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ABSTRACT
Thousands of documents written in Syriac script by early
Christian theologians are of unknown provenance and un-
certain date, partly due to a shortage of human expertise.
This paper addresses the problem of attribution by devel-
oping a novel algorithm for offline handwriting style iden-
tification and document retrieval, demonstrated on a set of
documents in the Estrangelo variant of Syriac writing. The
method employs a feature vector based upon the estimated
affine transformation of actual observed characters, charac-
ter parts, and voids within characters as compared to a hy-
pothetical average or ideal form. Experiments on seventy-six
pages from nineteen Syriac manuscripts written by different
scribes show that the method can identify pages written in
the same hand with high precision, even with documents
that exhibit various challenging forms of degradation.

Categories and Subject Descriptors
I.7 [Document & Text Processing]: Miscellaneous; J.5
[Arts & Humanities]: Miscellaneous

1. INTRODUCTION
Historically, the academic study of the Christian religion

has mainly focused on Latin texts. In more recent years,
however, a broader view has been taken with increased in-
terest in the study of ancient manuscripts written in the
Aramaic dialect known as Syriac, a largely unexplored area
due to the fact that there are relatively few scholars cur-
rently able to read and understand the Syriac language.

Syriac scribes produced over 10,000 manuscripts between
400 and 1200 AD, including some of the earliest translations
of the Bible, and translations critical to the preservation of
the writings of Aristotle. Syriac Christianity was also the
most far-reaching branch of Christian religion in antiquity,
making contact with early Islam, India, and even China.
Although the study of Syriac Christianity has yet to receive
the full attention of many academics, this attitude is slowly
changing: with increased interest in the Syriac branch of
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Christianity there are now several universities offering in-
struction in the Syriac language, eight international Syriac
conferences, and an academic journal of Syriac studies.

Scholars of Syriac have a large body of untranslated, gen-
erally unstudied manuscripts with which to work. Because
attribution and the identification of related documents is
often a first step in understanding the significance of a par-
ticular work, scholars would benefit greatly from an au-
tomated system capable of recommending potentially rel-
evant comparisons. While some Syriac manuscripts are eas-
ily attributed to a particular scribe because they include a
colophon recording the copyist and date, the majority of
preserved documents (95 percent) do not carry this impor-
tant information [12]. To address the needs of scholars for
attribution, this paper describes a system that can semi-
automatically identify and retrieve documents written in a
similar style to a query document. In this context, style
refers to the prototypical form taken by each character in
the alphabet, and captures qualities such as elongation, cur-
vature, and slant of individual parts of the letter shape. Al-
though documents written by the same scribe should ap-
pear at the top of a retrieved list for any given query docu-
ment, identifying other highly-ranked manuscripts with sim-
ilar handwriting style is also useful. Because handwriting
forms change in subtle ways over time, similarities in style
may indicate a similar origin in time and place, and thus
signal a document that may be of interest.

From the computer science perspective, the goal of this
work is to implement and test a novel method of writer style
comparison based upon the congealing algorithm introduced
by Learned-Miller[10]. As noted above, style-based retrieval
overlaps with writer identification, which has been studied
in other historical contexts [2, 1, 11]. In addition, a body
of work has explored the field of modern offline handwriting
identification [14, 4]. The notion of writing style employed
here does not necessarily require the identification of indi-
vidual writers that most modern methods attempt; rather it
resembles the copybook style identification work of Yoon et
al.[13]. Some other recent research has also explored style-
based retrieval for modern writing [3].

In addition to its algorithmic contributions, this work
seeks to raise the profile of a category of historical docu-
ments that has not received much attention to date. The
authors know of only one attempt to do automatic hand-
writing analysis in Syriac: W. F. Clocksin’s studies of hand-
writing recognition on Estrangelo texts [6, 5].

The remainder of the paper follows a standard organiza-
tion. The next section introduces the novel identification



method that is the focus of the paper. Section 3 describes
the experiments used to evaluate the method, and gives their
results. The final section concludes with a short discussion
of impact and future work.

2. METHOD
The method developed in this paper assumes a body of

documents with known provenance, to which the style of a
new document will be compared. The most similar docu-
ments found in the known library may or may not be writ-
ten by the same hand as the unknown work. Yet even when
produced by a different scribe, similarities in letter styling
may indicate that they were written at a similar time and
place, and thus they can serve as a starting point for further
scholarship.

The style descriptor developed below implicitly references
an idealized or Platonic letter form for each character. The
idealized form is a sort of average over all observed samples
of that letter, computed by Learned-Miller’s congealing al-
gorithm. The actual observed form of any given character
sample will differ from the ideal to some degree, character-
ized by a mathematical (affine) transformation, both at the
full-character level and more closely when comparing indi-
vidual parts of a letter. The parameters of the transforma-
tions involved (translation, rotation, elongation, and shear)
form the components of the style descriptor associated with
that particular character instance.

An outline of the main steps in the method follows, with
each step described in further detail below. Syriac has 22
letters, and samples of each are identified in every document.
To begin, the congealing process [10] aligns all the samples of
each letter type by applying an affine transformation to each
so as to minimize the overall entropy. The aligned samples
form the basis for a feature vector with components describ-
ing both the overall structure and the individual parts (i.e.,
significant branches and voids). When comparing a new
document to the library, each character sample casts a vote
for the page holding the library character it most resembles,
and pages are retrieved in order of the number of votes they
receive.

2.1 Character Sampling and Alignment
Currently, a human identifies character samples in each

document by clicking on a point in the center of the target
letter. Automatic identification should be feasible [2, 5],
but is left as future work. The experiments described later
use up to six samples of each letter where available, but
with automatic identification this limit could be increased
significantly or ultimately eliminated.

Ideally all documents would be scanned under known,
identical parameters. Unfortunately, conditions in the real
world rarely meet this standard because document images
may come from different collections with varying practices.
As a result the apparent scale cannot be relied upon, and
all documents are initially rescaled to equivalent character
heights. This proceeds as follows: a human identifies a repre-
sentative patch of the document by drawing a bounding box.
The patch is rotated by up to ±5◦ to align the written lines
with the horizontal, by maximizing the variance of the hor-
izontal projections. Baselines and upperlines are detected
based on changes in the horizontal projection, yielding the
line heights. The original documents used in the experi-
ments exhibit median line heights ranging from 19 to 50 pix-
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Figure 1: Congealing for samples of the character
alaph. Top row shows original sample images and
overall mean. Bottom row shows transformed sam-
ples after 20 rounds of congealing and new overall
mean.

els. To achieve scale independence, all images are rescaled
to match the lowest resolution present (i.e., text lines 19 pix-
els high). Following this they are smoothed slightly using a
Gaussian filter with σ = 0.5 and then binarized using energy
minimization on a Markov random field model[8].

Character samples are taken from the binarized source im-
ages using a square radius of 24 pixels. This is large enough
to capture complete letters, including most ascenders and
descenders, but crops out most of the surrounding charac-
ters. (Some letters, such as dalath and resh, are smaller than
others and could perhaps benefit from a smaller window, but
these experiments use a uniform window size throughout.)
Despite the cropping some samples inevitably contain pieces
of other characters within their boundaries. The procedure
described below removes a portion of this chaff, but some of
it cannot be removed and remains as a source of noise in the
final results.

Congealing, introduced by Learned-Miller et. al. and
available as a Matlab code package1, seeks to mutually align
a set of letter samples to each other by applying gradient de-
scent in the space of scalar transforms and seeking to mini-
mize the pixelwise entropy of the samples. To prevent drift,
the transforms are normalized after each descent step to
maintain the same average position, scale, and shear over
the group as a whole [10]. The results after just 20 rounds
of descent are striking, as visible in Figure 1. Initially dis-
similar letter forms map closely onto a common idealized
shape. We exploit this fact to perform the data cleaning
alluded to above: The idealized image is found by thresh-
olding the congealed mean, and connected components in
each aligned image that do not overlap with the idealized
letter form are discarded in the original (unaligned) image.
The original samples are then congealed again, minus their
spurious components.

2.2 Letter Parts and Cavities
Bar-Yosef et. al. introduce analysis of the shape of letter

cavities for style identification in ancient Hebrew[2]. This
work uses cavities in a similar manner, and additionally an-
alyzes shapes taken from parts of the letters themselves by
breaking the letter forms into pieces at their main branch-
ing points. This section begins by describing how the shapes
are isolated and identified. After this step, a treatment step
reduces both parts and cavities in identical fashion to a de-
scriptive feature vector.

Cavities are defined as the connected components left be-
hind when the original letter shape is subtracted from its
convex hull. Performing this operation on the idealized (i.e.,

1http://www.cs.umass.edu/~elm/congealing/



Figure 2: Cavities (left two images) and parts (right
three images) for alaph. The potential cavity at
the top of the letter is rejected because its thinness
makes it potentially unstable.

thresholded mean congealed) image of each letter yields a
canonical set of cavities, as illustrated in Figure 2. Thin
cavities of only a few pixels in width tend to be unstable
from one sample to another, so any that disappear under
erosion by a two-pixel radius disk are thrown out and not
considered in any further processing. The more robust cav-
ities that remain can be matched across most or all of the
aligned sample images.

Fortunately, the number of candidate cavities in each let-
ter sample is usually small (on the order of zero to four) so
an exhaustive search for possible matchings is feasible. In
practice, it suffices to greedily find pairings using a cham-
fer match criterion. After all canonical cavities have been
matched to their best equivalent in the observed sample,
any remaining cavity components are tried in combination
with the existing matches, and retained if they improve the
chamfer match score. This allows for the possibility that a
component may be split in two, a consideration that proves
particularly important for the parts computation described
below.

Letter parts are discrete segments of a branching letter
form. (Some letters, such as zayn and the final form of nun,
consist of a single part.) To isolate individual parts, we an-
alyze the letter skeleton to identify junction points where
three or more branches join together. With these junction
pixels removed, the discrete connected components of the
remaining skeleton image form the seeds of the separate let-
ter parts. Each is reconstituted by replacing its pixels with
the maximal inscribed circle in the original image. Any pix-
els of the original image not assigned in this manner to at
least one letter part are then assigned to the part or parts
they are closest to. Figure 2 shows the parts identified in
the alaph canonical image.

As with the process for identifying cavities, the canonical
parts are taken from the idealized image, and parts identi-
fied in sample images are matched to these. Because spurs
in the skeleton appearing due to noise or style variation can
trigger a split into extra parts, the ability to match several
observed letter parts with a single canonical component be-
comes important here.

2.3 Feature Vector Assembly and Document
Retrieval

Once the corresponding cavities and letter parts have been
identified in all aligned sample images, a secondary round
of congealing is applied in turn to each corresponding set of
parts or cavities. The transformations found in these second-
round alignments account for differences in the shape of the
individual parts and cavities, independent of the rest of the
letter. Since the round begins with images that are already
globally aligned, any scaling or translation found will be
significant.

To assemble the full feature vector describing each charac-

ter sample, simply take the x and y shear components from
the global affine transformation found during the first round
of congealing, and concatenate these with the seven trans-
formation components found for each cavity and letter-part
set. The length of the feature vector thus varies by charac-
ter, depending upon how many canonical parts and cavities
are associated with its form. For example, teth features have
72 components, while beth, lamadh, and kaph each have 16.
To prepare for style classification of new documents, the ex-
periments precompute and store feature vectors for all letter
samples of the library documents.

Given a previously unseen (query) document, the first step
in classifying it is to align its letter samples with the pre-
viously congealed samples from the library. This employs
a similar gradient-descent optimization as the original con-
gealing process, except that the query image does not affect
the steps taken by the library images because they are al-
ready fixed. The process has been referred to as funneling
[9].

More specifically, from the standpoint of an individual im-
age the original congealing process consists of three stages
applied iteratively. First, a gradient-descent step is com-
puted for the affine transformation that maps an individual
sample onto the mean congealed image. (This is a seven-
dimensional vector with components for translation, rota-
tion, scale, and shear.) Second, the mean gradient step
found over all the images is subtracted from each individ-
ual step, to ensure that the set of transformations as a whole
does not drift. Finally, the transformation is updated by the
remaining step and a new mean congealed image is found.
To approximate the transformation that would have resulted
if the query image was congealed with the rest of the library,
we must record the mean congealed image and mean gradi-
ent step taken at each stage of the original congealing process
for the library images. We compute the gradient-descent
step in the first stage with respect to the stored mean im-
age, and correct it in the second stage with the stored mean
step. The query image does not contribute anything to these
means, so they are slightly different from what they would
be if the congealing were performed all at the same time,
but if the number of images in the library is large then the
effect of one missing image is negligible.

Once the query samples are aligned, they may be treated
as all the others: their parts and cavities are identified and
associated with corresponding canonical components. These
also are aligned in a secondary round with the previously
congealed set of library component samples, and the de-
scriptive feature vector can be assembled.

At this point, a Euclidean distance computation gives the
distance from each character sample in the query document
to all the library samples of the same letter. Voting by the
query samples establishes the final ranking of library docu-
ments: Each character votes for the library document con-
taining its most similar character, and the top-ranked doc-
ument is the one receiving the most votes. Ties are broken
randomly. A slightly more complex system, denoted rank-
vote in the experiments, assigns points to all documents in
inverse proportion to the match rank of their letter samples
as compared to the query samples. (This is a modified Borda
count with Nauru point scoring.) Points are also weighted
inversely to the number of samples of the query character
in the library image, to avoid giving unfair weight to docu-



ments that simply have more samples to attract votes.

Si =
∑
c∈C

wc

 ∑
q∈Qc

∑
`∈Li

c

1

Rq(`) |Li
c|

 (1)

where C is the set of characters, Qc is the set of samples for
character c in the query document, Li

c is the set of samples
for character c in the ith library document, and Rq(`) is the
ordinal rank of ` over all the library samples for character
c computed from the Euclidean distance of their respective
feature vectors. An optional weight coefficient wc allows
different letters’ votes to count more or less towards the final
score. In the end, the rank order of the scores Si determines
which library documents best match the query.

3. EXPERIMENTS
The experiments employ a disparate collection of 19 doc-

uments written in the Estrangelo variant of Syriac script
and believed to be written by different scribes. The test set
includes four pages from each document, and for testing pur-
poses these are treated as separate documents so that using
one page as a query should retrieve the other three pages as
the top-ranked hits from the library. This setup is perhaps
less realistic than using entirely separate documents known
to be by the same hand, because documents produced by
the same scribe at different times may exhibit greater vari-
ance due to changes in writing implement, style drift over
time, etc. Nevertheless the current experimental structure
stands as it has thus far proved impossible to obtain a suf-
ficent collection of different documents by the same scribe.
Most of the documents used come from the Vatican’s collec-
tion of Syriac manuscripts and are available on a digital CD
released by Brigham Young University [7].

Of the 22 letters in the Syriac alphabet, three (namely
zain, yudh, and sadhe) are too nondescript for non-experts to
identify easily. Up to six samples of the remaining nineteen
were identified by hand on each document page. An effort
was made to choose clear and representative examples where
possible.

The experiments all employ a four-fold cross-validation
framework. In each of four repetitions, one page from each
document is held out for querying, and the remaining 57
(3x19) documents form the library. By running all four folds
in turn, we test each document once as a query. The results
are averaged over all query attempts for all folds.

Because the system is intended as a tool for scholars look-
ing for documents written in a related style, an information
retrieval paradigm offers the most appropriate framework
for evaluating the results. Every query has exactly three
relevant documents in the library, so we report three num-
bers for all experiments: (p33, p67, p100) gives the precision at
33%, 67%, and 100% recall, respectively. An ordered triple
of this sort contains the same information as a precision-
recall graph for these experiments, but can be expressed
much more concisely.

Table 1 shows the performance of the system under vari-
ous experimental conditions. The first line uses simple vot-
ing. The second uses the rank-vote scheme described above.
In each of these experiments all 19 sampled characters vote
equally. The third line shows results using a weighted vot-
ing scheme, with weights determined by a greedy additive
scheme described below. The last section of the table shows

Table 1: Precision at three recall levels for various
experiments

Experiment P33 P67 P100

Simple vote 72.3% 61.8% 42.6%
Rank vote 74.2% 63.2% 48.8%
Weighted rank vote 77.7% 64.8% 48.6%

Hinge [4] 18.3% 14.1% 11.8%
RLE Horiz. [4] 16.5% 15.3% 15.4%
RLE Vert. [4] 19.5% 12.3% 11.0%

Table 2: Character weights discovered for each fold
in the weighted vote-rank experiment

Letter F1 F2 F3 F4 Mean

alaph .187 .097 .048 .112 .111

beth .053 .000 .024 .022 .025

gamal .053 .065 .095 .045 .065

dalath .000 .032 .048 .067 .037

he .080 .032 .048 .000 .040

waw .027 .097 .048 .067 .060

heth .053 .032 .071 .045 .050

teth .053 .032 .048 .067 .050

kaph .053 .032 .024 .022 .033

lamadh .027 .032 .048 .067 .043

mim .093 .129 .095 .079 .099

semkath .027 .000 .048 .067 .035

e .027 .065 .048 .000 .035

pe .107 .161 .024 .067 .090

qaph .000 .032 .048 .067 .037

rish .027 .032 .071 .045 .044

shin .053 .032 .071 .045 .050

taw .080 .097 .095 .112 .096

as a comparison the results from a reimplementation of sim-
ple several text-independent measures of handwriting style:
the hinge statistic, and the horizontal and vertical run-length
encoding statistics [4]. None of the comparison schemes does
appreciably better than chance for this set of documents.

For weighted voting, the system uses a leave-one-out ex-
periment within the library itself to set the weights. Begin-
ning with a weight vector W = (w1, w2, ..., w19) where all
wc = 0, the system tries adding one to each weight com-
ponent in turn and computes the average precision under
the new weights. The trial weight vector with the best av-
erage precision is selected as the starting point for a new
round of trials. This corresponds to a greedy aggregation
scheme, except that some characters may see their weights
increased more than once. After 50 rounds, the weight vec-
tor W that produced the greatest average precision at any
point in the trials is chosen for final use. Table 2 shows
the weights discovered in each of the four folds of the ex-
periment, normalized to sum to one. Although the numbers
vary considerably from fold to fold, some letters consistently
prove more useful than others.



4. CONCLUSION
This paper leaves several questions unanswered as a sub-

ject for future work. Most obviously, the selection of charac-
ter samples should be automated, perhaps using Clocksin’s
method [5] or some other. This would make document pro-
cessing much faster and open the possibility of working with
thousands of documents. With more samples per character
the retrieval precision may rise; the work of Bar-Yosef et.
al. in Hebrew used more than twenty samples each of just
three Hebrew letters and reported 100% precision on their
document set despite using only analysis of cavity shape [2].
On the other hand, errors in character recognition could
also degrade the results. Another open question concerns
how much the resolution of a document affects the results.
While the experiments herein had 19 pixel line heights at
minimum, many documents are available most freely in a
low-resolution format that does not meet this standard. Fu-
ture work should establish how much resolution is required
for effective retrieval.

Very little research has looked at handwriting style identi-
fication for historical documents, and less still at Syriac. The
results described in the previous section appear promising,
but should be replicated for a larger validation set. Existing
writer identification techniques, while developed for modern
documents and a slightly different task, should nevertheless
be evaluated and compared to the techniques presented here.
We hope that the methods developed in this paper will form
the core of a valuable research tool for scholars who study
Syriac documents and the culture behind it.
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