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Abstract

This paper addresses the problem of han-
dling skewed class distributions within the
case-based learning (CBL) framework. We
first present as a baseline an information-
gain-weighted CBL algorithm and apply it to
three data sets from natural language pro-
cessing (NLP) with skewed class distribu-
tions. Although overall performance of the
baseline CBL algorithm is good, we show that
the algorithm exhibits poor performance on
minority class instances. We then present
two CBL algorithms designed to improve the
performance of minority class predictions.
Each variation creates test-case-specific fea-
ture weights by first observing the path taken
by the test case in a decision tree created
for the learning task, and then using path-
specific information gain values to create an
appropriate weight vector for use during case
retrieval. When applied to the NLP data
sets, the algorithms are shown to significantly
increase the accuracy of minority class pre-
dictions while maintaining or improving over-
all classification accuracy.

1 INTRODUCTION

Many real-world machine learning tasks exhibit
skewed class distributions in that a small number of
classes (often a single class) cover the majority of the
instance population (Fawcett, 1996). Data sets in
medical diagnosis domains, for example, typically con-
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tain many “negative/no disease” instances, but few in-
stances that correspond to positive diagnoses for the
disease. One example is the thyroid data set used in
Aha & Kibler (1987) where negative cases comprise
95% of the available instances. Skewed class distribu-
tions are also the norm for learning problems in natu-
ral language processing (NLP). McCarthy’s two-class
coreference resolution data sets contain 20-25% posi-
tive examples (McCarthy and Lehnert, 1995); Soder-
land’s discourse analysis data sets generally contain
only 5% positive instances (Soderland and Lehnert,
1994). We have seen similar trends for multi-class
NLP problems: in our part-of-speech tagging data (11
classes), two classes account for 81.5% of the data;
for semantic class tagging (34 classes), one class ac-
counts for 58.1% of the data; for concept extraction
(10 classes), one class accounts for 91.7% of the in-

stances (Cardie, 1993a).

Not surprisingly, when trained on such skewed distri-
butions, most machine learning algorithms exhibit ac-
curate prediction for majority class instances — in-
stances associated with the prevalent class(es), but
exhibit very poor performance for minority class in-
stances — instances associated with any of the re-
maining, low frequency classes. Unfortunately, achiev-
ing reasonable accuracy on minority class instances is
often of utmost importance. In the case of concept
extraction in NLP, for example, the task for the learn-
ing algorithm is to decide when and which information
should be extracted from an input text and included
in its summary. Because such concept extraction sit-
uations occur relatively infrequently, a default deci-
sion never to extract concepts as the parser proceeds
through the text achieves high accuracy (91.7% cor-
rect). Nevertheless, an NLP system that adopts this
default strategy would just produce an empty sum-
mary for each input text. Accurate prediction of mi-
nority classes 1s important in a variety of other do-
mains as well: failing to detect a disease in medical
diagnosis domains can be disastrous, as can failing to
predict large, but rare, declines in the stock market.



These domains, in effect, measure performance by as-
sociating a greater error cost for misclassifications of
minority class values than of majority class values. In
spite of its prevalence in real-world domains, however,
little research to date has focused on learning with
skewed class distributions (Fawcett, 1996).

This paper addresses the problem of learning with
skewed class distributions within the case-based learn-
ing (CBL) framework. We first present as a base-
line an information-gain-weighted case-based learn-
ing algorithm, IG-CBL (Bosch and Daelemans, 1993;
Cardie, 1993b). IG-CBL is a weighted k-nearest
neighbor (k-nn) algorithm that derives feature weights
based on the information gain of the associated feature
across the training data. We then apply the algorithm
to three problems from NLP with skewed class dis-
tributions: part-of-speech tagging, semantic class tag-
ging, and the acquisition of information extraction pat-
terns, i.e., concept extraction. Although overall per-
formance of the baseline IG-CBL algorithm is good,
we show that the algorithm exhibits poor performance
on minority class instances and hypothesize that one
problem with the baseline algorithm is its globally
computed weight vector: a single set of feature weights
1s computed for each classification task and used in the
case retrieval distance metric that determines case sim-
ilarity throughout testing. We next present two CBL
algorithms, Case-Specific-1G and Combo-1G, that are
designed to improve the performance of minority class
predictions. In contrast to the baseline, each algo-
rithm creates test-case-specific feature weights by (1)
observing the path taken by the test case in a decision
tree created for the learning task, and then (2) using
path-specific information gain values to create an ap-
propriate weight vector for use during case retrieval.
When applied to the NLP data sets, the algorithms are
shown to significantly increase the accuracy of minor-
ity class predictions — from 70.6% to 80.6% for part-
of-speech tagging; from 59.6% to 67.1% for semantic
class tagging; and from 56.4% to 64.6% for concept
extraction. In addition, overall classification accuracy
1s maintained or improved.

In the remainder of the paper we first present the
baseline CBL algorithm and demonstrate its perfor-
mance on the three NLP data sets described above
(Section 2). We then introduce our approach for cre-
ating case-specific feature weights and evaluate its per-
formance on the three data sets (Section 3). Section 4
provides an analysis of the results. Related work is
discussed in Section 5.

2 THE BASELINE CBL
ALGORITHM: IG-CBL

This section presents and evaluates IG-CBL, a realistic
baseline for the NLP data sets used throughout the pa-
per. In particular, we wanted a baseline that performs
as well as or better than previous studies using these
and other NLP data sets (e.g., Cardie(1993a), Daele-
mans(1996a)). As aresult, we use IG-CBL, a weighted
k-nearest neighbor case-based learning algorithm mod-
ified to handle the entirely symbolic-valued feature sets
of the NLP tasks. IG-CBL’s feature weighting algo-
rithm is a straightforward composition of two existing
approaches:

Feature selection. 1G-CBL first uses a decision tree
for feature selection as described in Cardie(1993b) and
briefly below. The goal in this step is to prune features
from the representation so that the CBL algorithm can
ignore them entirely.

Feature weighting. 1G-CBL then assigns each remain-
ing feature a weight according to its information gain
across the training cases (Bosch and Daelemans, 1993;
Daelemans et al., 1997). The intent here is to weight
each feature relative to its overall importance in the
data set.

Training Phase. There are three steps to the 1G-

CBL training phase:

1. Create the case base. For this, we simply store all
of the training instances in a flat case base.

2. Use the training instances to create a decision tree
for the learning task. We are using a Common
Lisp implementation! of C4.5 (Quinlan, 1992).
Because features in the NLP data set have a
widely varying number of possible values, we use
the information gain ratio as a splitting criterion.

3. Compute feature weights for use during case re-
trieval. For each feature, f, we compute a weight,
wy, as follows:

wy = G(f)
wf:0

if f 1s in the tree of step 2;
otherwise;

where G(f) is the information gain of f as com-
puted across all training instances by C4.5.

Testing/Application Phase. After training, the
class value for a novel instance, X, is determined as
follows:

We thank Joe McCarthy and UMass, Amherst for this

version of C4.5.



1. Compare the test case, X, to each case, Y, in the
case base and calculate, for each pair:

|F|
> wy, +match(Xy,,Yy,)

i=1

where I is the feature set, wy, is the weight of
feature ¢ as determined during training, and Xy,
and Y}, are the values of feature 7 in X and Y, re-
spectively. match(a,b) is a function that returns
1 if @ and b are equal; 0.5 if ¢ and b are partial
matches?; and 0 otherwise.

2. Return the k cases with the highest-score as well
as any ties.

3. Let the retrieved cases vote on the class value of
X. In the case of ties, choose randomly.?

2.1 EVALUATION OF THE IG-CBL
BASELINE

To evaluate the IG-CBL baseline algorithm, we applied
it to the part-of-speech (p-o-s), semantic class (sem
class), and concept extraction (concept) data sets,
which are described in detail in Cardie(1993a). FEach
data set contains 2056 cases. The cases were created
automatically by the CIRCUS parser (Lehnert, 1990;
Cardie and Lehnert, 1991) and represent the context
in which CIRCUS encounters each content word in its
left-to-right traversal of 120 randomly selected sen-
tences from the MUC business joint ventures corpus
(MUC-5, 1994). At a minimum, the parser must de-
cide the part of speech, semantic class, and concept ex-
traction information for each of these content words.*
Each case comprises 33 features. Twenty-two of these
describe the local context in which the test word was
encountered (i.e., the linguistic features of the words in
a 5-word window centered on the test word). The re-
maining 11 global context features of each case encode
information for any major syntactic constituents that
have been recognized in the current clause at the time
that the test word is encountered. All experiments use
10-fold cross validation at the sentence level. In addi-
tion, the same folds were used across all experiments
throughout the paper.

Table 1 shows the results of applying IG-CBL with
k = 10 to the three NLP datasets and compares its

2Some of the features in the NLP data sets can be lists
of values. A partial match is a non-nil intersection of such
lists.

*For ties, we actually return the first class value in the
list of values returned.

*Note that CIRCUS has available a small lexicon of
function words (e.g., the, a, an, is, are, and, or). We are
using the machine learning algorithm only to determine
information for non-function words and for a few highly
ambiguous function words.

performance with the C4.5 decision tree algorithm and
with a default strategy that always chooses the most
frequent class value (see columns three through five).?
The number of class values and minority class val-
ues for each data set is shown in column two of the
table. Chi-square significance tests indicate that 1G-
CBL performs significantly better than both alterna-
tives (p = .01) in all but one case: the performance
of the decision tree and IG-CBL are indistinguishable
for the concept extraction task. While the overall per-
formance of IG-CBL is quite good®, the last column
shows that the algorithm’s performance on minority
class instances is less than stellar. For the three data
sets, IG-CBL’s accuracy across all classes is superior
to its accuracy across just the minority classes: 93.7%
correct (across all classes) vs. 70.6% correct (minority
classes) for part-of-speech tagging; 79.9% vs. 59.6% for
semantic class tagging; and 94.5% vs. 56.4% for con-
cept extraction. Drops in performance also occur when
measuring minority class performance for the decision
tree algorithm.

One option for improving minority class prediction
is suggested by Wettschereck (1994). He finds that
smaller values of k£ should be employed when the num-
ber of training instances available for a class is small,
as 1s often the case for minority class instances in
skewed instance populations. In our data, for exam-
ple, the average number of instances for each minority
class is 42.3 (p-o-s), 26.1 (sem class), and 19.0 (con-
cept) vs. 837.5, 1195.0, and 1885.0 for the majority
class(es), respectively. Unfortunately, using & = 1 or
k = 5 rather than & = 10 does not help here: for part-
of-speech tagging, the minority class performance of
IG-CBL at & = 1 drops from 70.6% to 69.5%; for se-
mantic class tagging, performance drops from 59.6%
to 57.9%; and for concept extraction, performance in-
creases slightly from 56.4% to 56.7%. None of these
changes is statistically significant.

We surmise instead that IG-CBL’s global feature
weighting is responsible for the algorithm’s poor per-
formance on minority class instances — IG-CBL cre-
ates a single weight vector for each classification task.
This weight vector is based on all of the training cases.

"We also tested the algorithm with & = 1 and k = 5,
but better results were obtained with & = 10 as was the
case in Cardie(1993a,1993b). Furthermore, we tested a k-
nn algorithm that uses all available features (i.e., wy =
1) as well as the simpler 0-1 feature weighting scheme of
Cardie(1993b). The “all features” versions perform poorly;
the 0-1 weighting scheme consistently performs about five
percentage points worse than [G-CBL for each data set.

SNote that the table shows results for content words
only. As expected, overall tagging results improve when
function words (e.g., the, a, an, is, are, and, or) are in-
cluded. This is because CIRCUS’s lexicon has special pro-
cedures that accurately handle most function words.



Table 1: Baseline Results for IG-CBL. % indicates percentage correct.

Data Set | # classes/ Overall Accuracy Minority Class
7 minority Accuracy
classes Default | C4.5 | IG-CBL || C4.5 | IG-CBL
p-0-8 11/9 81.5% | 92.2% | 93.7% 68.2% | 70.6%
sem class 34/33 58.1% | 63.9% | 79.9% 16.2% | 59.6%
concept 10/9 91.7% | 94.6% | 94.5% || 55.3% | 56.4%

As a result, for data sets where skewed class distribu-
tions exist, the algorithm is biased towards choosing
weights that improve prediction of majority class in-
stances. We hypothesize, therefore, that performance
on minority class data can be recovered by replacing
IG-CBL’s global weight vector with a set of dynami-
cally generated weight vectors that combine the advan-
tages of information gain weighting with the benefits
of a finer-grained matching during case retrieval.” In
particular, we rely on the fact that only a portion of
the decision tree created for the classification task is
relevant to a test instance — namely, the single path
from the root to a leaf that would be traversed by the
test case. In the next section, we show how such test-
case-specific weight vectors can be created.

3 TEST-CASE-SPECIFIC FEATURE
WEIGHTING

In an attempt to improve minority class predictions,
this section presents two related algorithms for creat-
ing test-case-specific feature weights: Case-Specific-1G
and Combo-IG. Given a test case, each variation pro-
duces a weight vector by first observing the path taken
by the test case in a decision tree created for the learn-
ing task, and then using path-specific information gain
values to create an appropriate weight vector for use
during case retrieval.

As described above, we hypothesize that this should
produce feature weights tailored to the specific test
case and allow better matches for minority class in-
stances during case retrieval while preserving the ac-
curacy on majority classes. In particular, the Case-
Specific-1G  algorithm creates a weight vector, wx,
for test case X that (a) ignores all features not on
X’s path p through the decision tree, and (b) weights
the remaining features according to their relative po-

TAn intermediate step between task-based feature
weights and test-case-specific feature weights would be to
use information gain to compute a weight vector for each
class value. During testing, all training instances with the
same class value would be assigned the weight vector as-
sociated with that class value. We explore one method for
computing class-specific weights in Howe & Cardie (1997).

sitions along p. The Combo-IG algorithm, on the
other hand, combines the case-specific weights with
the global weight vector used in the baseline IG-CBL
algorithm. Each algorithm is described in detail and
evaluated below.

3.1 CASE-SPECIFIC I1G WEIGHTING
(CASE-SPECIFIC-IG)

The training phase for the Case-Specific-1G algorithm
is identical to that of the IG-CBL baseline except
that no feature weights are computed. Instead, the
weights are computed dynamically as each test case is
encountered. Like IG-CBL, we use the decision tree
for feature selection as well as for feature weighting.
Now, however, the features selected for use in case re-
trieval are those that appear as decision criteria along
the path followed in the decision tree for the current
test case. The objective of Case-Specific-1G’s weight-
ing scheme is simple: each feature along this path, p,
should be assigned a weight greater than that of any
feature tested lower in the tree along p. We are ex-
ploring a variety of methods to create such a weight
vector and have found a number of them to work well.
The experiments below, however, calculate weights ac-
cording to the following scheme: Let p = ny,ns, ...,
be the path taken by the test case through the deci-
sion tree where ny refers to the root, ny refers to the
next node in the path, ..., and n; refers to the leaf
where the path terminates. Then the weight of the
root attribute in the decision tree, f,,, is the informa-
tion gain associated with knowing the values of all the
attributes along p; the weight of f,,,, is the information
gain associated with knowing the values of attributes
fn, through f, _,; etc. In general, the weight of f,,,
is the information gain associated with knowing the
values of attributes f,,, through f,,_.,,.® More specif-

8 A possibly more intuitive approach would let the
weight of fy, be the information gain associated with know-
ing the values of attributes f,, through fn,. This works
less well than the method described here. We believe that
this is because it biases retrieval towards cases that match
features towards the top of the tree (which are probably
important for majority class prediction) rather than fea-
tures that appear lower in the tree (which may be useful
for minority class prediction).



ically, the following algorithm is used to create wx,
the weight vector for test case X:

1. Present X to the decision tree for classification
and note the path, p = ny1,ns, ..., n; that is taken
through the tree.

2. Assign a weight of 0 to any feature that does not
appear along path p.

3. Next calculate weights wy, —for features that ap-
pear along p. In the equations below, f,, refers to
the feature tested at node n;; T, stands for the
subset of cases in 7' that have the value v; for the
corresponding feature f,,; Ty, v, is the subset of
cases that have values v;...v; for the correspond-
ing features fy,...fn;; and F; stands for the set of
values taken on by feature f; in T". Then,

wy,, =H(T) = Hy, gy, (D),
fO?” fnk E {fnu"'afnl}

where H(T) is the entropy in the training set 7"

7|, |T¢]
H(T) =— l
(1) > AT

ceClasses

and Hf"l"'fnj is the entropy in 1" when the val-

ues of features fy, to f,,; are known as calculated
according to standard information theory:

Tvl...vj
Hy, 5 (T)= > 0> %H(Tmm%).

v EF ’UJEF]'

Once the weight vector has been computed, we deter-
mine the class of X by invoking the k-nn case retrieval
algorithm of IG-CBL with £ = 1. A 1-nn algorithm is
used here because the primary goal of Case-Specific-1G
is to improve the performance of low-frequency, mi-
nority class instances for which Wettschereck (1994)
suggested small values of k. Larger values of k were
tested, but did not perform as well.

3.2 COMBINING THE CASE-SPECIFIC
AND GLOBAL IG WEIGHTS

This section describes Combo-IG, a variation of Case-
Specific-1G that attempts to balance performance for
minority and majority classes by combining the test-
case-specific feature weights of Case-Specific-IG with
the globally computed weight vector of the baseline IG-
CBL algorithm. The training phase for the Combo-1G
algorithm is identical to that of IG-CBL: (1) store the
training instances in the case base, (2) train a deci-
sion tree using the same set of training instances, and
(3) compute the weight vector used in IG-CBL, which
we will call global-IG. During testing, the case-specific
feature weights, wx, for test case X are computed as
follows:

wx = global-1G + CS-1Gx

where CS-IGx is the test-case-specific weight vector
of Case-Specific-IG. As usual, Combo-1G determines
the class of X using wx and the k-nn case retrieval

algorithm of IG-CBL with k£ = 1.

In general, all algorithms presented in this paper repre-
sent a collection of feature-weighting algorithms, each
of which creates a weight vector of the following form:

wx = Ay (global-1G) 4+ A2 (CS-1Gx ).

For IG-CBL, Ay = 1 and As = 0; for Case-Specific-1G,
A1 = 0 and Ay = 1; and for Combo-IG, A; = 1 and
A = 1. In the next section, we evaluate the perfor-
mance of Case-Specific-1G and Combo-1G by applying
them to the part-of-speech, semantic class, and con-
cept extraction data sets.

3.3 A COMPARATIVE EVALUATION

Table 2 compares the minority class performance of
the case-specific weighting algorithms (Case-Specific-
IG and Combo-IG) to the baseline IG-CBL algorithm.
The final column in the table presents a variation of
Combo-IG in which the case-specific weights are dou-
bled before being added to the global-1G weights (i.e.,
A1 = 1 and Ay = 2) in order to emphasize the case-
specific weights. For all data sets tested, at least two
of the test-case-specific variations produce significant
improvements (p < .05) for prediction of minority
class instances. In addition, only one of nine varia-
tions is clearly worse. The Case-Specific-1G algorithm
produces the best results for the part-of-speech and
concept extraction data sets. Adding the global-1G
weights to the Case-Specific-IG weights for these data
sets only degrades performance, although the dips in
performance produce accuracies that are still signifi-
cantly greater than those of the baseline. The semantic
class data set behaves differently. For this data set, the
Case-Specific-1G weights drastically reduce the abil-
ity of the CBL algorithm to correctly predict minor-
ity classes; the Combo-1G algorithms, however, per-
form significantly better than the baseline (p < .05 for
Combo-1G; p < .10 for Combo-1G-2x).

Table 3 provides a closer look at specific changes in the
prediction of individual class values when using case-
specific feature weighting vs. the global weight vector
of IG-CBL. The table focuses only on part-of-speech
tagging and shows changes across the two majority
classes (noun and noun modifier) as well as the minor-
ity classes.

As stated above, the our goal for the feature weight-
ing algorithms was to maintain or improve overall
accuracy while recovering performance on minority
classes. Table 4, therefore, examines the effects of



Table 2: Minority Class Performance of the Case-Specific Weighting Algorithms. % indicates percentage correct.

The symbols **, *

—p=.05 and + — p = .10.

, and + indicate significance with respect to the baseline IG-CBL results:

*%

Data Set | # minority || IG-CBL | Case-Specific- | Combo-1G | Combo-1G-
instances IG 2x
p-0-8 381 70.6% 80.6%** 76.9%** 79.3%**
sem class 861 59.6% 49 .49F* 65.5%** 67.1%**
concept 171 56.4% 64.6%* 63.7%* 63.2%+

—p=.01*%

Table 3: Detailed Results for Part-of-Speech Tagging.

Class # of IG-CBL Case-Specific-1G
Instances | % correct % correct
(# correct) (# correct)
modal 1 0 (0) 0(0)
connective 2 0 (0) 0(0)
preposition 3 0 (0) 0 (0)
gerund 5 40.0 (2) 60.0 (3)
present, participle 15 26.7 (4) 66.7 (10)
verb particle 24 79.2 (19) 83.3 (20)
past participle 73 71.2 (52) 87.7 (64)
adverb 83 54.2 (45) 69.9 (58)
verb 75 | 84.0 (147) 86.0 (152)
noun 808 | 98.8 (798) 97.2 (785)
noun modifier 867 99.2 (860) 96.5 (837)

case-specific feature weighting on overall accuracy. It
shows that overall accuracy is, in fact, maintained for
part-of-speech tagging. For the semantic class data
set, overall accuracy is maintained only when both
the case-specific and the global weights are used for
case retrieval. For concept extraction, the case-specific
weights alone significantly improve overall accuracy,
while the combined weight vectors significantly de-
grade accuracy. Remember, however, that the figures
indicate accuracy across all classes: For skewed class
distributions, overall utility is best measured using an
error cost matrix that establishes higher penalties for
errors on minority class values. For many such loss
functions, all of the proposed feature-weighting algo-
rithms would maintain or improve overall classification
performance.

4 DISCUSSION OF RESULTS

The last section showed that test-case-specific feature
weights based on information gain can improve the
performance of a case-based learning algorithm on mi-
nority class data while maintaining or improving over-
all classification accuracy. However, there remain a
number of problems with the approach.

In the experiments above, at least two of the three

proposed feature weighting methods were successful
for each data set, but without further experimentation
on additional learning tasks, we cannot predict, a pri-
ori, which method will work best on a particular data
set. Given just the results on the three NLP data sets,
however, 1t seems that for data sets where the Case-
Specific-1G weights alone improve minority class per-
formance, that method will outperform the proposed
alternatives. For data sets where the Case-Specific-1G
variation degrades minority class performance, com-
bining the case-specific and global-1G weights will be
the better option. It is likely that the method of choice
depends on the number of minority cases available and
the distribution of those instances across the minority
classes.

In addition, the test-case-specific feature weighting ap-
proaches presented here were not designed to handle
all tasks with skewed class distributions. In particular,
we are unable to achieve significant increases in overall
accuracies for two of the three data sets. The method
is designed more for problems in which the misclassifi-
cation cost for errors on minority classes is higher than
for majority classes.

Recent work by Daelemans et al.(1996) suggests that,
in general, our approach will work well for data sets
in which there 1s a noticeable variation in the infor-



Table 4: Overall Performance of the Case-Specific Weighting Algorithms (% correct). k& = 10 is used for the

baseline runs; & = 1 elsewhere. The symbols , and + indicate significance with respect to the baseline

kk ok
’

IG-CBL results: ** — p = .01, * — p = .05, and + — p = .10.

Data Set || IG-CBL | Case-Specific | Combo-I1G | Combo-1G-
Baseline IG 2x
p-o-s 93.7 93.8 93.7 94.1
sem class 79.9 T7.0%* 79.1 79.8
concept 94.5 95.7F* 93.1F* 93.1F*

mation gain values of the features.

Their work 1in-

alternative for implicitly dealing with the problem

troduces IGTree, an algorithm that uses information
gain to compress a case base into a tree structure while
allowing efficient case retrieval and maintaining good
generalization capabilities. As part of their investi-
gation, they determined that both IGTree and an al-
gorithm very similar to the IG-CBL baseline perform
worse than an unweighted k-nearest neighbor algo-
rithm when the mutual differences in information gain
values of the features is small. We expect the same to
hold for the case-specific IG-weighted algorithms pre-
sented here.

5 RELATED WORK AND
CONCLUSIONS

While little research in the machine learning commu-
nity has focused explicitly on improving the perfor-
mance of minority class instances, a variety of existing
methods 1implicitly address this problem. For exam-
ple, learning algorithms that allow the user to define
misclassification costs (e.g., Breiman (1984), Pazzani
(1994)) can be used to improve minority class perfor-
mance by defining a cost matrix (or vector) that as-
signs minority class errors a greater penalty than ma-
jority class errors. One possible problem with these
approaches, however, 1s that they are not specifically
designed to learn with skewed class distributions and
may not perform well under those conditions. Lewis &
Catlett (1994), on the other hand, introduce a cost pa-
rameter to C4.5 (i.e., the loss ratio) specifically to han-
dle skewed distributions. Extending their approach to
the multi-class case would allow its application to the
NLP data sets used here.

Fisher’s Cobweb system (1987) also has some similar-
ities to the methods introduced here. Cobweb creates
a multivariate classification tree with training cases
at the terminal nodes, and bases most predictions on
these stored cases. Because the system uses proba-
bilistic weights to sort test cases, it effectively assigns
different weights to each path it its tree, achieving an
effect similar to ours.

Freund & Schapire’s AdaBoost (1996) is yet another

of skewed class distributions. AdaBoost successively
builds a series of classifiers, each of which is designed to
better handle the errors of the preceding set. Classify-
ing a novel instance proceeds by combining the predic-
tions of the individual classifiers. For problems where
minority class prediction is poor, AdaBoost should au-
tomatically devote energy to improving performance
on minority class instances as i1t creates new classifiers.
In contrast to the methods presented here, AdaBoost
improves overall performance by choosing the appro-
priate training instances for each classifier rather than
by selecting and weighting features appropriately. To
perform well in domains with many irrelevant features
(e.g., the NLP tasks tested here), however, AdaBoost
would require additional feature selection and feature
weighting methods.

Within the arena of case-based learning algorithms,
Aha & Kibler’s IB3 (1991) has characteristics that
should enable it to deal effectively with skewed distri-
butions. The approach is quite different from the one
presented here: IB3 uses a combination of the class
frequency and predictive accuracy of individual train-
ing instances to decide whether the instance should be
stored in the case base and used to classify subsequent
cases.

Our approach to handling skewed class distributions
1s an example of a growing collection of local fea-
ture weighting schemes for case-based learning algo-
rithms. (For an excellent survey and empirical anal-
ysis of feature-weighting methods for k-nearest neigh-
bor algorithms, see Wettschereck et al. (1997).) Local
feature weighting algorithms allow feature weights to
vary across the instance space. Some local weighting
methods (e.g., the value difference metric of Stanfill &
Waltz (1986)) assign a different weight to each value
of a feature. Others associate a different weight vec-
tor with every training case rather than with every
test case as is done here. Aha & Goldstone (1992),
for example, present one such training-case-specific
weighting scheme that has some similarities to ours:
they compute a weight vector for each training case
by combining globally and locally computed feature
weights. The greater the similarity of a test case to the



training case, the greater the emphasis of the training
case weights over the global weights. Another algo-
rithm that allows feature relevance to vary across the
training instances is the RC algorithm of Domingos
(1997). This algorithm uses a context-sensitive clus-
tering method to perform feature selection rather than
to assign continuous feature weights. Most similar to
our approach, however, are methods that create what
Wettschereck et al.(1997) call query-specific weights.
Atkeson et al.(1997), for example, create a different
similarity metric for each test case, but do so in a
(continuous) function-learning paradigm rather than
a classification paradigm. In addition, Hastie & Tib-
shirani (1994) and Friedman (1994) compute test-case-
specific metrics that rely on discriminant analysis and
recursive partitioning, respectively.

In summary, we have investigated the use of test-case-
specific feature weighting to aid in the recovery of mi-
nority class instances in skewed class distributions. We
presented two case-based learning algorithms that use
decision trees to create the case-specific weight vectors.
Each variation composes the vector in two stages. In
a feature selection stage, the path that would be taken
by the test case in a decision tree created for the learn-
ing task is noted. Any feature tested along the path
is included in the case representation; all other fea-
tures are ignored. Weights for the selected features
are then determined using path-specific information
gain values. On three data sets with skewed distri-
butions from the natural language processing domain,
the algorithms are shown to significantly increase the
accuracy of minority class predictions while maintain-
ing or improving overall classification accuracy. Given
our initial results, we believe that this is a promis-
ing approach for dealing with skewed distributions in
other domains.
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