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Never the Twain Shall Meet?

Machine Learning
Improved classification 
through “boosting” & 
other large-margin 
techniques.

Image Retrieval
Improved performance 
through better, more 
comprehensive image 
representations.
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Previous Work

• Tieu and Viola (2000) – a good start…
– Looks at just one candidate image 

representation
– Simple, feature-based boosting 

(i.e., decision stumps)

• Can we apply boosting more effectively?
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Retrieval vs. Classification

Retrieval paradigm: Classification paradigm:

Query Library

Top Hits

Query

LibraryTop Hits

“Horses”
TrainedTrained
ModelModel
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Image Classification is Hard

• Classes are diffuse.
• Features correlate 

weakly with class.
• High dimensionality 

(10K+)

= +
Image Space
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Boosting Can Help

• Designed for complicated problems
– Irregular & complex decision boundaries
– Mislabeled training data*

• Known to help in wide range of machine 
learning problems.

• Tieu & Viola provide example.

*Some forms of boosting, anyway
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Review of Boosting

• Base classifier must score 
>50% on arbitrarily 
weighted training set.
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Review of Boosting

• Base classifier must score 
>50% on arbitrarily 
weighted training set.

• Repeatedly train base 
classifier using multiple 
weightings of training data.

• Combined predictions 
better than single classifier 
alone.
– Weighted majority vote

Result of vote
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Open Questions

1. How do we apply boosting with standard 
image representations?
• Larger than most used in machine learning.

2. Are some representations better for 
boosting?

3. Does boosting work better with some 
classes of images?
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Image-Friendly Base Classifiers

• Many standard classifiers are “feature-based”.
(Decision boundaries orthogonal to feature axes.)

• “Vector-based” classifier may suit images better.
(Decision boundaries = angular neighborhood around a vector.)

“F-Boost” “V-Boost”



6 December 
2007

Nicholas R. Howe -- CIVR '03 13

Vector-Based Classifier

• Identify a central vector V⊥ within a 
concentration of positive instances.

• Classify instances within some angular 
radius of V⊥ as positive examples 
(Salton’s cosine metric).

• Question:  How to find V⊥?
V⊥

pos.
neg.
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Vector-Based Classifier

Vp = Σ weighted positives

Vn = Σ weighted negatives
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Bisecting Bisecting 
HyperplaneHyperplane

Consistently generates good classifiers (empirical observation).
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Experimental Design

• 3 algorithms
(F-Boost, V-Boost, control)

• 4 image reps.
• 5 classes + chaff

– 20K images (Corel)
• 5x2 cross validation

– Data split: training/test
– 5 repetitions Tigers

Wolves

Race Cars

Churches
Sunsets
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Image Representations

• Histogram     
(Swain & Ballard)

• Tieu-Viola

• Correlogram
(Huang et. al.)

Color

Te
xt

ur
e

Location

• Stairs (Howe &
Huttenlocher)
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Choosing a Control
• Poor control:  Single Base Classifier

– Does only slightly better than chance.

• Also poor:  Nearest Neighbor using entire 
training set

• Good control:  Nearest Neighbor using greedy 
selection of exemplars
– Select one training example with best 1-NN accuracy
– Add additional exemplars greedily as long as they 

increase accuracy on training set.
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Result Preview

1. Comparison of different base classifiers 
with each other and control

2. Comparison of different image 
representations under boosting

3. Contrasting results for different classes

Recall = % of target class that is retrieved
Precision = % of retrieved images that are correct
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Comparison:  Boosting Type
• Boosting beats controls nearly everywhere.
• F-Boost does best with Histograms, Stairs.
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Comparison:  Boosting Type
• Vboost ties Fboost on Correlograms, T/V.
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Comparison: Image Reps

• Correlograms do best, Tieu-Viola worst.
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Results By Image Classes

• V-Boost, F-Boost better for different classes.
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Conclusions

• Boosting improves precision & recall with 
a range of image representations.  
– No surprise!
– But:  better than Tieu & Viola indicate.

• Boosted correlogram is most successful 
representation. 
– Boosted effectiveness mirrors unboosted.

• Best base classifier may vary.
– V-Boost faster, but sometimes worse.
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Questions?
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Summary of Work

• Investigated boosting using two types of 
base classifier plus control.

• Compared effectiveness of different image 
representations with boosting.

• Looked at image classes with range of 
difficulty.
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Choosing a Control
• Base Classifier alone does poorly vs. Nearest 

Neighbors with greedy exemplar selection.
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Color Histograms (Swain & Ballard)

• Map image to limited set of colors.
• Count fraction of pixels in each color.
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Color Correlograms (Huang et. al.)

• Map image to limited set of colors.
• Count co-occurrence probability of same 

colors at fixed distances.

Table of
Probabilities
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Red Orange Yellow etc…
1 pixel 0.32 0.0 0.06 0.14
3 pixels 0.16 0.0 0.04 0.0
5 pixels 0.08 0.0 0.03 0.0

Color Correlograms

• Correlograms consist of a table of probabilities.

“Given a pixel of color 
x, the probability that a 
pixel chosen distance y
away is also color x”

( ( ) ( ))ybaxacolorxbcolorPyxC =−∧=== )()(),(

• Correlograms can be compared like vectors.
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DeBonet & Viola

• Pass set of simple filters over image; sum.
• Repeat on filtered images 4 levels deep.

Image

Texture
Filters etc.

etc.

Description = (T0, T1, ..., Tn, T00, T01, ..., Tnn, ...)

(Sum)
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Stairs (Howe & Huttenlocher)

• Discretize the range of each feature.
(Color, texture, and location)

• Count area in image described by each 
combination of features.
– Blue-Smooth-TopLeft:  5,

Blue-Smooth-TopMiddle: 1,
…
Green-Smooth-TopLeft:  0, etc.

Color

Te
xt

ur
e

Locatio
n
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Discretization

• Color:  28 bins
• Texture:  3 bins

(smooth, textured, rough)
• Location:  25 bins

• Total:  28×3×25
= 2100 combinations
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Vector Representation

• Final representation of image is a vector 
with 19200 dimensions.

• Each dimension records how much of a 
particular type of material is present.
– e.g., how much smooth blue in the top left corner?

2561281212511211111
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