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Abstract

Feature weighting is known empirically to improve classification accu-
racy for k-nearest neighbor classifiers in tasks with irrelevant features. Many
feature weighting algorithms are designed to work with symbolic features, or
numeric features, or both, but cannot be applied to problems with features
that do not fit these categories. This paper presents a new k-nearest neighbor
feature weighting algorithm that works with any kind of feature for which
a distance function can be defined. Applied to an image classification task
with unusual set-like features, the technique improves classification accuracy
significantly. In tests on standard data sets from the UCI repository, the tech-
nique yields improvements comparable to weighting features by information
gain.
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1 Introduction

Automatic classification is one of the most well-studied areas in machine learning.
Researchers regularly introduce new supervised learning algorithms in an attempt
to improve accuracy on specialized tasks. Yet one of the oldest classification
algorithms is still successfully used in many applications: the k-nearest-neighbors
algorithm. Work continues on refinements and variations of the basic algorithm. For
example, Wilson and Martinez recently introduced several new distance functions
that increase classification accuracy on a range of data sets from the UCI machine
learning repository (Merz and Murphy, 1996).

K-nearest-neighbors (k-NN) belongs to the family of case-based or instance-
based learning algorithms. Such algorithms typically store instances seen during
training in a case base, and then use information in the stored cases to predict the
class of previously unseen test cases. K-NN, for example, retrieves the k training
cases that are most similar to the instance to be classified. The most common class
among the k retrieved cases is taken as the class of the new instance, with ties
broken arbitrarily or by voting. The major difference between various flavors of
k-NN algorithms is in the distance function that is used to determine the k most
similar training cases.

Typically, cases to be classified are specified as a collection of attribute-value
pairs, and the distance function is some simple combination of the distances between
the individual features. The Euclidean distance is a typical example of such an
arrangement, using a sum of squares to combine the difference of each of the
coordinates. Distance functions of this form may be divided conceptually into
two components: the intrinsic distance function applied to each feature, and the
distance combination function, which takes the differences for individual features
and combines them into a single overall distance between the cases. Often the
latter includes some type of feature weighting, where some features contribute more
towards the final combined distance. In fact, the feature weighting is generally the
most important part of the combination process, which otherwise usually consists of
taking a sum or Euclidean norm. Feature weighting also includes feature selection,
which may be viewed as an extreme form of weighting in which some features are
ignored entirely.

Making a distinction between intrinsic distance functions and the method of
combination allows research on each to proceed separately. Some researchers have
proposed distance functions that include both components (e.g., the value difference
metric, or VDM (Stanfill and Waltz, 1986)), but these have often been separated
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again by later researchers (e.g., the modified value difference metric, or MVDM
(Cost and Salzberg, 1993)). Occasionally, researchers conflate the two, perhaps
unnecessarily. For example, Wilson and Martinez engage in a series of experiments
to ensure that the intrinsic distance functions they use for discrete and continuous
attributes do not unfairly weight one type of feature over the other. This task
more properly belongs to the combination stage of distance calculation. If standard
combination methods existed to counteract any unintended bias introduced by the
use of diverse intrinsic distance functions, then the necessity for tedious calibration
like that performed by Wilson and Martinez would be greatly reduced. One of the
goals of this paper is to propose one such standard method.

A second issue that can be addressed by the proper choice of distance combina-
tion function is how to weight features for their importance in classification. Some
features are highly indicative of an instance’s class and should be weighted heav-
ily during combination. Conversely, some features may be irrelevant and should
receive little or no weight. Ideally, the combination function should automatically
determine optimal feature weights regardless of the number or type of features
involved.

This paper presents a distance combination function that addresses both of the
above concerns. First, it automatically calibrates individual features to correct for
any inadvertent bias introduced by the intrinsic distance functions chosen. Second, it
applies automatic feature weighting to the calibrated features to emphasize features
useful in classification and minimize the impact of irrelevant features. Previous
approaches to this problem often use combination methods that are inseparable
from the intrinsic distance functions, or that assume a particular type of feature.
Our method, called mean difference weighting (MDW), is universal in that it may be
applied regardless of the types of the features involved and regardless of the choice
of intrinsic distance function. It is automatic in that it has no parameters that need
be tuned to each particular application. Furthermore, empirical tests show that it
raises classification accuracy across a wide range of data sets when compared to
an unweighted distance function. MDW is comparable in terms of performance
to weighting features by their information gain, except that it is applicable to a
wider selection of data sets. The specifics of the algorithm are described in the
next section. In Section 3 we present the results of tests comparing MDW to
unweighted classification and to various existing weighting methods. The last two
sections discuss related work, and areas where more research on feature weighting
is needed.
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2 Mean Difference Weighting Algorithm

The mean difference weighting (MDW) algorithm is designed to provide a universal
approach to feature weighting for classification tasks. It places minimal restrictions
on the type of the features, and is compatible with most intrinsic distance functions.
The algorithm adjusts for numeric biases either present in the data or introduced by
the intrinsic distance functions used, while simultaneously assigning greater weight
to features that are most useful for categorization. It produces different weight
vectors for different regions of the instance space. By default, the regions used are
simply the individual classes to be predicted, but in principle other groupings can
be used if information is available to motivate doing so. Detailed investigations of
similar types of class-based feature weighting have been performed by Howe and
Cardie (1997).

The MDW algorithm proceeds in two stages, scaling and significance weighting.
Each stage produces a weight vector; the final weight vector is the componentwise
product of the two. Intuitively, the scaling stage equalizes the features so that
each contributes equitably to the difference metric. This step removes biases due
to differences in feature type (e.g., continuous vs. discrete), choice of feature
measurement units (e.g., feet vs. cm), and choice of intrinsic distance function. In
turn, the significance weighting stage adjusts the weight of each feature according
to its calculated importance. This step reduces or eliminates the effect of irrelevant
features and increases the effect of important ones.

Both stages of the algorithm rely on estimating the expected value returned
by the intrinsic difference function �fi when comparing a particular feature fi of
cases randomly chosen from two specified sets, S1 and S2. (These sets may be, for
example, the sets of instances belonging to two different classes.) The expected
differences ∆fi are estimated by observing the mean difference on that feature
between all pairs of cases in the two sets intersected with the training set T . Let

∆fi(S1; S2)
:
= E[�fi(s1 2 S1; s2 2 S2)] =

1
jS1j jS2j

X
s12S1

X
s22S2

�fi(s1; s2): (1)

Then
∆fi(S1; S2) � ∆fi(S1 \ T; S2 \ T ): (2)

The value computed by this procedure will be an accurate reflection of the actual ex-
pectation value across the entire instance space insofar as the training set accurately
reflects the entire set of possible cases.
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The Scaling Algorithm The scaling algorithm first estimates the expected differ-
ence between feature values for two randomly chosen cases. As described above,
this is taken to be the mean difference between two cases selected at random from
the training set, ∆fi(T; T ). The scale weight for a feature is simply the inverse of
this mean feature difference. This weighting scheme ensures that each weighted
feature has an (estimated) expected difference of 1.

The scale weights can be naively computed as a simple O(n2) loop in the size
of the training set if n is not too large. Although the algorithm can be executed off-
line, there still may be applications where the size of n makes the naive algorithm
prohibitive. In this case, a randomized approximation technique can give an accurate
estimate of the mean with high probability as long as some upper bound on the
feature difference is available1. For standard symbolic and numeric features, such
bounds are easy to obtain over the test set. There also exists an exact O(n logn)
algorithm to determine the mean difference for numeric features, and an exact
O(n + m2) algorithm for symbolic features, where m is the number of discrete
values the feature can take on. All the results reported in this paper are based on
exact calculations.

Significance Weighting Whereas the scaling stage computes a single scale weight
vector for the entire instance space, the significance weighting stage computes
different weight vectors in different regions. Specifically, there will be a distinct
weight vector associated with each class of instance in the training set. Vectors
for sub-class groupings may be computed instead, if information is available to
motivate such groupings. We chose to focus only on grouping by classes. During
classification, when a test instance is compared to a training instance, the weight
vector associated with the class of that training instance is used.

The raw significance weights are computed by comparing the expected fea-
ture difference between objects in a class Cj (called the mean in-class difference,
∆in(fi; Cj)) with the expected difference between an object in the class and another
not in the class (called mean out-of-class difference, ∆out(fi; Cj)).

∆in(fi; Cj)
:
= ∆fi(TCj

; TCj
) (3)

∆out(fi; Cj)
:
= ∆fi(TCj

; T � TCj
) (4)

If the mean in-class difference is larger than the mean out-of class difference, then

1This result can be obtained through application of Chernoff bounds.
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the feature is assigned a raw significance weight of zero.

~WRawSig =

(
∆out(fi; Cj)� ∆in(fi; Cj) if ∆out(fi; Cj) > ∆in(fi; Cj)
0 otherwise

(5)

To avoid bias due to significance vectors of different sizes, the raw significance
weight vector is normalized so that its components sum to 1. The final weight vector
for each class is the componentwise product of the scaling and significance weight
vectors. The weight vectors for each class can be precomputed and stored, making
their use during classification extremely fast. Furthermore, if additional information
is stored, such as the number of training cases seen already in each class, then the
weights can be incrementally updated at small cost as new training examples are
added.

Note that the MDW algorithm may be applied regardless of the underlying
feature type, and the intrinsic distance functions used need not be the same for each
feature. MDW only requires that each intrinsic distance function returns a number,
and is independent of the values of the other features.

Although theory shows that no learning algorithm can claim a priori to generalize
better than another (Schaffer, 1994), under reasonable assumptions one would expect
that MDW would in fact improve classification accuracy over another algorithm that
omitted either the scaling or significance weighting steps. That is, if one makes the
critical assumption that the average differences calculated from the training set are
reasonably close to the actual values across the entire instance space, then MDW
will assign highest weight to those features that are most useful for classification.
This should in fact lead to higher accuracy. The next section verifies this prediction
with empirical studies.

3 Empirical Results

A major motivation behind the development of MDW was the need for weighting
algorithms that can be applied to problems with unusual feature types. Therefore,
we focus our testing initially on a domain where many standard feature weighting
algorithms are not easily applicable. An image classification task was chosen for
this purpose. We also test MDW on a few benchmarks from the UCI repository,
comparing it to standard k-NN and to a method that weights each feature by the
information gain from knowing its value (Daelemans et al., 1994).
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The Image Classification Task The image classification task selected is described
in detail in Howe (1998). A feature extraction algorithm was run on a set of 1011
images distributed among twelve classes, producing a feature description for each
image. The features describing an image are composed of 36 numeric features and 8
“set” features. Each set feature contains one or more members, where the members
are vectors of 11 numeric sub-features. The difference between two sets is defined
to be the minimum of the distances between any pair of members representing each
set:

�(S1; S2) = min
v12S1;v22S2

�(v1; v2) (6)

Here �(v1; v2) is the ordinary vector difference between the two sub-feature vectors.
Nearest neighbor classification using the feature set described above is highly

successful, identifying 73.7% of the images correctly in a leave-one-out cross val-
idation test. This is significantly better than other published results using the same
image set, including standard computer vision methods like color histograms. Yet it
was desired to further improve the accuracy by applying appropriate feature weights.
Because of the set features, it is unclear how to apply information gain to this prob-
lem, or many other common weighting algorithms for that matter. However, MDW
is easily applied, producing significant improvements in accuracy. With mean dif-
ference weighting, classification accuracy rises to 80.0%. This difference is highly
significant (p� :01).

UCI Data Sets In order to assess MDW relative to other weighting algorithms,
a series of tests were also run on eight domains taken from the UCI repository
(Merz and Murphy, 1996). As baselines, we compared MDW to a strict k-NN
algorithm and an algorithm that weights features by their information gain (IG).
Where necessary for the latter, continuous features were converted into eight discrete
bins of equal size. For all experiments, the best value of k was learned by leave-
one-out cross validation on the training set. Runs used the training and test set
specified in the repository documentation if available, or 10-fold cross validation
otherwise. Results for these runs are summarized in Table 1. In broad terms, MDW
outperforms ordinary k-NN, and performs as well as information gain for seven out
of the eight tasks.

The first four data sets listed, LED-7, LED-24, Waveform-21, and Waveform-40
are synthetic tasks meant to test performance on irrelevant features. Each pair
represents data sets with and without irrelevant features. The LED experiments
show that feature weighting methods can reliably select the important features for

7



this task. The waveform experiments fail to show this. Upon closer examination of
the results, it appears that k-NN is able to compensate for the irrelevant features by
selecting a large enough value of k. Because k is tuned individually for each fold,
the accuracy of k-NN does not suffer in comparison to the other methods.

The next three data sets are taken from naturally occurring tasks, where feature
relevance is not known a priori. Feature importance probably varies between
each feature, and may depend on the particular value of the feature. MDW’s
accuracy is again comparable to information gain weighting for all three tasks, and
is significantly better than k-NN on a majority.

The final data set listed, Ionosphere, was included because it is the one example
we came across during testing on which MDW’s performance was uncharacteristi-
cally poor. Many classification algorithms perform poorly on one or more isolated
data sets, so we wanted to understand the specific reasons behind this failure. Closer
examination of the weights generated for this task showed that for one of the two
classes, nearly all the weights were set to zero. Other data sets didn’t produce such
an imbalance in the number of features considered relevant for different classes. If
a similar pattern shows up in other data sets where MDW’s performance is poor,
then this pattern may be a warning sign that MDW is inappropriate for a particular
task.

Table 1: Accuracy of MDW Compared to k-NN and Information Gain

Data Set k-NN IG MDW

Images 73.7 – 80.0
LED-7 66.8 67.6 68.0
LED-24 57.2 78.4 74.4
Waveform-21 82.8 74.0 78.4
Waveform-40 82.4 76.4 78.4
Soybean 86.4 90.4 90.4
Lymphography 79.3 81.4 78.6
Promoters 79.0 87.0 87.0
Ionosphere 96.0 96.0 80.1

Key: Bold face type identifies the method with the highest accuracy and those not
statistically distinguishable from it at the 95% confidence level.

We also compared MDW with the value difference metric, because this is an-
other popular weighting technique. Properly speaking, VDM combines an intrinsic
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feature difference function with a feature weighting algorithm. When the weights
are not used it is sometimes called MVDM (Cost and Salzberg, 1993). Since MDW
may be applied to any intrinsic feature difference function, it may be applied on
top of the unweighted value difference metric. Our tests compared MVDM, VDM,
and MDW+MVDM, i.e., MDW weights applied on top of MVDM. Table 2 shows
accuracies on the same tasks for these techniques. The results are statistically in-
distinguishable in six of the eight data sets, but in two cases, the MDW+MVDM
combination did not do as well. This may indicate some subtle incompatibility
between the two methods, perhaps due to the fact that MDW computes a different
set of weights for each class while VDM assumes all classes are treated equally.
Interestingly, the feature weighting added for VDM also does not appear to help
significantly.

Table 2: Comparison of MVDM, VDM, and MDW+MVDM

Data Set MVDM VDM MDW+MVDM

LED-7 64.4 66.0 68.0
LED-24 74.0 75.6 74.4
Waveform-21 79.6 80.8 79.6
Waveform-40 80.0 80.4 77.20
Soybean 92.3 92.0 93.4
Lymphography 83.6 84.3 80.7
Promoters 93.0 94.0 89.0
Ionosphere 95.4 95.4 92.7

Key: Bold face type identifies the method with the highest accuracy and those not
statistically distinguishable from it at the 95% confidence level.

4 Related Work

Several other approaches to feature weighting have already been mentioned, such as
the value difference metric (Stanfill and Waltz, 1986) and information gain weighting
(Daelemans et al., 1994). Many variants of VDM have been proposed, among the
most recent the heterogeneous, interpolated, and windowed value difference metrics
(Wilson and Martinez, 1997). Numerous other approaches to feature weighting and
feature selection have also been tried. Standard feature selection algorithms include
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both forward and backward sequential selection, which progressively add or subtract
features from the set used in classification, until accuracy peaks. These approaches
have the advantage that they are sensitive to interactions between features, but on
the other hand they can be fooled by local maxima. Researchers have addressed
this weakness by using different methods for feature selection, including wrappers
(John et al., 1994) and genetic algorithms (Skalak, 1994). Others have examined
local feature selection, using different feature sets in different regions of the instance
space (Domingos, 1997). Most of this work concentrates on homogeneous data sets
with a single type of feature.

Recent work in local feature weighting includes DANN (Hastie and Tibshirani,
1994), the flexible metrics of Friedman (1994), and methods that learn local feature
weights incrementally (Ricci and Avesani, 1995; Bonzano et al., 1997) For a survey
of local feature weighting algorithms used in regression, see Atkeson et. al. (1997).
A smaller number of algorithms use weights that vary by class, as MDW does.
These include PCF (Creecy et al., 1992) and CDW (Howe and Cardie, 1997), which
operate only on discrete features, and IB4 (Aha, 1992), which learns feature weights
incrementally. Most, if not all, of these algorithms have been shown to perform
well on a variety of learning tasks.

In comparison with other algorithms, two properties of MDW stand out. The first
is its ability to deal with a wide variety of feature types. Most weighting techniques
can deal with both symbolic features and numeric features if discretization is applied.
But the majority cannot handle the set-like features described as part of the image
data set. Second, any method that uses discretization must make decisions about
where to divide the continuous features and how many divisions to make. These
decisions are not extremely difficult, but may require some tuning and testing to
implement. In light of this, MDW is attractive for having no parameters that must
be set. It also automates the scaling of features if features of different types are to
be included.

5 Conclusions

Theoretical considerations indicate that no supervised classification algorithm per-
forms better than any other in all situations. Even using cross validation to choose
the best method provides no guarantees of optimality (Schaffer, 1994). Thus for
practical applications it is important to choose an approach that has been shown
empirically to have reasonable accuracy on typical data sets, such as MDW. MDW
also has the advantages that it requires no parameter setting and is designed to work
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on a wide range of data sets.
The main drawback of the MDW algorithm is its O(n2) naive training time.

Although approximation techniques and faster algorithms will work in most cases,
they make it somewhat more difficult to apply MDW as a simple black box. For-
tunately, the algorithm need only be executed once offline, and information may be
retained to allow inexpensive incremental update if new training instances are to be
encountered. Thus, except for the largest of data sets, the training time is not likely
to be prohibitive even for the naive algorithm.

MDW, like many weighting schemes, also fails to account for redundancy in the
original feature set. Thus, if a given feature is simply duplicated across the instance
space, that feature will receive twice as much weight (counting both of its guises
together) in spite of MDW’s efforts to weight features equally. This effect may be
countered in some domains by performing a principal components decomposition
before applying MDW. Unfortunately, this solution will not work in all domains
because the principle components decomposition is designed for numeric features
and is not feasible for all feature types.

We are currently considering new algorithms inspired by MDW to address the
issues raised above. These range from variations in the weighting algorithm to
more comprehensive modifications of the method by which input from different
features is combined to produce a classification. The approach used here may also
prove fruitful in weighting features for other tasks, such as information retrieval.
The challenge in applying the method to such tasks is to provide the algorithm with
supervisory information in the absence of explicit classes. In this case we will
need to make use of MDW’s capacity to work with any meaningful division of the
training case into subsets, rather than just subsets based on instance class.

Ultimately, given that there are already many feature weighting schemes to
choose from, MDW will probably remain most useful in situations like the image
data set we have described. Domains in natural language processing and computer
vision naturally promote the use of complex features such as sets, lists, bit strings,
and even trees. Because of the generality of MDW, it can easily be applied to
such new features, regardless of what intrinsic distance function is chosen. In such
situations, it offers several advantages. It requires no domain-specific knowledge
to implement, and has no extra parameters that need setting and tuning. Most
importantly, it can be applied to diverse feature types with confidence that it will
account for their individual differences appropriately. In tasks where the features
are not all simply symbolic or numeric, mean difference weighting can be a useful
technique to apply.
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