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Abstract

The advent of the HumanEva standardized motion capture data sets has en-
abled quantitative evaluation of motion capture algorithms on comparable terms.
This paper measures the performance of an existing monocular recognition-based
pose recovery algorithm on select HumanEva data, including all the HumanEva II
clips. The method uses a physically-motivated Markov process to connect adaja-
cent frames and achieve a 3D relative mean error of 8.9 cm per joint, better than re-
cently reported results. It further investigates factors contributing to the error, and
finds that research into better pose retrieval methods offers promise for improve-
ment of this technique and those related to it. Finally, it investigates the effects
of local search optimization with the same recognition-based algorithm and finds
no significant deterioration in the results, indicating that processing speed can be
largely independent of the size of the recognition library for this approach.

1 Introduction
Hundreds of papers in recent years have considered the problem of automated human
pose recovery. This large body of research comprises assorted methods working to-
wards various goals and making different assumptions. The late dearth of standardized
test sets means that many papers include no quantitative results, and those that do
mostly employ proprietary data. These confusing conditions have held back progress
in the field, making it difficult to discern the strengths of different techniques. Fortu-
nately, the debut of the HumanEva test data [28] offers a framework for clean com-
parison and experimentation by providing a high quality, public test set. HumanEva
consists of multicamera video and synchronized motion capture of multiple motion
types performed by multiple actors, with designated training, validation and testing
splits, and third-party evaluation of test results.

This paper addresses the task of three-dimensional pose recovery from a static un-
calibrated single camera. The scientific literature describes a number of approaches
to this problem, summarized in the section below. The experimental results presented
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herein use the entire HumanEva II test set plus an additional validation clip from Hu-
manEva I to evaluate a recognition-based method drawn from previous work [9, 14].
In addition to testing the performance of the base algorithm and a local variant, the
experiments also examine factors contributing to the error to infer promising research
areas and evaluate the potential of recognition-based approaches in general.

1.1 Current Work
Two recent surveys admirably categorize and attempt to make sense of the state of
knowledge in the processing of human pose and motion [19, 7]. The subset of papers
attempting to recover full-body pose in three dimensions from monocular input cleaves
roughly according to their use of either generative or discriminative approaches, al-
though some recent work has attempted to combine the two in order to capitalize on
the distinct advantages of each [25, 31].

Generative methods can predict image appearance from pose and other parameters,
allowing them to treat pose recovery as an optimization problem that seeks parameter
values offering the best match to observations [27]. Despite the appeal of this ap-
proach, the many degrees of freedom in a human body and other scene considerations
make tractability quite challenging. Most current work on generative approaches de-
velops new tools for handling the complex optimizations required. Recent work has
considered techniques including combinatorial methods [24], belief propagation [29],
local gradient descent [18], and better statistical models [33].

Discriminative methods avoid the optimization problem by attempting to learn a
direct mapping between image observations and underlying pose. Constructing such a
mapping requires training data of some sort; these may consist of paired images and
poses, or perhaps are synthetically generated from motion-captured pose data alone.
Some discriminative approaches learn a regression from appearance to pose [1, 6, 2,
25], possibly neglecting the the fact that dissimilar poses can have similar featural
representations in most systems.

By contrast, recognition-based or lookup-based approaches simply retrieve stored
or previously synthesized poses in response to image stimuli [20, 9, 26, 21]. In this
manner, prior knowledge about human pose is embodied in the pose database rather
than a learned regression from image to pose. Some closely related methods begin
with retrieval from a database but use this to influence a density model propagated
from frame to frame [30, 22].

Recognition-based techniques can exploit a number of different image cues for
pose retrieval. Published methods most commonly use silhouettes [20, 9, 21], but also
employ edges [26, 3], histograms of gradients [23] and optical flow [10]. The specific
features chosen help to determine the generality and reliability of a pose recovery sys-
tem. For example, edges may not always appear on a subject in predictable locations,
and accurate foreground segmentation to get a silhouette can prove problematic under
adverse conditions. The next section discusses these matters in greater detail.
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Figure 1: Data flow for the recognition-based pose recovery algorithm evaluated in this
paper.

2 Algorithm
This paper evaluates a recognition-based pose recovery system based upon earlier work
by Howe [9, 10, 13, 11], with the following general structure. First, the video input un-
dergoes preprocessing to extract a feature set from each image frame. These features
become the keys used to retrieve known poses from a library compiled out of the train-
ing data. Because the library typically will not contain an exact match to the observed
pose, and because the extracted features may not clearly differentiate the true pose from
other poses with similar feature values, the system retrieves a collection of candidate
poses for each frame [9]. This guards against situations where the best pose may not
be the top-ranked hit using the chosen feature set. Once the pool of candidate poses
has been identified for each frame, the collection of observations forms a temporal
Markov chain with a finite number of possible states, and forward-backward dynamic
programming (the Viterbi algorithm) identifies the sequence of poses that minimizes
an objective function. The objective function includes both “smoothness” and “data”
terms, to discourage solutions that change pose sharply between adjacent frames or do
not closely match the observations. Figure 1 summarizes the data flow of the system.

Successful pose recovery rests on a number of assumptions. For example, auto-
mated techniques must reliably extract the chosen features from the image data. The
use of silhouette features typically requires that the camera and scene remain static,
and even then errors will occur without sufficient figure/ground contrast. Although im-
portant, this limitation carries less force than in the past. This paper describes a fore-
ground segmentation method that generates excellent results with the HumanEva data.
Other promising research uses feedback from the body model and recovered pose to
enforce realistic segmentation results [34]. Although not used in this work, pose-model
feedback seems promising as a natural augmentation of the techniques described here.
Research has also begun to mitigate the requirements for a static camera [8] and static
background [34].

Recognition-based methods also assume offline access to a body of motion-captured
training data containing examples of the sorts of movements and poses to be recovered.
The system can recover arbitrary novel sequences of movements, so long as they do not
include poses that stray too far from poses in the training set. This restriction suggests
possible challenges for generality and scalability, since a system capable of recogniz-
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ing arbitrary unrestricted poses would require a very large library that would take too
long to search. Of course, retrieval speedup is an old problem, and some work has ex-
plored sublinear retrieval methods for pose recovery [26]. This paper adopts a simple
local retrieval mechanism that decouples retrieval speed from overall library size by
searching only a small relevant subset of the library.

Given the assumptions listed above, the system initializes itself without human as-
sistance and recovers a close approximation of the subject’s pose and motion in three
dimensions over time. Although the HumanEva distribution includes camera calibra-
tion parameters, the techniques presented in this paper do not rely upon camera cal-
ibration or subject size information for pose recovery. Of course, such information
where available could potentially improve the accuracy of recovered poses and provide
absolute spatial localization.

2.1 Feature Extraction
The method under evaluation employs two sorts of features: foreground silhouettes re-
covered via background subtraction, and optical flow in the foreground area obtained
via Krause’s algorithm [17]. These are complementary, the one giving precise informa-
tion about the position of body parts visible in silhouette, the other giving information
about movements inside the silhouette, yet less affected by clothing choices than a
feature like internal edges would be.

Krause’s optical flow algorithm runs quickly but gives less accurate results than
more computation-intensive methods. Masking the flow by the foreground silhouette
therefore mitigates flow errors measured in the background due to noise. As described
in prior work, ten simple low-degree moments describe the optical flow in the fore-
ground area [10]. Use of rotation-variant moments here reflects the expectation that
the orientation of the subjects to be tracked will match that of the training data. This
assumption applies to most video produced for human consumption, where the vertical
world axis nearly always coincides with the vertical axis in the image plane. It may
require revision in other contexts, such as security camera video feeds, which will need
correspondingly different sorts of training. All of the HumanEva videos use a standard
vertical orientation.

The foreground segmentation used here broadly resembles work recently reported
elsewhere [32], but differs in its details as described below. Recent work has suggested
that performing segmentation and pose recovery simultaneously may improve the seg-
mentation in difficult cases [16], but the unspecialized approach used here provides
sufficiently good segmentation on the HumanEva data. The segmentation begins by
training background color models on each pixel for hue, saturation, and value color
planes. For the HumanEva II data, a single robust Gaussian per plane suffices, com-
puted on the first 300 frames of each test clip using the trim mean and variance on
the middle 20% of the data.1 This procedure assumes that the background remains
static and that the subject does not obscure any pixel in more than 40% of the frames,

1Because hue is an angular quantity, its mean is ill-defined. Expediency suggests introducing a discon-
tinuity at some point far from observed values and computing an ordinary mean. The discontinuity goes
opposite the “center of mass” of the angular values in a polar view. For simplicity of presentation, the
remainder of this section assumes that all hue values are pre-linearized and mapped onto the range (0,1).
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which is true on the HumanEva clips used for the experiments. Clips not meeting these
standards would require alternate model-building methods, and continuous operation
would require adaptive background modeling. Note that none of the results here em-
ploy the background models supplied with the HumanEva data sets, as those contain
subtle dissimilarities to the test clips that reduce the quality of the ultimate foreground
segmentation.

For each frame, the ordinary scaled deviation from the model would equal sim-
ply the deviation from the mean, divided by the standard deviation. Experimentally, it
turns out that each of the three HSV color planes requires a slight variant of this treat-
ment for best results. Hue can be noisy at low saturation. Saturation exhibits lower
signal-to-noise than the other two planes. Value is generally quite accurate, except in
the presence of shadows. These heuristic considerations motivate the adjusted compu-
tations below.

∆∗
H(x, y) = |H(x, y)− µH(x, y)| ·min(S(x, y), µS(x, y)) (1)

∆H(x, y) =
max (0, 2π ·∆∗

H(x, y)− zH)
σH(x, y)

(2)

∆S(x, y) =
|S(x, y)− µS(x, y)|

σS(x, y)
(3)

∆V (x, y) =
max

(
0, |V (x, y)− µV (x, y) + zV

2 | −
zV

2

)
σS(x, y)

(4)

∆(x, y) = wH∆H(x, y) + wS∆S(x, y) + wV ∆V (x, y) (5)

The HumanEva II videos all use the following parameter values: zH = zV = 0.1;
(WH ,WS ,WV ) = (0.4, 0.2, 0.4).

Foreground segmentation is modeled informally as a Markov Random Field prob-
lem and solved in practice by finding the minimal graph cut on an appropriate graph
[12, 32]. The composite scaled deviations ∆(x, y) become edge weights in the graph.
The graph cut minimizes an objective function on segmentations L that also includes
a fixed cost ∆FG for assigning a pixel to the foreground and penalties for differing
assignments on neighboring pixels.

E(L) =
∑

p:L(p)=1

∆FG +
∑

p:L(p)=0

∆(xp, yp)

+ν
∑
p

∑
q

C(p, q)(L(p) 6= L(q)) (6)

Here ν controls the importance of connections between neighboring pixels, and
hence the smoothness of the segmentation. C(p, q) ranges from 0 to 1 and indicates
the degree to which two pixels are considered neighbors. Four-connected pixels will
normally have C(p, q) = 1, unless an edge appears in the image frame that is not
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Figure 2: Sample foreground segmentation results. Note the detail visible in most of
the boundary, including markers used to get ground truth on the hands and near the
shoulders. Shadow artifacts appear near the feet.

present in the background model: |I(p)− I(q)| − |µ(p)− µ(q)| > τ , for 4-neighbors
p and q. Diagonally connected pixels are connected with a discount C(p, q) = .3204,
designed to make diagonal and straight boundaries equally attractive. All other pixels
are disconnected, C(p, q) = 0.

The best parameter choice varies somewhat with different cameras. For the Hu-
manEva II videos, all shot with similar equipment, the same parameters apply through-
out: ∆FG = 1.2 and ν = 3. These generate mostly clean segmentations; often the
quality is high enough that the external markers used for the motion capture system
can be discerned (Figure 2). Not all compromises can be avoided: a lower value of ν
or higher value of zV would eliminate shadow artifacts around the feet at the expense
of occasional missed body sections.

Numeric measures confirm the high quality of the foreground segmentation results.
Rendering motion-capture data on the HumanEva I validation sequence described in
the experiments provides an approximate ground truth segmentation.2 Compared with
the background subtraction code provided with the HumanEva data, the approach de-
scribed above incorrectly labels fewer pixels (1.2% of image area vs. 1.9%) and pro-
duces boundaries that are simpler (less than half the length) and closer to the motion-
capture rendering (mean distance of 3.4 pixels vs. 7.8 pixels).

Once computed, a chain code represents the segmented foreground silhouette bound-
ary. The chain code affords easy computation of the turning angle and half-chamfer
distance metrics used below.

2.2 Pose Library
The pose library draws its entries from synthesized views of the HumanEva I training
clips for subjects S1, S2, and S3, performing jogging and walking motions. Subject
S2 appears as an actor in both training and test data, but subject S4 appears only in
testing and thus stands as a control for any undue advantage from this factor (which
seems negligible in practice). The training process examines each motion-capture clip
sequentially a frame at a time, selecting a pose for the library L if it differs sufficiently

2Although the rendered motion capture data is not subject to gross errors, visual inspection of the images
suggests that its boundaries may actually be less accurate than the segmentation result because the body
model lacks perfect realism. Nevertheless it serves as a point of comparison.
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from those already present. Preprocessing scales limbs to standardized lengths (e.g.,
torso is always 40 units), and rotates the pose to a consistent pelvis orientation. If
{Ji(ψ)} are the joint coordinates of a pose ψ, the difference between two poses Dψ is
taken as the maximal change in position over all the joints. Selected poses must differ
from all previous poses by more than dL = 4 units (around 5.5 cm); this corresponds
to selecting every third frame or so from a novel motion sequence.

Dψ(ψ,ψ′) = maxi‖Ji(ψ)− Ji(ψ′)‖ (7)

The rendered body model uses rigid solids for each body segment. Each segment
has ellipsoidal endpoints, possibly of different dimensions, and a smoothly interpolated
center section, to give a realistic appearance. Because the HumanEva motion data
give positions of only six main body segments, positions of hands, feet, and neck are
estimated for greater realism in the rendered silhouettes.

The library stores the chain-code boundary of the rendered silhouettes of selected
poses from nA = 36 viewpoints equally distributed in azimuth, as well as the flow mo-
ments computed from the rendered flow. These experiments build libraries separately
for the Jog and Walking training clips, selecting |L| = 1711 distinct frames for inclu-
sion. (Fewer frames would have been selected if the library processed all the data as
a group instead of individually, because more duplicate poses would have been passed
over. However, it is convenient simply to combine libraries for different activity types.)

2.3 Pose Retrieval
For each frame, several similarity measures help to retrieve poses from the library,
specifically the turning angle distance Dθ, half-chamfer distance Dχ, and flow mo-
ments DF [14]. For silhouette S, define {Sn ~Pi}, i ∈ 1...n as a set of points spaced
evenly on the boundary of S, such that Sn ~P1 is at the topmost point and the indices
progress clockwise numerically around the border. Also, let θ(~P ) denote the angle of
the tangent to the silhouette border at ~P , integrated from S

0
~P1.

Dθ(S, S′) =
1
n

n∑
i=1

∣∣∣θ(Sn ~Pi)− θ(S
′

n
~Pi)

∣∣∣ (8)

Dχ(S, S′) =
1
n

n∑
i=1

n
min
j=1

‖Sn ~Pi −S
′

n
~Pj‖ (9)

Let F (x, y) represent an optical flow, with horizontal and vertical components F x

and F y . The vector of moments M used for retrieval consists of the components
{Mx

ij ,M
y
ij |i, j ≥ 0, i+ j ≤ 2}.

Mx
ij =

∑
(x,y)∈S(x− x̄)i(y − ȳ)jF x(x, y)∑

(x,y)∈S |x− x̄|i|y − ȳ|j
(10)

DF (S, S′) = ‖M−M′‖2 (11)
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Multiple measures may be combined using the sums of their individual rankings
of the poses as a new composite score, after Belkin et. al. [4]. The pool of candidate
poses for each frame comprises the following, specified as NL = (20, 10, 10) and
NG = (10, 5, 5):

• 35 poses retrieved using a composite of flow moments, turning angle, and half-
chamfer distance. 25 of these are local, coming from poses close to one of the
last frame’s candidate poses (Dψ < 6 units); 10 are chosen globally (i.e., from
the entire pose library).

• 15 poses retrieved using flow moments alone. 10 of these are local and 5 are
global.

• 15 poses retrieved using a composite of turning angle, and half-chamfer distance.
10 of these are local and 5 are global.

Retrieval in multiple categories as described above provides redundancy in the case
of bad silhouette or flow data. Due to overlap between the different categories, the
candidate pool for a frame usually has around 20-30 members. A full chamfer match
registers each candidate with the silhouette observations, and the candidate pool is
supplemented with the mirrored LOS-inverse poses. (The mirror LOS-inverse swaps
the left and right sides of the body and simultaneously inverts along the camera line-
of-sight axis; the result has the same silhouette as the original, and similar optical flow
[9].) Poses whose chamfer match scores lag the leader’s by more than 50% are pruned
at this point, unless the pool would be left with fewer than ten candidates as a result.

2.4 Temporal Chaining
Without any constraints, ambiguities in pose retrieval mean that the top candidate can
flip abruptly between different modes from frame to frame. Treating the video obser-
vations as a Markov process provides the method for linking poses into a coherent tem-
poral sequence. Unfortunately, the probabilities required for standard Markov analysis
cannot be estimated directly. The linkage step therefore minimizes a heuristic objective
function with data and smoothness terms.

Q =
n∑
f=1

Qframe (ψf , If ) +
n∑
f=3

Qmotion (ψf , ψf−1, ψf−2) (12)

Here Qframe(ψf , If ) is simply the symmetric chamfer distance generalized from
the half-chamfer distance in Equation 9, andQmotion(ψf , ψf−1, ψf−2) consists of two
summed subterms: conservation-of-momentum [14] and match to flow observations
[10]. Physical kinematics formulae on the articulated body model give the change in
momentum (neglecting contact forces), while the flow match computes at low resolu-
tion the mean error between the observed flow and the rendered flow from ψf to ψf−1

to ψf−2. In the equations below, let body part j have mass Mj and moment of inertia
Ij , with translation ẋj and rotation ϕ̇j computed from the three frames’ poses. The
mass and moment of inertia used are computed from the limb shapes in the graphically
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rendered body model, assuming uniform density throughout the body. For the flow
term, let P ∗ be the set of points in the intersection of a low-resolution grid with the
subject foreground S, Fψ the flow rendered from ψf−1 and ψf , and Fobs the observed
image flow. |P ∗| ≈ 200.

Qmotion = λ1Qmom + λ2Qflow (13)

Qmom =∑
j∈Parts

Mj [ẋj(ψf , ψf−1)− ẋj(ψf−1, ψf−2)]
2

+Ij [ϕ̇j(ψf , ψf−1)− ϕ̇j(ψf−1, ψf−2)]
2 (14)

Qflow =
∑
p∈P∗

‖~Fθ(xp, yp)− ~Fobs(xp, yp)‖ (15)

This work uses λ1 = 0.01 and λ2 = 100. Prior work notes occasional problems
with the Markov optimization selecting solutions that abruptly shift between poses
facing opposite directions [13]. Ideally the momentum term should select against such
errors, but to definitively rule out any problems of the sort, this work adopts an ad
hoc restriction: set Qmotion (ψf , ψf−1, ψf−2) =̇∞ for any pair of successive frames
whose pelvis facing differs by more than 90◦.

Markov optimization finds the most continuous sequence of library poses it can,
but the resulting motion will appear jerky at times when the library does not contain
a smoothly interpolating pose. A final smoothing operation eliminates this source of
jitter [9]. It requires a pose parameterization, chosen such that no parameter includes
a discontinuity within the human range of motion. A low-pass filter smooths each pa-
rameter over time, eliminating sharp changes between frames. Comparison of pose
results before and after the smoothing operation reveals that it tends to increase accu-
racy, but only slightly. The results appear in Tables 1 and 2 below.

3 Experiments
The experiments presented below primarily use the HumanEva II data set, in accor-
dance with the priority recommendations of the HumanEva creators. HumanEva II
comprises four simultaneous color views of S2-Combo-1 and four simultaneous color
views of S4-Combo-4. For comparison purposes, and for experiments which require
access to ground truth, the experiments also use one color view of S1-Walking-1 vali-
dation data from HumanEva I. All parameter settings remain fixed throughout save for
one: ∆FG = 0.7 for S1-Walking-1 in compensation for camera differences between
HumanEva I & II. All results treat each camera viewpoint as monocular data, without
utilizing information from the other clips.

The clips from HumanEva II include three distinct parts: a walking segment (desig-
nated as frames 1 to 350), a jogging segment (frames 351-700) and a balancing segment
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(remaining frames). HumanEva I includes training data for walking and jogging mo-
tions, but not for balancing. Since a recognition-based method cannot properly handle
the balancing motion without going outside the HumanEva data for training data, the
results given here include only the walking and jogging segments. Note that although
the walking and jogging are analyzed separately for evaluation purposes, the same sys-
tem runs on all 700 frames without being told which activity is being performed.

3.1 Error Evaluation
Different scales measure the quality of the results in two and three dimensions. The
Markov optimization step automatically registers reconstructed poses to the 2D image
frame coordinate system. This yields a 2D error in pixels, where one pixel of error
may correspond to varying world distance depending on the proximity of the subject
to the camera. In three dimensions, distance from the camera is unknowable without
knowledge of the camera parameters (which are assumed unavailable in general, even
though HumanEva provides them) and even then remains uncertain up to an overall
scaling factor. Thus 3D error is computed in centimeter units, up to an arbitrary trans-
lation of the body root and a rotation about the vertical axis computed from the camera
parameters as described below. Median subject height from the training data provides
an approximation to the required scaling. (Personalized limb scaling would no doubt
improve the results but such data are also presumed unavailable for general tracking.
Methods to automatically recover limb lengths from the video could prove useful, but
are not investigated here.)

The HumanEva evaluation system expects 3D results specified in a specific world
reference frame. Although the reconstructed poses sit within a similar world frame, in
general it will differ from the HumanEva frame by a rotation about the vertical axis.
The camera calibration includes a matrix with the applicable rotation, in combination
with some amount of pitch which must be removed to get the appropriate correction
between the two world frames. In addition, the left/right position of the subject in the
image gives an extra correction to perspective effects, as shown in Figure 3. These
two adjustments account for reduced error values compared with previously reported
results [11].) Although the HumanEva camera views do include some small pitch, the
visual effects are presumed minimal and thus all processing uses a zero-pitch pose li-
brary and produces zero-pitch solutions. Applying custom pose libraries adapted to the
pitch of a particular camera might improve accuracy to the extent that the negligible-
pitch assumption is violated, but the experiments do not test this due to the significant
advantage of using a single library.

3.2 Baseline Results
Table 1 summarizes the mean joint position error in tabular form, while Figure 4 com-
pares the global and local results graphically with error bars, revealing that the dif-
ferences lack significance, and also gives comparisons to previously reported results.
Analysis of the results shows several further trends. The mean 2D joint error stands
at around 14 pixels. The mean 3D joint error has a median by frame at 7.9 cm across
all the clips, but more often contains peaks significantly above this level; the mean
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Figure 3: A correction to body rotation (top view) is computable from the horizontal
coordinate in the image plane and the camera parameters. The algorithm finds the
same pose for the two positions shown because it assumes oblique projection. The
rotational correction about the vertical axis is applied during 3D relative evaluation
before comparison with the HumanEva ground truth.

by frame is 8.9 cm. This level of accuracy improves on the best previously published
results for HumanEva II, which had been above 10 cm [23, 5, 15].

The various peaks visible in the different plots appear where the result contains an
obvious qualitative error, with corresponding effect on the quantitative results. These
errors may be grouped according to their nature and severity. A stutter-step represents
a temporary switching of the feet in the reconstruction. This can occur if the recogni-
tion/retrieval step does not include a suitable correct candidate pose for some frame.
A slide occurs when the feet stop moving for some number of frames as the figure
continues moving forward. These are most commonly observed when the figure is
moving either toward or away from the camera and the separation of the feet cannot be
discerned in the silhouette. Although slides appeared fairly frequently in early experi-
ments on the HumanEva data, increasing the flow-matching weight λ2 in Equation 13
has largely eliminated the problem. A reversal error occurs when the turning direc-
tion of the reconstructed pose does not match reality; i.e., the subject actually turns
180◦ counter-clockwise while walking in a circle, but the reconstruction turns 180◦

clockwise instead. Partial reversals appear at the start of two of the walking clips (S2-
Combo-1-C3 and S4-Combo-4-C1), reflecting difficult initial pose configurations for
those clips. Erroneous pose reconstructions of this sort are consistent with the silhou-
ette observations, but not with the flow observations. However, flow-based cues tend to
be weaker than silhouette cues, and the ends of the Markov chain can be more difficult
to solve when there is no strongly identified pose serving to pin down the solution.

One set of peaks in the error does not correspond to any readily visible mistake
in the reconstructions. The high error in frames 298-336 for all four views of S4-
Combo-4 are likely caused by an artifact, because the reconstructed solutions appear
normal. Others have also noted problems with these frames [23]. The most likely
explanation is some flaw in the ground truth data for these frames. For this reason, the
summaries in Tables 1 and elsewhere omit them in computing the average. Including
these questionable frames, the mean error for the affected walking sequences would be
21, 15, 12, and 17 pixels (2D), and 18.5, 16.1, 15.9, and 16.8 cm (3D).
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Table 1: Mean tracking error. Walking includes frames 1–350 (but omits frames 298–
336 for S4-Combo-4; see text). Jogging includes frames 351–700. 2D error is absolute
in image coordinates and measured in pixels. 3D error is relative to the body root
(pelvis) and measured in centimeters.

Clip Walking Jogging Walk/Local Jog/Local
Take Cam. 2D 3D 2D 3D 2D 3D 2D 3D
S2 Combo 1 C1 16 8.1 15 8.5 15 7.8 15 8.1
S2 Combo 1 C2 16 7.3 14 7.3 17 8.7 14 7.3
S2 Combo 1 C3 23 14.3 14 7.7 21 13.3 14 8.0
S2 Combo 1 C4 15 7.8 15 8.4 16 8.0 15 8.6
Mean S2 All 17 9.3 14 8.0 18 9.5 15 8.0
S4 Combo 4 C1 17 10.9 13 10.2 17 11.1 13 10.5
S4 Combo 4 C2 11 8.3 12 8.8 14 10.8 12 8.7
S4 Combo 4 C3 9 7.9 10 9.4 9 7.9 11 8.7
S4 Combo 4 C4 14 9.0 13 9.9 14 9.6 13 10.0
Mean S4 All 13 9.0 12 9.6 14 9.8 12 9.5
S1 Walking 1 C1 12 7.2 N/A N/A 13 7.5 N/A N/A

The results do not show a statistically significant difference between subject 2,
whose motions from a different take are included in the training set, and subject 4,
who is previously unseen. Subject-specific effects may depend on the type of motion
performed, since the walking test shows a smaller difference than the jogging. In any
case, one cannot draw strong conclusions from a study with only two test subjects (as
provided in HumanEva II).

3.3 Error Analysis
A mean error of 8.9 cm per joint may suffice for many pose recovery applications, but
further improvement would be welcome. What factors contribute to the observed error
rate? A certain amount of error is systemic: the implementation of the algorithm de-
scribed in the previous section uses an internal representation of pose slightly different
from that used by the HumanEva data. In particular, it replaces the limb dimensions
of a particular subject with mean values obtained from the training data. Also, the
conversion between formats may introduce errors due to differing interpretation of the
control point positions. These mismatches add up: for the S1-Walking-1 clip validation
data, converting to the internal pose format and back introduces a mean error per joint
of 3.7 ± .2 cm. Although significant, this factor alone does not suffice to explain the
rates of error observed in the experiments.

Insufficient library coverage could potentially cause elevated error. Since the initial
phases of the algorithm limit the solutions considered to candidate poses retrieved from
the library, the lowest error achievable will be limited by the library’s best match to the
actual ground truth pose. Smoothing may improve the result somewhat, since it can
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Figure 4: Bar plot of mean error for 17 clip segments, with framewise standard devia-
tion shown where available. Within each grouping, results appear as follows from left
to right: global retrieval result, local retrieval result, results reported by Poppe [23] and
by Husz et. al. [15].

generate new poses beyond those found in the library, but in practice smoothing tends
to exert rather small influence on the error, giving improvements on the order of a few
millimeters.

Despite the considerations above, several observations suggest that the current den-
sity of coverage in the pose library could support lower error, and therefore insufficient
library coverage also cannot explain the observed error rates. The ground truth valida-
tion data in the S1-Walking-1 clip provide one test. Searching the library for the closest
match to ground truth in each frame reveals that the algorithm could achieve 4.2 cm
mean error per joint if it consistently identified the best available pose. Even a much
more sparsely filled library, built using dL = 6 cm, nA = 24 and containing only 822
poses still achieves 4.8 cm mean error per joint under these ideal circumstances. What
is more, mean error per joint remains unchanged in actual practice with the sparser
library, at 8.9 cm over all clips.

Given these observations, it appears that suboptimal retrieval from the pose library
deserves the most scrutiny in the error analysis. Indeed, further investigation reveals
that the retrieval step returns the optimal pose within the candidate pool on only 27
of 557 possible frames for the standard library, and 57 frames for the sparse library.
In part this occurs because the video input does not contain 3D information used to
determine the optimal pose match. But it appears likely that the features and measures
used for retrieval in these experiments discriminate poorly between close matches to
the actual pose, and this confusion increases with library coverage density.

Despite suboptimal retrieval, the candidates identified still suffice to produce a con-
sistent final reconstruction. This is good news in one sense: recognition-based pose
recovery works even with imperfect pose retrieval, but better retrieval methods might
substantially improve the error. Some other mechanisms are already in use [26, 23];
determining which of these or others do the best job should become a near term priority
for research in recognition-based pose recovery.
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3.4 Parameter Sensitivity
The system as described depends upon a number of parameter settings. Many of these
serve relatively minor purposes, and the exact values need not be tuned carefully. A few
require more attention, as detailed in this section. Evaluation of parameter sensitivity is
somewhat difficult as many of the crucial parameters exhibit a “cliff effect”: changing
them moderately results in little or no change in results, but at some critical threshold
the outcome can degrade suddenly and dramatically, as for example a large area of
background is redesignated as foreground, or vice versa, or the pose reconstruction
gets stuck in a local minimum.

The most sensitive set of parameters concern the foreground segmentation, upon
which the remaining steps depend heavily. Not only can mistakes here doom subse-
quent pose recovery [13], but the different parameters interact and so cannot easily be
varied independently. The values chosen for wH , wS , wV , zH and zV all seek to max-
imize the contrast between the difference signal in the foreground pixels and any noise
present in the background. With this signal-to-noise maximized, ∆FG may be lowered
as much as possible so as to detect low-contrast body parts. Likewise, ν controls the
sensitivity of the foreground outline to noise. Changes to any of the former five pa-
rameters will necessitate corresponding adjustments of the latter two. Experience has
shown that the optimal parameter values usually lie near the values reported for this
work, although the differing instrinsic noise levels between cameras may necessitate
some changes, particularly to ∆FG. Table 2 shows the results of more conservative
settings for ∆FG and ν.

A second group of parameters centers around the pose library construction and
retrieval. To help understand the sensitivity to these parameters, a set of results is
presented under numerous variations for the S4-Combo-4-C1 clip, chosen because its
performance is near the mean on both walking and jogging activities. Table 2 sum-
marizes these results. In general, the retrieval design provides multiple paths to the
correct pose, aimed at providing redundancy should any single retrieval type fail. Thus
eliminating one path may not change the results much unless it happens to prevent the
retrieval of a key pose in some frame, in which case a completely different (and in-
correct) result may be chosen. Indeed, as shown in Figure 5, the final solutions tend
to lie close to either the true solution or its mirror LOS inversion, which has identical
silhouette and similar flow. These represent two local minima for the system, and the
gross differences in the numbers of Table 2 depend on the number of frames spent fol-
lowing each one. One conclusion of this experiment is that parameter sensitivity would
decrease dramatically with a reliable technique for ruling out the false solution, as all
methods then might converge near the true one. Modeling human motion dynamics
might provide one way to achieve this.

3.5 Local Pose Retrieval
The success of recognition-based motion capture relies on the premise that the pose
library contains training data for the target motion. When considering recognition of
unrestricted motion, scalability concerns arise because the pose library must include
a vast number of prospective poses. Beyond the logistical challenge of collecting the
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Table 2: Results of parameter-variation studies for S4-Combo-4-C4 clip. All numbers
are relative 3D error, in centimeters.

Variant: Walk Jog
A. λ1 = 0.001 8.9 14.3
B. λ1 = 0.1 24.3 15.1
C. λ2 = 10 8.8 9.8
D. λ2 = 1000 9.0 9.9
E. Smaller pool: NL = (15, 6, 6); NG = (6, 3, 3) 24.2 20.2
F. Larger pool: NL = (32, 16, 16); NG = (16, 8, 8) 8.7 14.0
G. All global: NL = (0, 0, 0); NG = (35, 15, 15) 24.5 15.1
H. Composite only: NL = (45, 0, 0); NG = (20, 0, 0) 8.7 10.2
I. Sparse library: dL = 6 cm, nA = 24 9.0 14.2
J. Dense library: dL = 2 cm, nA = 48 8.3 9.5
K. Poor segmentation: ∆FG = 2.4 24.3 16.5
L. Poor segmentation: ν = 6 9.0 16.5
M. No smoothing 9.3 10.5

data (probably surmountable with modern motion-capture technology), enormous pose
libraries present computational difficulties as well. Linear search over the entire col-
lection becomes infeasible. Various sublinear methods have been proposed for search
and retrieval in high dimensional space, such as hashing and k-d trees, although there
exists limited work on applying such techniques to pose tracking [26]. Accordingly,
this section describes and evaluates a variant of the baseline pose recognition algo-
rithm that searches only a small subset of the library at every frame but the first, or
when recovering from a catastrophic tracking error.

Consider that Viterbi optimization will not normally select any solution where con-
secutive frames differ too greatly. Thus for frame i+1, one need not search the library
poses outside some neighborhood around the pool of candidate poses for frame i be-
cause too-distant poses will be rejected by Viterbi in any case. The library itself can
hold the means to easily find this neighborhood; simply store for each pose a refer-
ence to all other poses within a desired radius dN as computed using Equation 7. With
this technique there is some theoretical risk that a solution that accidentally leaves the
neighborhood of the correct pose will become permanently lost in a bad region of pose
space. Although this might be detected by monitoring the frame fitting error Qframe
and performing a full (non-local) retrieval to recover, there is absolutely no indication
of a drift problem in the experiments. On the contrary, for the two clips that get initial-
ized in an incorrect pose, both the local and the global search converge on the correct
pose in approximately the same time.

Table 1 shows in the four right-hand columns the results of pose recognition using
dN = 12 (approximately 16 cm). The numbers reveal only slightly worse performance
than the results for full global search. Local search yields a mean error over all frames
in all clips of just 9.0 cm, compared with 8.9 cm using full search. Despite this, the
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Figure 5: Plot of relative 3D tracking error by frame for the various parameter varia-
tions listed in Table 2. For most frames, the solutions lie near one of two local minima:
the true solution or the mirror LOS inverse. (The spike near frame 300 is an artifact of
a ground-truth error.)

recognition step only checks around 4000 poses per frame on average, compared with
over 60,000 for the full search.

Larger libraries containing many different motion types will cover greater regions
of pose space, but should not exhibit great increases in the number of poses within
any local neighborhood. Thus exploiting locality appears to offer large computational
gains with very little penalty, as evidenced by these experiments. Error recovery may
prove more difficult for the local algorithm, but testing this speculation will require
more difficult motion sequences where significant errors occur more frequently.

4 Conclusion
This paper makes two main contributions toward greater understanding of pose recov-
ery methods. First, it establishes the performance of a fully described recognition-
based pose recovery system on the benchmark HumanEva II data, adding to the body
of results for these data. Since the results here use relatively straighforward temporal
Markov inference, the numbers may perhaps serve as a baseline for more complicated
inference methods. Furthermore, results presented here for the local retrieval variant
demonstrate its viability for this particular recognition-based approach and add to the
limited amount of hard performance data for local methods. Although local search
has been used before for body tracking [26], it is arguably not well known given the
number of reviewers who cite search scalability as a limitation of recognition-based
systems.

The observed accuracy improves on results published in the two HumanEva work-
shops [23, 5, 15], and may in itself suffice for use in some applications: mean overall
error is 8.9 cm per joint compared to the ground truth, and the median frame has only
7.9 cm error. Further improvements to these reported error rates appear likely with
research into better pose retrieval mechanisms, which play a limiting role. The er-
ror analysis also points to the importance of modeling individual subject limb lengths;
not doing so here accounts for the bulk of the error outside that caused by retrieval
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problems. Although more work remains, particularly on finding the best features for
lookup, the practicality of recognition-based pose recovery methods continues to look
encouraging.
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