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Abstract

Recent work on the “alphabet soup” paradigm has
demonstrated effective segmentation-free character-based
recognition of cursive handwritten historical text docu-
ments. The approach first uses a joint boosting tech-
nique to detect potential characters - the alphabet soup.
A second stage uses a dynamic programming algorithm
to recover the correct sequence of characters. Despite
experimental success, the ad hoc dynamic programming
method previously lacked theoretical justification. This
paper puts the method on a sounder footing by recasting
the dynamic programming as inference on an ensemble
of hidden Markov models (HMMs). Although some work
has questioned the use of score outputs from classifiers
like boosting and support vector machines for probability
estimates, experiments in this case show good results from
treating shifted boosting scores as log probabilities.

Keywords: character detection, word recognition, in-
ference models, cursive, historical manuscripts

1. Introduction
Handwritten cursive documents continue to pose chal-

lenges for text recognition methods. Handwritten docu-
ments with large vocabularies [16] and handwritten his-
torical documents [14, 8] are particularly challenging.
One recently proposed approach employs high-quality let-
ter detection techniques in an unsegmented framework to
identify the characters present in each word [7]. Called
an “alphabet soup” paradigm after the jumble of candi-
date letter detections produced, this technique must then
determine the correct sequence of characters that form the
word tag. The prior work uses a dynamic programming
method without a formal inference model. In this paper
we present a more principled approach using using an en-
semble of hidden Markov models for the letter assembly
task.

To create the “alphabet soup”, a joint boosting algo-
rithm modeled on work in object recognition [15] detects
individual letters by scanning across a word or document
image. Performing detection rather than segmentation al-
lows the method to easily entertain many overlapping hy-
potheses for letters and position. The particular method
used here employs an ensemble of easily testable features,
taking advantage of those that are common to multiple
characters. For example d, o and g all share a common
part, and a single test may provide evidence in favor of or
against all three. The training phase of joint boosting de-
liberately selects features which are common to multiple
character classes. This both decreases the amount of train-
ing required and increases the number of samples per fea-
ture, resulting in robust detection with relatively shorter
training time.

Letter detection is applied to every position along the
horizontal extent of a word image, resulting in a large
number of possible character detections for every word -
only some of which are correct. (The procedure may also
be applied to entire lines or even page images, but we fo-
cus on words in this paper.) Valid characters may also be
missed in the detection phase. Further analysis must there-
fore identify the correct sequence. Previous work does
this using generic dynamic programming [7] but hidden
Markov models (HMMs) offer a more principled way to
find a sequence with maximum posterior probability. One
advantage of the HMM is that it decouples the detection
steps from the other steps in the process and allows one
both to understand the technique better and to more easily
make changes to different parts of the estimation.

The character detections occur at known positions and
therefore can be placed in order, such that the detections
corresponding to the correct sequence appear strictly from
left to right. The model used is an ensemble of HMM’s
generated automatically from the detection sequence and
statistics from analysis of a training corpus. One HMM is
created for each possible word length, from one character



up to the total number of detections. The HMM for word
lengthm hasm states (plus implicit states for start and end
of word). Each regular state generates a corresponding
detection, while transitions between states correspond to
character transitions with probability derived from a tran-
scribed corpus. For each length of HMM, the Viterbi al-
gorithm determines an optimal sequence, and thus the en-
semble of HMMs produces one optimal sequence for each
length. The globally optimal sequence with correct length
is found by dividing the probability of each sequence by
its length m and selecting the maximum.

Estimating the generative probability correctly is cru-
cial to good accuracy. Two different techniques are used
to estimate the generative probability. The first approach
fits Poissonians for valid and non valid detections on a
character basis and from these computes a mapping from
scores to probabilities. The second approach transforms
the weighted score from the detection stage to a proba-
bility, treating a linear shift of the detection scores as log
probabilities. Although previous work with support vec-
tor machines [2] and boosting [12] has indicated that the
scores cannot reliably be used as probabilities, the experi-
ments here show perhaps surprisingly that the latter tech-
nique works quite well. In fact it is identical in implemen-
tation to the dynamic programming technique used for as-
sembling the characters in prior work [7].

The next section discusses related work. This is fol-
lowed by a summary of the preprocessing and letter de-
tection steps, as described in more detail elsewhere [7].
Section 4 presents the new HMM framework. The last
two sections describe experiments with the new system
and conclude the paper.

2. Related Work

Offline handwriting recognition has worked well in
small-vocabulary and highly constrained domains like
bank check recognition and high postal address recog-
nition. In recent years researchers have investigated
large vocabulary handwritten documents using HMM’s
[11, 16]. Marti and Bunke [11] proposed to use a Hidden
Markov model (HMM) for handwritten material recog-
nition. Each character is represented using a Hidden
Markov model with 14 states. Words and lines are mod-
elled as a concatenation of these Markov models. A statis-
tical language model was used to compute word bigrams
and this improved the performance by 10%. Vinciarelli
et al. [16] used a similar model. Both papers used con-
strained modern handwriting to test their results.

Handwritten historical manuscripts are even more
challenging since the vocabulary may be large, they are
often noisy and there are few constraints on them. Even
papers of single historical figures like George Washington
consist of multi-authored multi-writer collections; George

Washington had almost 30 secretaries over the years who
helped him draft and write the letters. Rath et al [10]
focus on recognizing historical handwritten manuscripts
using simple HMMs with one state for each word. By
adding word bigrams from similar historical corpora they
showed that the word recognition rate on a set of pages of
George Washington’s documents approached 60%. The
experiments here are done on the same corpus. Adamek et
al. [1] use novel features with nearest neighbors to obtain
good performance on this dataset. Feng and Manmatha [5]
compared a number of different kinds of models includ-
ing conditional random fields and HMM’s and showed
that smoothing was important for good performance. Ed-
wards et al. [4] use gHMM’s to recognize Latin manu-
scripts. Rath et al. [14] used relevance models to create a
search engine for historical documents while Howe et al.
[8] used boosted decision trees to recognize handwritten
documents.

The alphabet soup approach to word recognition re-
sembles recent work on breaking visual CAPTCHAs [13].
This work also detects potential letters and searches for a
likely combination, but uses a different algorithm for the
assembly step. Also, no results have appeared in the liter-
ature for general text recognition under this method.

While HMM models have a strong history in both print
and handwritten character recognition [9], the ensemble
of HMM’s proposed here is new and based on a model for
aligning printed word characters to ground truth as pro-
posed in [6].

3. Character Detection

Character detection works on binarized document im-
ages. Gradients of the binarized images are categorized
into eight cardinal orientations and aggregated over spa-
tial bins at three orders of resolution to yield a histogram
of gradients (HoG) descriptor of the neighborhood around
each point [3]. These 2830-dimensional descriptors cap-
ture the location and direction of gradient edges in the
neighborhood, and thus serve to describe any charac-
ter that may be present in the area. Joint boosting [15]
searches for common patterns across classes, building up
sets of feature tests that can classify each character type
present in the document.

The boosting training set includes some character ex-
amples identified by hand and additional examples iden-
tified automatically from a document transcript [7]. The
128 combined training examples of each character class
are used to train a joint boosting classifier, which learns
to identify each individual class from its descriptor. This
classifier, when applied to fresh HoG descriptors of pre-
viously unseen points, functions as the desired letter de-
tector. Any point whose classifier score for a character
exceeds a threshold (set at -5) becomes a potential letter



detection. In cases where a sequence of adjacent points
all exceed the threshold, only the local maximum point is
retained as a candidate. Nevertheless, the classifier can
identify numerous false positives due to the low thresh-
old. The word recognition step described below deter-
mines which are real by finding the sequence of detected
characters with the greatest probability of correctness.

4. A Hidden Markov Model for Word
Recognition

In this section, we propose a hidden Markov model
(HMM) to recognize a sequence of characters of fixed
length given the character detection results. Note that
generation of the required HMM probabilities proceeds
automatically from statistics measured on a training cor-
pus with transcript and the specific sequence of character
detections. A custom HMM provides a natural way to
determine the most probable sequence of characters se-
lected from the detection sequence, which may contain
both false positives and false negatives due to ambigui-
ties in the written characters and imperfections in the de-
tector. The HMM explicitly combines information about
character transition, character visual appearance, and the
horizontal spacing.

As a sequence model, the HMM has the advantage
of utilizing character dependence information for decod-
ing. The proposed HMM model recovers the most prob-
able sequence of detected characters by integrating infor-
mation on the character dependence, the visual appear-
ance and the relative positions of detected characters. Let
D =< d1, d2, . . . , dn > represent the sequence of can-
didate detections obtained in the detection step, where n
indicates its length. Each element dk in the detection se-
quence is denoted as a triple dk = (ck, φk, xk), where
xk is the cartesian coordinate of the k-th detection, ck the
character and φk the detection score for detecting ck at
that position. Since false positives may exist in the candi-
date detection sequence, the lengthm of the genuine word
is taken as an integer within [0, n], i.e. 0 ≤ m ≤ n. 0 cor-
responds to the extreme case where all detections are false
positives. For each possible length m of a possible latent
word, we build an HMM consisting ofm state nodes, each
of which generates the observation at a particular position
of the detection sequence. We represent the state sequence
of the HMM as S =< s1, s2, . . . , sm >, where each state
si in the HMM is an integral index to a position in the
candidate detection sequence. The observation sequence
O =< o1, o2, . . . , om > denotes the feature vectors gen-
erated by each of the state nodes. For example, if si = 10
then oi is the feature vector extracted at the 10-th detec-
tion position from the word image. The HMM estimates
the joint probability of the feature vector sequence and the

Figure 1. Diagram of the HMM with length equal to 7,
showing hidden states and observation points. Note
that the state at each node determines the corre-
sponding observation point.

hidden position sequence P (O,S) as:

P (O,S) =
m∏

i=1

P (si|si−1)P (oi|si) (1)

where P (si|si−1) is the transition probability which in-
dicate the possibility of transition from one position si−1

to another si in the detection sequence, and P (oi|si) the
probability of generating the feature vector oi from the
sith possible detection. Figure 1 shows the diagram of the
HMM with length equal to 7.

Inference in the HMM requires requires finding the S̃
maximizing P (O,S), i.e.:

S̃ = argmax
S

P (O,S) (2)

4.1 Probability Estimation

4.1.1 Generative Probabilities

The generative probability P (oi|si) in this model is
the probability of image feature set oi given a true de-
tection at the si-th detection position. The scores from
the output of the boosting detector need to be mapped to
probabilities.

One approach models the distributions of positive and
negative detection scores to get an estimate of P (oi|si). A
given boosted detector comprises some number of feature
tests representative of each character class on the training
set. Positive examples of the class should pass most of
the tests, and negative examples should fail most of them.
The distribution of both positive and negative scores may
therefore be modeled by a Poissonian distribution. Fit-
ting a Poisson to the observed distribution on a training set
yields a smooth curve, which allows one to map scores to
probabilities. Figure 2 shows the score profiles and their
fitted models for one character class.

A second alternative estimate of P (oi|si) comes di-
rectly from the exponential of the score φsi reported by
the letter detector, times a constant β small enough to en-
sure that P (oi|si) << 1 (see Equation 3). The Viterbi



Figure 2. Histogram of detection scores for positive
(green) and negative (red) examples of the letter ’h’.
The positive scores have been exaggerated by a fac-
tor of 10 for visibility. Curves show fitted Poissionian
curves, used to estimate the generative probability.

algorithm computes probabilities using Equation 1. By
taking the logarithm of both sides in Equation 1 it can
be shown that a constant mβ is added to all character
chains of the same length and hence this does not affect
the output of the Viterbi algorithm (which maximizes like-
lihood). In the final step when chains of different lengths
are compared, the scores are divided by the length m and
hence the constant is again the same for all chains. That is,
the choice of β does not change the result. Thus previous
work using dynamic programming on the raw detection
scores [7] turns out to be equivalent in implementation to
inference using Equation 3. Experiments show that this
approach works well. Effectively, the boosted scores are
treated as logarithms of the generative probabilities, up to
a constant. This is somewhat surprising since the litera-
ture indicates that the output scores of classifiers such as
support vector machines [2] and AdaBoost [12] are not
necessarily good probability measures.

P (oi|si) = βexp(φsi) (3)

4.1.2 Transition Probabilities

The transition probability P (si|si−1) is essentially the
transition from the si−1-th detection dsi−1 to the si-th de-
tection dsi , which measures the possibility that two con-
secutive characters in the real word correspond to the
si−1-th and the si-th candidate detections respectively.
(Note that si and si−1 are consecutive Markov states, but
do not necessarily refer to consecutive detections.) This
probability is determined by two different components
of the detections: the candidate characters and the carte-
sian coordinates/positions of the detection. The candidate
character transition models the statistical dependency of

characters, i.e. the conditional probability of one char-
acter occurring given the previous character. The posi-
tion transition models the relative horizontal separation of
different characters in word images. This probability pe-
nalizes unusual (too large or too small) separations of the
two candidate detections. Formally, the character transi-
tion P (csi

|csi−1) is estimated from the smoothed bigrams
of characters in the training set (or from an external cor-
pus). The position transition is estimated as a Gaussian
function of the separations:

P (xsi |xsi−1) = (4)

exp(−
((xsi

− xsi−1)− µsisi−1)
2

2σ2
sisi−1

)

where µsisi−1 is the mean separation of the characters csi

and csi−1 estimated from training set, and σsisi−1 the cor-
responding standard deviation. The transition probability
P (si|si−1) is estimated as a weighted combination of the
character and position transitions:

P (si|si−1) = λP (csi
|csi−1)+ (1−λ)P (xsi

|xsi−1) (5)

where λ determines the weights for the two components.
The value of λmay be estimated from a validation set. For
simplicity, we have used a predefined value in our experi-
ments.

The character separation µsisi−1 and deviation σsisi−1

numbers are estimated from a model that assigns a width
and deviation to each character type, and averages them to
find the corresponding value for any two characters. The
character widths in turn are measured from estimated po-
sitions of the characters in training data with supplied tran-
script. Values for common characters are used directly,
while uncommon characters are smoothed. The treatment
of this problem is reported elsewhere [7].

4.2 Decoding the Most Likely Word

The Viterbi algorithm is used to determine the most
likely state sequence S̃ of an HMM; for the HMM of any
given length m denote this as S̃m. The algorithm keeps
track of both the most likely state at each position of the
word and the likelihood associated with it. Specifically,
the log likelihood of decoding the i-th state as the k-th
candidate detection is calculated as:

γi(k) = φk +
k

max
j=0

[γi−1(j) + log(P (k|j))] (6)

where the latent constraint j ≤ k ensures that the de-
coding never traverses the detection sequence backwards.
During the decoding, the Viterbi algorithm keeps track of
the path leading to the current state k by recording its prior
state ψi(k) at each step i:

ψi(k) = arg max
1≤j≤k−1

[γi−1(j) + log(P (k|j))] (7)



Since we build a separate HMM for each possible
length (0 ≤ m ≤ n) of the real word, after the Viterbi
decoding we get the n most likely word labels of different
lengthes. We denote these most likely words as Wm and
the corresponding likelihoods as γm, with 0 ≤ m ≤ n.
Note that although we define a separate HMM for each
possible word length, the Viterbi scores calculated for a
shorter sequence can be reused with a longer sequence for
significant computational savings. Thus the Viterbi scores
γm+1(k) at the m + 1 step can be calculated using the
scores γm(k) calculated at the last step of the sequence of
length m according to Equation 7.

The character sequencer just described identifies the
best character sequence for each possible length up to
the total number of detections n. Comparing γm be-
tween sequences of different length may be misleading
since longer sequences include more terms and hence
may potentially have a bias toward lower score. In gen-
eral, any specific word containing more letters may be
expected to have lower likelihood than a shorter word
since more letters offer more possible combinations over-
all. The normalized likelihood therefore picks the correct
sequence more often when comparing possibilities of dif-
ferent lengths.

γ̂m =
γm

m
(8)

Then the most likely word is the Wm̃ with:

m̃ = arg max
m

γ̂m (9)

5. Experiments
We test the new inference method under the same ex-

perimental conditions used to evaluate the original alpha-
bet soup algorithm. Twenty pages of correspondence from
the letters of George Washington make up the test set.
These are written in longhand script by several of Wash-
ington’s secretaries, so they represent multiple styles. We
use the same word image segmentations as previous work
[10]. The distribution of word lengths appears in Figure 3.

The experiments follow a 20-fold cross-validation
methodology, with nineteen pages used for training and
one page for testing, alternated until all pages have been
tested. Only half the pages (either the even or odd pages
not including the test page) are used to build the letter de-
tector, since this is the most time consuming step and ten
pages easily provide sufficient training samples of most
characters. All nineteen training pages contribute to the
estimation of character bigrams and separations.

The joint boosting process builds a letter detector
based on 2000 feature tests, trained on 128 examples of
each character class. There are sixty character classes to-
tal, including all lowercase letters, numerals, most upper-
case letters, and one instance of the British pound symbol
£. Candidate detections include all points with φk > −5

Figure 3. Distribution of word lengths in the GW20
corpus.

Table 1. Results of inference on the ensemble of
HMMs using two different generative probability es-
timates. Character error rates are computed as to-
tal string edit distance between the ensemble pre-
diction and ground truth, divided by the number of
ground truth characters. Allowable edits include eli-
sions, insertions, and one-for-one or two-for-one sub-
stitutions.

Probability Score Profile Raw Boosting
Estimate: Models Score
Character
error rate (%): 39± 4 19± 4

that are local maxima of φk with respect to their neigh-
bors.

Table 1 presents the results of inference on the en-
semble of HMMs using the two different estimates of
the generative probability described in Section 4.1.1. We
choose to cite character error rates here to emphasize the
fact that our method performs character-by-character in-
ference. The first result given, based upon score profiling
as illustrated in Figure 2, represents a new experiment.
The second, based upon Equation 3, represents results
equivalent to prior work [7]. As is evident from the ta-
ble, the second method gives much better results.1 This
indicates that treating boosting scores as log probabilities
may be more reasonable than could be expected expected
based upon existing research [12].

6. Conclusion
Establishing an HMM model for character assembly in

alphabet soups improves our understanding of that word
recognition process. Simultaneously, it highlights areas
that could benefit from further investigation, in particular

1With postprocessing, the word-recognition rate using this imple-
mentation averages 72% on the George Washington letters for unre-
stricted vocabulary [7].



the generative probability estimates and the comparison of
word predictions of different lengths.

The noticeable difference in the error rate between our
two estimates of the generative probabilities highlights the
importance of this crucial measurement, and serves as mo-
tivation to find estimates that will serve better still. The
utility of the raw boosting scores in this capacity comes as
a surprise in light of prior results to the contrary. This may
indicate a superior property of joint boosting as compared
with other boosting variants. In any case, the discov-
ery would not have been possible without the theoretical
framework provided by the ensemble-of-HMMs model.
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