- 47 pages; 18,918 words
- German medieval lettering

Methodology

- Used train/test split from Frinken et al. [PAMI'12]
- Each non-stopword in training set is a query
- Some appear multiple times in training set
- Run retrieval on all instances \& take high scores
- Reverse match uses segmented words
- Recall-Precision curves averaged for all queries
- Threshold may vary from query to query
- Cross-query calibration still requires research

George Washington

George Washington

Parzival

Parzival

Parzival

Caveat Lector

- Some dependence on handwriting style - Intrinsic letter forms can vary
- Cross-style spotting requires more research
- Limited invariance to scale \& rotation
- Match model scale to text in document
- Correct skew/rotation prior to spotting
- Speed not yet real-time for large collections - Roughly 2 Mpixel/second for most words

Part-Structured Promise

- Powerful matching/retrieval tool
- Part models could be more complex
- Requires no training, language modeling, etc.
- Easily applied to new languages, figures, etc.
- Intuitive pixel-level correspondences
- Starting point for further processing?
- Reference code on my web page
- I welcome opportunities to collaborate!
http://cs.smith.edu/~nhowe/research/code/

Thank You

© Nicholas R. Howe, Smith College

Rare Words

- Performs well with single training examples

GW20: 25.4% of queries are singletons $\boldsymbol{\rightarrow} \mathbf{6 0 . 2 \%}$ precision at full recall Parzival: 31.8% of queries are singleton $\boldsymbol{\rightarrow} 69.5 \%$ precision at full recall

Building PSM from Image

1. Find skeleton

Building PSM from Image

1. Find skeleton
2. Select endpoints \& junctions

Building PSM from Image

1. Find skeleton
2. Select endpoints \& junctions
3. Add points chosen $2 r$ from included points

Building PSM from Image

1. Find skeleton
2. Select endpoints \& junctions
3. Add points chosen $2 r$ from included points
4. Additional points to fill remaining gaps

Building PSM from Image

1. Find skeleton
2. Select endpoints \& junctions
3. Add points chosen $2 r$ from included points
4. Additional points to fill remaining gaps
5. Form tree by greedily
 connecting closest pairs

Online vs. Offline Models

- Online query allows model structure to follow actual stroke
- Offline query must use ad hoc model structure

Some Matches
Orecduricks buagh, Thedereckstherget. Seredencichs-bungl, Drederichsbiengt.

Caveat Lector

- Some dependence on handwriting style - Intrinsic letter forms can vary
- Cross-style spotting requires more research
- Limited invariance to scale \& rotation
- Match model scale to text in document
- Correct skew/rotation prior to spotting
- Speed not yet real-time for large collections
- Roughly 2-3 Mpixel/second for most words

