Percentile Blobs for Image Similarity

Nicholas R. Howe Cornell University

Approaches to Image Similarity

Geometry + Holistic Properties

Blob-Based Representation

• Approach: Identify and describe regions which possess particular color/texture properties.

Segmentation

• Full segmentation is difficult:

- Solution: Use intensity percentiles to form a working segmentation.
- Quartiles work well empirically.
- Applied to YUV components & texture map.

Example: Intensity Quartiles

Blob Descriptors

• We use 11 statistics to describe each blob.

• All are expressed as dimensionless quantities.

Global Statistics

• Range of intensity covered by each quartile:

Low range: 0 - 196

Mid range: 196-224

High range: 224-255

- Simple statistics on overall image intensity distribution:
 - Standard deviation
 - Skew & Kurtosis

Importance of Global Statistics

Original:

Without:

With:

Summary of Image Description

- 36 global numeric features.
- 8 blob features.
 - These may include several blobs of similar importance.
 - Each blob is described by 11 numeric statistics.

```
numeric features blob features (val(f_1), val(f_2), ..., val(f_{36}), val(f_{37}), val(f_{38}), ..., val(f_{44}))
\{B_{38:1}, B_{38:2}, ...\}
(val(g_1(B_{38:2})), val(g_2(B_{38:2})), ..., val(g_{11}(B_{38:2})))
```

Experiment

- Test set of 1011 images from Corel.
- 12 categories of images.
- Leave-one-out cross validation.
- Each image classified in the category of its nearest neighbor.
- Mean accuracy 73.7%.
 - Rises to 80.0% with feature weighting.

Results (Confusion Matrix)

* numbers on diagonal are correct responses	Airshows	Bald Eagles	Brown Bears	Cheetahs	Deserts	Elephants	Fields	Mountains	Night	Polar Bears	Sunsets	Tigers
Airshows	72	11	0	2	0	1	1	2	0	9	0	0
Bald Eagles	2	86	2	0	1	0	3	1	0	2	0	2
Brown Bears	0	5	45	3	9	15	8	6	0	2	0	8
Cheetahs	2	0	0	73	2	3	5	0	0	1	2	12
Deserts	0	1	4	4	73	0	8	1	4	1	1	1
Elephants	1	0	3	0	1	88	4	1	0	0	0	2
Fields	1	4	8	12	11	15	36	6	1	1	0	4
Mountains	1	2	4	0	2	3	2	83	1	0	0	0
Night	0	3	0	1	2	0	0	1	79	0	8	5
Polar Bears	14	6	3	3	0	6	0	0	0	63	0	6
Sunsets	0	0	0	3	1	1	0	0	9	0	83	2
Tigers	0	0	1	4	0	6	0	1	0	0	0	88

Sample Retrievals

Sample Retrievals

Sample Retrievals

Comparison with Color Histograms

More on Color Histograms

Why Does It Work?

• Natural images, usually of a single subject.

• Extremes along selected dimensions tend to pick out important elements of a scene.

• Power of combining color and texture with spatial information.

Conclusions

- For natural scenes, the distribution of intensity, color, and texture provides a good description of an image.
- Analysis of this distribution can be used to retrieve related images from a database.
- Future work: Handle a wider range of images.

Why Allow Multiple Blobs?

• Sometimes, it's not clear which blob is interesting.

• We want to allow multiple options.

The Similarity Metric

• Image descriptions consist of 36 numeric features and 8 set-like features.

$$\Delta(I_{1}, I_{2}) = \sum_{i=1}^{36} \left| f_{i}(I_{1}) - f_{i}(I_{2}) \right| + \sum_{i=37}^{44} \left[\min_{B_{1} \in f_{i}(I_{1}), B_{2} \in f_{i}(I_{2})} \left(\delta(B_{1}, B_{2}) \right) \right]$$

$$\delta(B_{1}, B_{2}) = \sum_{i=1}^{11} \left| g_{j}(B_{1}) - g_{j}(B_{2}) \right|$$

In Comparison

