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ABSTRACT
Libraries are digitizing their collections of maps from all eras, gener-
ating increasingly large online collections of historical cartographic
resources. Aligning such maps to a modern geographic coordinate
system greatly increases their utility. This work presents a method
for such automatic georeferencing, matching raster image content
to GIS vector coordinate data. Given an approximate initial align-
ment that has already been projected from a spherical geographic
coordinate system to a Cartesian map coordinate system, a prob-
abilistic shape-matching scheme determines an optimized match
between the GIS contours and ink in the binarized map image. Us-
ing an evaluation set of 20 historical maps from states and regions
of the U.S., the method reduces average alignment RMSE by 12%.

CCS CONCEPTS
• Information systems → Geographic information systems;
Content analysis and feature selection; Image search; •Applied com-
puting → Graphics recognition and interpretation;

KEYWORDS
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1 INTRODUCTION
Maps provide a dense, information-rich history of geography, poli-
tics, and power [17]. Maps from the pre-digital era have become
increasingly available through online archives. Though coarse
geographic metadata (e.g., the map region) usually accompanies
these artifacts, more precise geographic alignment is available far
more rarely at present. Manually creating such alignments requires
painstaking effort by human annotators [11]. However, blending
views of maps across different eras or modalities can provide pow-
erful new cues to historians and other scholars [20].

This work offers a method for improving automated alignment
of historical map images to the Earth’s geography, a process known
as georeferencing [13]. Specifically, we build on prior work that pro-
vides an approximate alignment based purely on the arrangement,
textual content, and typography of toponyms (place names) on the
map [26, 27]. This work adapts a shape-matching algorithm (re-
lated to those previously used for word spotting [15, 16]) to the task
of matching contours from GIS data—geographical and political
boundaries, roadways, etc.—to historical map image contents.

Historical GIS data is not widely available. However, our model’s
flexibility allows it to align contemporary GIS data to historical
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Figure 1: Clockwise from top left: Initial alignment super-
imposed on a map (D0042-1070001 [2]); map edge skeleton;
geometric model from GIS data; final alignment.

maps reasonably well. Our primary contribution includes devel-
opment of this flexible shape-matching strategy to improve an
approximate initial alignment.

We have added extensive ground truth correspondences to an
existing dataset of textually annotated historical maps to facilitate
geographic empirical analyses. Whereas previous work demon-
strated the utility of approximate georeferencing by measuring a
reduction in OCR (text recognition) error, the augmented bench-
mark map data in this work allows us to precisely measure the
improvement in georeferencing of the previous approach as well
as the newly proposed techniques.

Section 2 describes the necessary background, including related
work and basic geographical practices. Section 3 details the ap-
proach and Section 4 evaluates the model both qualitatively and
quantitatively.

This technical report is an extended version of the short paper
entitled “Deformable Part Models for Automatically Georeferenc-
ing Historical Map Images” which was published in Proceedings
of the 27th ACM SIGSPATIAL International Conference on Ad-
vances in Geographic Information Systems (SIGSPATIAL’19), 2019.
DOI:10.1145/3347146.3359367
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2 BACKGROUND
The problem of aligning data from multiple modalities arises in
many fields but particularly in geospatial processing. Hackeloeer et
al. [13] enumerate approaches and applications. Here we focus on
the specialized task of aligning vector data to raster map images.

2.1 Related Work
To align vectors and geographical images, there is a long history
of using road lines or intersection points [3, 4, 18], which tend to
be very stable (some modern road paths date to ancient Roman
times [5, p. 1:35]). Although fast, these methods often assume the
matching involves only scale and translation [3]. Li’s method [18]
included rotation, but it may not be particularly robust to noise [5,
p. 1:36]. Weinman’s toponym-based methods [26, 27] require no
such assumptions, robustly aligning with a full affine transform
using only map region metadata and a gazetteer (cf. Section 3.2.1).

We can further distinguish between orthoimagery [3, 4, 18] and
map images as the alignment target. In the latter category (to which
this work also belongs), Duan et al. [6] recently proposed a method
that adjusts an initial vector-image alignment by searching for con-
sistent local control point deformations that improve the putative
alignment. They include a raster foreground extraction method
that identifies colors of interest based on a narrow band around the
initial vector alignment, resulting in a binarized image for matching.

Although other recent methods have trained CNNs for align-
ment [21] and interpolation [28], our deformable part model re-
quires no training data and is based solely on a geometric con-
sistency score and a simple distance metric. Initially proposed by
Fischler & Elschlager [10], deformable part models have more re-
cently been applied to human pose recovery [8] and visual object
recognition [7].Work in document analysis has developed them into
tools for matching 2D arrangements of curvilinear segments, with
applications to word spotting [15] and signature verification [16].

2.2 Geographic Coordinates and Projections
Geodesists have updated our knowledge of the Earth’s shape over
many centuries, describing it approximately as an ellipsoid. Geog-
raphers create a datum by choosing a particular alignment of the
ellipsoid to the surface of the earth. A geographic coordinate system
(GCS) assigns an origin—equator and prime meridian—for all points
on that surface. In this work, we employ the North American Datum
of 1983 (NAD83), presently used for geospatial work throughout
the United States federal government. Before this, the North Amer-
ican Datum of 1927 (NAD27) used the Clarke 1866 model as the
reference ellipsoid. Although that shape would likely have been
used in our test maps, the discrepancy should be negligible at their
scales. Rather, a much greater degree of error will likely be due to
our ignorance of the projection used by the cartographer.

Printed maps must represent the three-dimensional, ellipsoidal
structure of the Earth on a two-dimensional plane. Cartographers
have created a wide variety of projections for transforming spheri-
cal geographic coordinates to Cartesian map coordinates [22]. In
this work we followWeinman [27], focusing only on two projection
families that appear manifest in the test maps: cylindrical and conic.
Specifically, we consider the equal area cylindrical projection and
Hassler polyconic projection. Both projections require a standard
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Figure 2: Coordinate transformation sequence used for auto-
matic georeferencing. After an initial affine warp, the final
deformationmay be another rigid affinewarp or a non-rigid
thin plate spline interpolation.
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Figure 3: Extra margins leave a gap at the binding of two
leaves constituting a single map (D0117-5755024 [2], origi-
nal map copyright ©1927 Rand McNally).

parallel (often the Equator) while the polyconic projection also re-
quires a central meridian where the cones are tangent to the globe.
Specific settings for these vary by map and the precise method is
described in further detail below. The technique (cf. Section 3.2.1)
is not limited to these projections; indeed, any projection may be
included as a candidate over which to optimize.

3 METHODS
We seek to produce a mapping (x ′,y′) ↔ (ϕ, λ) that associates a
position on the map image to its equivalent geographic coordinate
(latitude ϕ and longitude λ) within the map boundaries. Figure 2
shows the overall geometric processing framework of our approach.
Estimation of transformation parameters based on toponyms can
provide an effective starting point and baseline [27], but often ex-
hibits visible systematic errors (see Figure 1). Themethods described
below give a more precise alignment by matching GIS vector data
to the visual structure in the map image.

Because historical maps vary in the precision and accuracy of
their details, it may be impossible to find a perfect affine or other
rigid match to modern geospatial data. Printing errors may also
introduce systematic discrepancies (as shown in Figure 3).

We therefore adapt the inkball model [15], a flexible matching
technique previously used for word spotting. These deformable
part models represent curvilinear segments as linked chains of
control points that can move independently while seeking to retain
their original shape as much as possible. Each control point tries to
find a location in proximity to document ink that also maintains its
position relative to linked neighbors. Deviations from either goal are
penalized via a quadratic spring-like potential. Jointly optimizing
all point locations is difficult, but efficient algorithms exist when the
link structure forms a tree [8]. While many deformable part models
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use tree structures for more efficient inference, this work employs
general graph models instead. In applying these techniques to map
georeferencing, models will represent features such as roads and the
boundaries of states and counties; accounting for loops is therefore
essential. Loops complicate the model-fitting process, but with the
right algorithms useful results may still be achieved in practice.

In the remainder of this section, we first elaborate on the de-
formable structure of the part models used in this work. We then
describe two methods for configuring the models before finally
detailing the update process that yields the resulting model fit.

3.1 Model Structure
The inkball models employed in this paper represent curvilinear
features (boundaries, roads, rivers, etc.) in a manner that provides
spatial flexibility when matching to a map image. The model can
be conceptualized as semi-rigid chains of control points that trace
a target shape, linked by connections that can stretch or otherwise
deform with an energy cost equivalent to a spring-like potential
function. When disks of ink are placed at densely sampled control
points (“inkballs”), such models can generate plausibly deformed
versions of the original shape. The sparse point correspondences
found by optimizing the match between such a model and a map
raster image can then guide the creation of a dense coordinate
transformation that takes an initial rigid coordinate frame (x ,y) to
the adjusted coordinate frame (x ′,y′), as shown in Figure 2.

Model building begins by transforming the selected GIS shape
features to be matched from geographic to image coordinates (cf.
Figure 2) using the best available parameter estimates. Such pa-
rameters might be provided manually, estimated from toponym
locations, or produced via the novel method proposed below in
Section 3.2. We rasterize these shape vectors into a skeleton binary
image at the map raster image’s native resolution. From this binary
image, we choose a set of control points C with locations vi for
i ∈ C at junctions plus additional points set apart by a fixed distance
(4 pixels). Points that neighbor each other in the rasterized shape
image become neighbors in the model, and we record the observed
spatial offsets between neighbors ti j ≜ vi − vj . Neighbors may be
represented via an adjacency matrix N , with Ni j = 1 when nodes i
and j are neighbors (and zero otherwise). In general, this results in
a loopy model (a graph with cycles).

3.2 Model Configuration
Here we describe two methods for constructing the model configu-
ration. The first method is based on an approximate georeferencing
technique from prior work, while the second introduces a novel
multisample consensus-based approach.

3.2.1 Toponym-based Georeferencing. Previous work by Wein-
man [26] approximately georeferences map images solely for the
purpose of improving toponym recognition, assuming that knowl-
edge of a pixel’s location on the globe tightly constrains the space
of possible toponyms. To that end, each word image goes through
a text recognition system, which produces a list of candidate words
and their corresponding probabilities. These candidate words, prob-
abilities, and their image locations are used as part of an MLESAC
robust estimation process [25] to produce an affine alignment for
georeferencing. Because the method is based on a sample consensus

focused on rejecting outliers, the resulting maximum likelihood
parameter estimates are necessarily quite coarse, even when re-
estimated from the final inliers (rather than just the minimum
sample set). Moreover, the method uses a fixed error tolerance and
inlier probability, both of which can deviate substantially from map
to map. To improve this initial toponyn-based alignment, Wein-
man [27] optimizes the overall probability model via an Expectation-
Maximization (EM) algorithm that adjusts all these parameters.

This initial estimation process—whether based on MLESAC or
the EM adjustment—finds an affine transform between the projected
Cartesian map coordinates (u,v) and the final rendered image co-
ordinates (x ,y), as shown in Figure 2. Because the projection used
for a given map is unknown, the initial georeferencing process may
be run using each candidate projection (just two in the current
framework) before choosing the one with the best score.

Not only is the projection family itself typically unknown, the
projection parameters are also unknown. We use the map’s region
(part of the metadata associated with the map) to determine a
central meridian and standard parallel required for the unknown
map projection parameters. As a proxy for bounding box center,
we take these projection parameters to be the graticular center of
all the Populated Place and Civil features from the given region in
the Geographic Names Information System (GNIS)1 provided by
the U.S. Geological Survey (USGS).

The projection selected by the algorithm and the affine trans-
formation takes the GIS shape data from geographical (ϕ, λ) space
to the image (x ,y) space (Figure 2), where the GIS rasterization is
performed and model configurations {vi } are found.

3.2.2 Tree-based Configurations. As an alternative to relying
on prior work for the model configuration, we propose a novel
approach that employs the same inkball models used for the main
model-fitting method (cf. Section 3.3). Because these model graphs
have cycles, efficient techniques for finding global optima are not
available. However, it is possible to perform efficient optimization
on closely related models that are tree structured [8]. The configura-
tions obtained by such tree-structured models tend to be correct in
some areas and incorrect in others. Collectively, the configurations
obtained from multiple tree-structured models may contain enough
information to correct the errors present in individual results.

Model configuration proceeds as follows. First, we take a very
crude projection—simply treating the geographic coordinates (ϕ, λ)
as Cartesian coordinates (u,v)—and then we independently ap-
ply linear scaling so that the target structures occupy 80% of the
vertical and horizontal extent of the map. This scaling takes the
arbitrary (u,v) Cartesian coordinates of the “projection” to image
coordinates (x ,y). Next, we create a loopy model as described in
Section 3.1 above. From this model, we derivem tree-structured
models by selecting a seed node and adding nodes one at a time
to generate a random spanning tree. Step by step, a single link is
added between the previously incorporated nodes and any unin-
corporated neighbor chosen at random, until every control point
has been included in the tree.

1https://geonames.usgs.gov; each GNIS feature with a unique identifier is assigned to
a class (e.g., Arroyo, Basin, Cliff, Dam, etc.), and is given an official location and name
(along with historical or alternate names and spellings).
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We then efficiently fit each of the m models to the map as a
standard, tree-structured inkball model [15] to givem individual
configurations. Finally, we combine these configurations into one
by taking the median in each coordinate for every control point i:

vi ≜ mediank ∈[1,m]
{
x̂ki

}
(1)

where x̂ki is the estimated coordinate for the ith control point in
the kth tree model.

Because the resulting model is flexible and estimated from me-
dian tree-fit locations, the combined configuration may not be
entirely self-consistent. To remedy this, we fit an affine transforma-
tion that brings the raw projected shape points in (u,v) space as
close as possible (in a least-squares sense) to the tree-based models’
median control point locations in (x ,y) space. As in the toponym-
based approach, this identity projection and affine transform are
used to take the GIS data to image space, where it is rasterized to
configure the model structure described in Section 3.1.

3.3 Model Fitting
Given the model structure described above, we search for matching
control point locations located on or near the map image ink but
otherwise preserving the general model shape (relative positions).

In preparation for this process, the raster (RGB) map image
is converted to the desired form via several preprocessing steps.
Because the initial image resolutions are very high, they are first
downsampled by a factor of 8. RGB is converted to grayscale and
then to a binary image using Howe’s method [14]. Finally the lines
are thinned to one pixel wide [12].

Two potential functions model the joint preferences for each
control point to be located on the map image ink and for neighbor-
ing control points to have their preferred relative positions. Letting
xi be control point i’s putative location on the image grid, the
ink-preferring local potential is

ψi (xi ) ≜ exp
{
−D (xi )2

}
, (2)

where D represents the minimum distance from the given point xi
to the ink (as represented by the binary skeleton), which can be
computed efficiently by the distance transform [19]. The interaction
potential between two control points for which Ni j = 1 is

ψi j
(
xi , xj

)
≜ exp

{
−
(xi − ti j ) − xj2} , (3)

which decreases with the squared distance of xj from its expected
location xi − ti j .

Model fitting then proceeds via a form of message passing. Each
control point maintains a record of what has been determined about
its 2D location, represented as a grid of beliefs bi (xi ) ∈ (0, 1) at the
same resolution as the map image. Following an initialization step
described below, the estimated locations are updated iteratively in
turn to take into account information passed to it by its neighbors:

b
(t+1)
i (xi ) ∝ ψi (xi )

∏
j :Ni j=1

max
xj

ψi j
(
xi , xj

)
b
(t )
j

(
xj
)

(4)

These values are normalized so they sum to one over the entire
grid. Intuitively, the belief update incorporates the local potential
ψi , preferring locations near the map ink, but also accounts for the
neighboring control point locations so as to optimize the interaction

Figure 4: Inference process for a simple 1Dmodel. First row:
model with small point separation ti j (left) and target ink
with larger separation (right). Second row: initial negative
log belief functions ρ(0)i based on squared distance from ink.
Following rows: iterative update steps. To update red distri-
bution, offset blue according to model separation ti j (yield-
ing dotted blue curve), apply the generalized distance trans-
form Γi j (yielding dashed blue curve), add it to the naive be-
lief ρ(0)i (yielding dotted red curve) and normalize (yielding
new solid red curve ρ

(t+1)
i ). Blue update follows the same

steps with reversed roles. Results stabilize after just a few
iterations.

potential weighted by the current belief for those locations. This
optimization (inside the product) can be computed efficiently via a
linear-time generalized distance transform [9] (cf. Section 3.3.4).

After a chosen number of iteration rounds r , the final node
positions are set to the most-preferred location:

x̂i = argmax
xi

b
(r )
i (xi ). (5)

Figure 4 illustrates the inference process for an extremely simplified
1D model. Figure 5 shows a match in 2D. Figure 6 provides a
visualization of the alignment process in action for map D5005-
5028102. Many control points find their optimal position after just
one iteration round, but some continue to move around and the
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Figure 5: 2D fitting. Left: A straight model fitting to a curvy
line will adopt a configuration that compromises between
model deformation and proximity to ink. Red lines show
tension. Right: Visitation order for a simple graph under the
clockwise rule (cf. Section 3.3.2).

Figure 6: Evolution of alignment. Top: movement of bound-
aries with iterations. Bottom: Evolving location belief map
(square root of log scale,

√
logbi ) for one control point at

the state’s southeast corner. (D5005-028102 [2], originalmap
copyright ©1924 Rand McNally)

initially diffuse estimates of the possible location growmore focused
over time.

3.3.1 Initialization. The point configuration used to build the
model provides a rough, if imperfect, initial position for control
points. We use this to construct an initial belief b(0)i based on the
original local potentialψi of Equation (2) and a secondary potential

ψ ′i preferring locations xi near the estimated initial position vi ,

ψ ′i (xi ) ≜ exp
{
−κ ∥xi − vi ∥2

}
, (6)

where κ = 0.01 is an adjustable scale parameter. We combine these
potentials to initialize the belief function,

b
(0)
i (xi ) ∝ ψi (xi )ψ

′
i (xi ) . (7)

After initialization, the model positions evolve toward ink, preserv-
ing shape, but retaining no further bias for the initial configuration.

3.3.2 Visitation Order. Inference on graphical models with loops
is known to be NP-hard [8] and is typically attempted via approxi-
mation algorithms. Because convergence to a global optimum is not
guaranteed, details of the update process can affect the quality of
the final result. We update beliefs incrementally using Equation (4)
according to a clockwise rule which proceeds as follows: On odd
rounds, begin at the vi point with the leftmost x-coordinate and
move upwards to start. Traverse the graph, choosing the next un-
visited neighbor in a clockwise direction from the previous node.
Maintain a stack of passed-over branches, so that if the current
node has no unvisited neighbors the traversal can be restarted from
the next unvisited node in the stack. If the graph is disconnected
then each component can be treated in the same manner. On even
rounds, use the same order in reverse. See Figure 5 for an example.

3.3.3 Termination. Ideally the message passing would proceed
until it converges on the globally optimal solution. In practice the
configuration may become stuck in a local minimum or even fail
to achieve a consistent state. Nevertheless the bi estimates tend to
become mostly localized and stable after just three to four rounds,
and further computation generates little change. We therefore ter-
minate the iterations after four rounds, r = 4 |C |, and take each
control point position as described in Equation (5).

3.3.4 Implementation. Because the optimization in Equation (4)
appears to have a runtime complexity quadratic in the number of
image pixels, we clarify here how it can be computed in linear time
using the generalized distance transform on a log-space representa-
tion. Let ρi (xi ) ≜ − logbi (x) with Zi the proportionality constant
ensuring

∑
xi bi (xi ) = 1. First, we create αi j , a translated version of

the log-belief that aligns the expected location of the neighboring
control point j with the current control point’s putative location:

x̃i j ≜ xj + ti j (8)
αi j

(
x̃i j

)
≜ ρ j

(
xj + ti j

)
. (9)

We then observe that the generalized distance transform [9] on
αi j efficiently calculates Γi j , the minimum combination of squared
deviation and belief support for that deviation:

Γi j (xi ) ≜ min
x̃i j

xi − x̃i j2 + αi j (x̃i j ) . (10)

In this log-space representation, we then have that

ρ
(t )
i (xi ) ← D (xi )2 +

∑
j :Ni j=1

Γi j (xi ) + logZi , (11)

where D is the standard Euclidean distance transform [19] and each
term may be calculated in time linear in the number of pixels.
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Table 1: Information about map benchmark data [1].

Map Year Atlas Map Map Map
Id. Number Region Scale
a 1896 D0017 1592006 Central Calif. 443,529
b 1875 D0041 5370006 Florida 1,330,560
c 5370026 New Mexico 1,330,560
d

1866 D0042

1070001 Ohio 1,140,480
e 1070005 Wisconsin 1,140,480
f 1070006 Minnesota 1,140,480
g 1070007 Iowa 1,140,480
h 1070010 Arkansas 1,140,480
i 1070012 Mississippi 1,140,480
j 1879 D0089 5235001 Northern U.S. 7,500,000
k 1879 D0090 5242001 Missouri 1,966,700
l

1927 D0117

5755018 Indiana 1,100,000
m 5755024 Iowa 1,250,000
n 5755025 Nebraska 2,000,000
o 5755035 Wyoming 2,200,000
p 5755036 Montana 2,500,000
q

1924 D5005

5028052 N. Carolina N/A
r 5028054 S. Carolina N/A
s 5028100 N. Dakota N/A
t 5028102 S. Dakota N/A

3.3.5 Densification. Model alignment only fixes the 2D trans-
formation (x ,y) ↔ (x ′,y′) at the control points (where vi ↔ x̂i ).
In order to fix the map coordinates of any locations that are not
in the model, we must derive a dense 2D correspondence from the
sparse control point data. We explore two methods:

Affine: Fit an affine transform to the control point matches
using robust linear least squares.

Robust TPS: Robustly fit a thin plate spline to the control point
matches, excluding outliers [24]. This allows local non-linear
warping of the Cartesian grid.

The affine transform must optimize across all control points,
whereas the thin plate spline only enforces local consistency and
allows more variation between separated regions. While they differ
in flexibility, both of these transforms imply some form of regular-
ization and may not be able to fully express the actual relationship
between GIS coordinates and the map’s content.

4 EXPERIMENTS
This section presents the results of testing the methods just de-
scribed on a collection of 20 historical maps. For comparability,
we use the same set as in prior work [27]. The main results use
toponym-based configurations on county or state boundaries. Ad-
ditional experiments test variant models using roadway data and
tree-based configurations.

4.1 Data
The U.S. state and county boundaries used for shape models (cf.
Section 3.1) are taken from the U.S. Census Bureau Cartographic

Boundary Files.2 Highway paths are taken from the U.S. Geological
Survey (USGS) National Transportation Dataset (NTD).3

As our benchmark, we take map images previously used for
testing toponym text recognition [27], all drawn from the David
Rumsey collection [2]. The 20 map images used in this benchmark
data set range from years 1866–1927 and are drawn from seven
atlases [1]; see Table 1. While the original ground truth annotation
includes the bounding polygons and text transcription of toponyms,
it does not include georeferencing information. For this work, we
have added sets of ground truth correspondences between geo-
graphical coordinates (latitude and longitude) and pixel coordinates
(row and column) in the map images.4

These correspondences arise from two different manual match-
ing processes, one graphical and one textual. In the first case, hu-
man annotators matched the geographical and image coordinates
of well-localized map locations—e.g., junctions, corners, or other
topologically distinct points. We take the ground truth geographical
coordinates from GIS data provided by the USGS; specifically state
and county boundaries from the NBD, and road junctions from the
NTD. In the second case, human annotators matched the labeled to-
ponyms on themapswith entries from the USGSGeographic Names
Information System (GNIS), subsequently allowing the system to
put the image coordinates of the toponym’s place marker (usually a
city) in correspondence with the geographical coordinate reported
by the GNIS. By combining correspondences from both methods,
annotators produce a sufficient number of well-distributed points
so that a parametric alignment could fit reasonably well over the
entire map image, given a reasonable projection. The number of
ground truth points for each map is given in Table 2.

4.2 Results
Qualitatively, alignments found by the proposed technique look
more accurate than those of prior work. Figure 7 shows several typ-
ical examples for comparison. In each case the initial alignment is
in the right neighborhood but includes a systematic error. The pro-
posed method brings the model structures into closer juxtaposition
with the corresponding map features.

The degree of improvement depends upon the densification
method chosen. Although both the thin plate spline and affine
densification methods work from the same control point fits, the
former sometimes performs better than the latter. This is partic-
ularly true in local areas where a global, rigid affine fit cannot
express the true local alignment, whether due to printing defects
(cf. Figure 3) or a poor projection estimation. On the other hand,
when the control point fit includes spurious matches, a global affine
transform is more likely to successfully ignore the outliers than a
local method like the thin plate spline, even with robust methods.
(See discussion of Figure 8 below.)

Table 2 shows detailed results for each test map. The overall
outcomes shown for the affine and thin plate spline densifications
are significantly better than Weinman’s toponym-based fit [27]
for RMSE in both kilometers and pixels (p < 0.011).5 The method
included in this table was chosen for strong overall performance,
2https://www.census.gov
3https://www.sciencebase.gov/catalog/item/4f70b1f4e4b058caae3f8e16
4Data available at http://doi.org/11084/23330
5All significance tests use a paired, one-sided Wilcoxon signed-rank test.
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Figure 7: Sample results. Left: starting toponym alignment. Center: affine alignment. Right: thin plate spline alignment. (Maps
top–bottom: D0042-1070005 and D0042-1070009 using state and county boundaries, D0117-5755024 using state boundary and
major roadways.)

but is not necessarily best on each individual map. Overall results
show Weinman’s toponym-based adjustments [27] reduce RMSE
(in pixels) by 41% over the prior technique [26], and the approach
in this work nets a further 12% reduction.

4.2.1 Model Sensitivity. Where errors occur with both densifi-
cation techniques, they can usually be traced to mismatch between
model and image. Political boundaries, transportation networks,

even rivers and shorelines can change over time. Modern data can
easily include features not present in historical maps. Attempts to
find a match that does not exist can lead to incorrect alignments as
discussed below.

Figure 8 shows such a failure case for the thin plate spline. Maps
from atlas D0117 do not include county boundaries, so the control
points on a county boundary match a road to the south instead. The
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Table 2: Alignment results of individual maps, grouped by atlas. GT is best (least-squares) affine fit to the ground truth corre-
spondences after projection. SAC is the initial toponym-basedMLESAC affine fit [26]. EM is the adjusted toponym-based affine
fit [27]. Others are models described in this work with two densification (cf. Section 3.3.5) strategies and GIS layers indicated.

RMSE (km) RMSE (px)
Map Num. GT SAC EM State,County State GT SAC EM State,County State
Id. Pts Aff TPS Aff TPS Aff TPS Aff TPS
a 43 1.61 3.78 2.69 *2.72 *2.28 - - 40.7 95.5 68.4 *66.5 *61.3 - -
b 58 10.40 27.41 12.51 11.61 11.27 11.22 10.92 84.2 206.1 100.3 94.6 93.3 90.8 91.3
c 46 5.78 41.85 12.56 11.74 11.29 7.79 7.49 47.7 297.0 99.1 89.8 81.8 63.8 64.8
d 222 4.02 6.96 4.72 4.42 2.99 6.83 3.82 45.0 79.4 52.6 49.0 33.8 83.9 48.7
e 134 2.50 10.59 5.18 4.47 2.82 5.18 3.49 25.4 106.6 50.4 38.7 32.5 56.5 36.2
f 141 8.55 20.56 9.57 7.55 7.76 7.01 7.09 85.0 238.1 97.1 74.8 74.5 69.8 94.2
g 176 3.71 10.31 5.13 3.81 3.61 4.07 3.69 36.5 101.8 49.7 37.2 34.0 39.7 36.8
h 122 3.41 6.66 4.11 3.44 3.03 3.72 4.08 33.4 66.9 40.1 33.5 29.4 36.3 38.3
i 127 4.05 6.91 4.50 4.29 4.30 4.70 4.44 41.1 69.3 45.5 43.5 42.8 47.6 45.5
j 71 10.39 39.83 35.78 **40.91 **35.57 40.91 35.57 16.9 62.6 55.5 **63.6 **56.7 63.6 56.7
k 260 6.70 9.31 7.48 6.71 6.95 6.60 6.82 39.0 54.5 44.6 40.0 41.9 39.3 40.3
l 620 3.04 3.61 3.14 3.13 3.25 3.02 3.52 45.3 54.5 46.8 46.1 50.5 45.2 48.8

m 782 3.18 3.34 3.20 3.55 4.66 3.31 3.66 37.8 39.7 38.1 41.7 53.1 39.0 41.8
n 597 5.83 7.11 6.26 7.16 6.63 6.14 6.11 48.1 59.7 52.0 64.1 51.4 51.1 50.5
o 306 3.12 8.30 4.41 6.98 5.27 4.00 4.27 27.0 71.2 38.1 60.7 43.1 34.7 37.6
p 483 6.88 7.18 7.31 7.99 8.37 7.12 7.34 48.0 50.5 51.5 52.8 59.8 50.1 51.0
q 384 2.27 2.97 2.51 2.40 2.41 2.41 2.38 26.1 33.6 28.8 27.5 27.7 27.7 27.7
r 251 2.08 2.77 2.30 2.48 2.11 4.24 2.20 26.0 34.2 28.7 35.5 26.5 68.2 27.4
s 388 2.15 3.74 2.98 2.37 2.28 2.69 2.57 25.1 43.4 34.9 27.7 26.2 31.5 31.7
t 194 2.51 5.49 5.45 2.68 2.64 3.03 2.97 27.4 61.1 58.0 29.0 27.8 32.7 32.1
Average 4.61 11.43 7.09 7.02 6.47 - - 40.28 91.29 54.01 50.82 47.4 - -

*Metadata indicates sub-state regional map; model uses only GIS county boundaries
**Metadata indicates multi-state map; model uses only GIS state boundaries

thin plate spline adjusts for this displacement, warping the straight
county lines into a southward curve. In this case, the global nature
of the affine fit helps it to avoid such local errors. However, it would
be better to avoid the spurious matches entirely.

Even if the fit is not misled by spurious control point matches,
they are certainly not likely to improve the result. Wherever possi-
ble, human supervision or map metadata should be used to ensure
that models match the image contents. To demonstrate this con-
cretely, we built a set of alternate models using state boundaries
plus major roads (state highways and interstates from the NTD)
instead of county boundaries and fit them to the D0117 road atlas
maps. Although the map’s road network exhibits discrepancies com-
pared to the modern data, the resulting thin plate spline fits shown
in Table 3 nevertheless improve significantly (p < 0.035) on the
match for the county-boundary models used in Table 2, reducing
RMSE (in kilometers) by 27% to a rate even lower than the best
rigid affine fit to the ground truth points.

Figure 9 highlights another instance where attempting to match
features that are not present in the image contributes to a poor
alignment result. In this case the control points along the state
boundary largely match to the correct location. Unfortunately, the
modern county boundaries just below are not present in the map,
and instead generate spurious correspondences along a river. These
misidentifications compound problems with the choice of projec-
tion, causing the algorithm to place the boundary in the wrong

Table 3: Alignment results using state boundary and roads.
GT is best (least-squares) affine fit to the ground truth cor-
respondences after projection. EM is the adjusted toponym-
based affine fit [27]. Others are the model described in this
work with two densification methods (cf. Section 3.3.5) and
GIS layers indicated.

Map RMSE (km)
Id. GT EM State,County State State,Roads

Aff TPS Aff TPS Aff TPS
l 3.04 3.14 3.13 3.25 3.02 3.52 3.00 2.25
m 3.18 3.20 3.55 4.66 3.31 3.66 3.51 2.57
n 5.83 6.26 7.16 6.63 6.14 6.11 8.10 5.02
o 3.12 4.41 6.98 5.27 4.00 4.27 4.09 3.99
p 6.88 7.31 7.99 8.37 7.12 7.34 7.34 7.00

Avg. 4.41 4.86 5.76 5.64 4.72 4.98 5.21 4.17

location. Using a model with only state boundaries can reduce such
errors, as shown in Table 2(f).

4.2.2 Tree-based Configurations. While the previously cited re-
sults all use the toponym-based configurations as their starting
point, Table 4 shows the performance of new models built from
raw latitude/longitude data usingm = 5 tree fits, as described in
Section 3.2.2. Because the technique relies on a crude heuristic to
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Figure 8: Importance of the right model. Top left: starting toponym alignment. Top right: affine result. Bottom left: thin plate
spline result. Bottom right: thin plate spline result using a roadmodel. (D0117-5755025 [2], originalmap copyright©1927 Rand
McNally)

Figure 9: A failure case. Top: starting toponym alignment
with control point fits. Bottom left: affine result. Bottom
right: thin plate spline result. (D0042-1070006 [2])

scale the model, it fails on about half the attempts. Nevertheless on
the remainder it produces reasonable results, and for certain maps
(e.g., D0090-5242001) it achieves the best results of any method, as
illustrated in Figure 10. In this map, the toponym configuration
contains a significant alignment error due to a dearth of toponyms
in Michigan’s upper peninsula, leading the resulting models astray.
The tree-based configuration is unaffected and matches well using
the shape alone.

Table 4: Alignment results comparingmodel configurations:
Toponym-based (cf. Section 3.2.1) versus Tree-based (cf. Sec-
tion 3.2.2) with state and county boundaries as GIS lay-
ers and two densification methods (cf. Section 3.3.5). GT is
best (least-squares) affine fit to the ground truth correspon-
dences after projection. SAC is the initial toponym-based
MLESAC affine fit [26]. EM is the adjusted toponym-based
affine fit [27]. Results shown only for tree fits that perform
no worse than SAC.

RMSE (km)
Map GT SAC EM Toponym Tree
Id. Aff TPS Aff TPS
b 10.40 27.41 12.51 11.61 11.27 15.41 12.95
c 5.78 41.85 12.56 11.74 11.29 24.00 20.87
d 4.02 6.96 4.72 4.42 2.99 3.76 3.07
e 2.50 10.59 5.18 4.47 2.82 3.29 2.87
g 3.71 10.31 5.13 3.81 3.61 4.79 3.96
h 3.41 6.66 4.11 3.44 3.03 5.66 5.70
i 4.05 6.91 4.50 4.29 4.30 6.66 6.61
k 6.70 9.31 7.48 6.71 6.95 6.70 6.83
q 2.27 2.97 2.51 2.40 2.41 2.72 2.44
r 2.08 2.77 2.30 2.48 2.11 2.37 2.29
s 2.15 3.74 2.98 2.37 2.28 3.34 2.51
t 2.51 5.49 5.45 2.68 2.64 4.48 3.28

5 CONCLUSION
The methods proposed herein significantly improve the accuracy
of map georeferencing as compared to prior work. They are most
effective when the models used correspond to the actual map con-
tents. Future work should look at techniques for post-alignment
verification so that bad matches can be identified and improved.
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Figure 10: Effects of model configuration. Top row, l-r: toponym-based configuration, thin plate spline result. Bottom row, l-r:
tree-based configuration, thin plate spline result. (D0042-1070004 [2])

Depending on the resources available, the core method proposed
here could be applied in a number of different scenarios. When
initialized via toponym matching or the automatic tree-based ap-
proach described above, it could form part of an automated pipeline
for processing a large map collection [23]. Alternately, for human-
in-the-loop configurations, it could provide a “snap to borders”
functionality once the user provides a crude initialization.

The proposed method can be further refined in a number of ways.
Binarization should not be the only approach to feature detection,
since some maps use color changes instead of lines to represent
borders. Furthermore, borders and roads are not the only geographic
feature that can be easily matched. Railroads, rivers, shorelines, and
other curvilinear structures could be added to the model. Even
toponym features can be incorporated. On the other hand, not all
features are present in or appropriate for all maps, and automatically
determining which should be used in any individual case remains
an open problem. In summation, this paper provides a useful tool

for aligning historic maps to modern geographic resources, but
more work remains to be done.
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