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Abstract—Inkball models have previously been used for key-
word spotting under the whole word query-by-image paradigm.
This paper applies inkball methods to string-based queries for
the first time, using synthetic models composed from individ-
ual characters. A hybrid system using both query-by-string
for unknown words and query-by-example for known words
outperforms either approach by itself on the George Washington
and Parzival test sets. In addition, inkball character models offer
an explanatory tool for understanding handwritten markings. In
combination with a transcript they can help to to attribute each
ink pixel of a word image to specific letters, resulting in high-
quality character segmentations.

I. INTRODUCTION

Around the world, many collections of historical hand-
written documents cannot be utilized to their full extent due
to limited availability of human annotation and transcription
services. This observation motivates research into computa-
tional algorithms to make sense of handwritten documents
automatically or semi-automatically, thus liberating human
expertise for higher-level work. Through pattern recognition
such algorithms interpret the markings on a document to infer
meaning. One strategy for recognition is word spotting, which
enables information retrieval by identifying appearances of a
query word within a collection. In some instances word spot-
ting can be more tractable than full-blown transcription, yet it
allows similar search applications. To succeed at word spotting,
an algorithm must recognize an arbitrary word whenever and
wherever it appears in the text.

Recognition algorithms divide into discriminative algo-
rithms, which seek to directly extract meaning from obser-
vations, and generative algorithms, which seek to estimate
and model underlying factors that generate the observations.
Given sufficient training data, discriminative models usually
offer higher recognition accuracy [1], yet their focus on direct
recognition means that they offer little insight into the cause
of their predictions. For example, methods using histograms of
oriented gradient (HOG) features [2] or scale-invariant (SIFT)
features [3] have been shown to perform well in word-spotting
applications. However, the computation and comparison of
vectors of HOG features does not readily show why one
particular pattern matches a query better than some other. In
contrast, generative algorithms model the causal basis of sym-
bol production, and can more easily identify ways in which a
particular observation deviates from the expected ideal. Inkball
models [4] are a class of generative model for handwriting
that have shown good results in word spotting tasks [5]. In

these models, character shapes are formed from overlapping
disks of ink arranged in specific spatial configurations so as to
create the necessary appearance. The likelihood of an observed
ink pattern being associated with any underlying model can
be quickly computed based upon the distortion that must be
imposed upon the model’s normal configuration in order to
match the observed distribution of ink. Promising instances of
a query word correspond to local maxima of the configuration
likelihood. Furthermore, matches also give the locations of
individual parts of the query word within the target, since the
configuration embodies this information.

This paper seeks to extend the explanatory potential of
inkball models, and explore the applications enabled by them.
While such models have previously been used for spotting full
words, the method proposed herein develops models for indi-
vidual characters and their spatial relationships. This approach
naturally leads to a string-based word spotting algorithm. It
also offers the potential to support semi-automatic generation
of training data for more successful discriminative character
recognition, although this application is left for future work.

The next section considers prior results related to this work.
The section following describes the methods for character
recognition and attribution, and for string-based word spotting.
Section IV describes some experimental results, and the final
section offers concluding remarks.

II. PRIOR WORK

Howe [5] introduces spring-connected inkball models for
word spotting, giving both an energy function and an algorithm
for quickly computing minimal-energy configurations given
a document image. Each model comprises a set of nodes
Q = {qi|1 ≤ i ≤ m} arranged in a tree structure with
root q1, and rest offset vectors {~ti|2 ≤ i ≤ m}, each ~ti
specifying the 2d position of qi relative to its parent in the
tree, qi↑. The expression for the energy includes two terms:
Eξ describing the deformation of the model nodes away from
their rest offsets, and Eω capturing the distance from each node
to the nearest medial axis of ink markings in the document,
computed from observations I .

E(Q,C, I) = Eξ(Q,C) + Eω(C, I) (1)

If cj is the offset of node qi relative to its parent in a given
configuration C, then the deformation term is a sum of squares
comparing cj with tj .



Eξ(Q,C) =

m∑
j=2

‖cj − tj‖2
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j

(2)

Likewise, the observation term is also a sum of squares,
where χ(SI , ~vi) denotes the distance between the point vj and
the nearest pixel of the ink medial axis, SI .

Eω(C, I) =

m∑
i=1

χ(SI , ~vi) (3)

An efficient dynamic programming algorithm using dis-
tance transforms finds the minimal energy and its correspond-
ing configuration for every root position across the observation
plane [5]. Matches are detected when the local minimum of
the energy falls below a threshold. This process naturally gives
rise to a query by example (QBE) algorithm: given a query
image, build a model by placing disk centers at equally-spaced
locations on the medial axis of the ink, then link nearest
neighbors into a tree structure with its root at the center of
mass. Matches to the model give the word locations in the
target.

While much recent work has used the QBE paradigm for
word spotting [5], [2], [3], less attention has been paid to
query by string (QBS), where the search prompt is simple
text represented in ASCII or unicode. Besides its convenience,
QBS implies the potential to search for out of vocabulary
(OOV) words, which are words that have never been observed
by the algorithm. Some recent work has looked at QBS
methods. Aldavert et al. use a bag-of-visual-words technique
[6]. Almazan et al. approach the task by mapping both images
and strings into a combined representation space such that
related entities appear near each other [7], [8]. Roy et al.
describe a system capable of searching for OOV words based
on character n-grams [9]. While the latter strategy could be
used to augment the work presented herein, this paper takes
the simpler but more universal approach of using individual
characters as building blocks.

Other work has looked at graph-based algorithms for doc-
ument analysis, particularly Bunke & Reisen [10]. Peng Wang
et al. use a graph that characterizes points of the handwriting
skeleton using shape context rather than inkballs [11].

III. METHODS

Character recognition works in essentially the same way
as word recognition: given an exemplar of the character form,
the inkball model derived from it can identify similar patterns
in previously unlabeled content. However, a single character
is both shorter and less distinctive than an entire word. Some
letters or letter sequences are quite similar in form: compare
’cl’ and ’d’, for example. Unsurprisingly, a generative model
like the inkball cannot compete in accuracy on this task with
the top discriminative character recognition methods.

However, character inkball models perform well for a
related but easier task: the localization of a known character
string in a word image, or conversely the attribution of ink
pixels to individual letters. Essentially a form of guided

character segmentation, this task is nontrivial in handwrit-
ten manuscripts with connected writing and overlap between
characters. The individual character samples generated by this
process could be used for many purposes, including as training
examples for discriminative character recognition. Since word
labels are generally much easier to come by than individual
character segmentations, this approach may offer a clever way
to augment character training sets semi-automatically.

Localizing all the characters in a training corpus of word
images also provides other benefits. One can easily gather
statistics on typical spatial configurations between pairs of
characters, typical shapes of letters, etc. For example this
includes the horizontal separation between characters in lan-
guages using a Latin alphabet or equivalent. Where necessary
it can also include vertical offsets as well. These measurements
in turn form the basis for QBS search: given a character string
as query, one can construct an inkball model for the word
using an appropriate sequence of individual character models
spaced according to the typical separations observed in the
training corpus.

A. Character Localization

Like word spotting, character localization uses a formu-
lation based upon energy minimization, where the energy in
question can be conceptualized as something like a nega-
tive log posterior probability. The energy formula balances
a number of competing considerations, each described by
its own subterm. Notationally, let `1, `2, ...`n represent the
characters of the (known) word string, Q = (Q`1 , Q`2 , ...Q`n)
the corresponding inkball models, C = (C1, C2, ...Cn) their
distinct configurations, and B a binarized version of word
image I . The energy is a combination of continuity terms in x,
y, and scale, plus a coverage term representing the likelihood
that the configuration set can explain the observations B. Each
subterm in the equation below is described further in the
following text.

E(Q,C, B) = λxEX + λyEY + λsES + λpEP (4)

The character displacement energies EX and EY mea-
sure how well the relative displacement between the root
nodes of adjacent character models ∆x(Ci, Ci+1) and
∆y(Ci, Ci+1) match the expected displacements ∆E

x (`i, `i+1)
and ∆E

y (`i, `i+1). For left-to-right text, the vertical displace-
ment energy takes a simple Gaussian form, while the horizontal
displacement is modeled by a Poisson distribution (represented
by P below), which disallows negative values.

EX =

n∑
i=2

P(∆x(Ci, Ci+1),∆E
x (`i, `i+1)) (5)

EY =

n∑
i=2

‖∆y(Ci, Ci+1)−∆E
y (`i, `i+1)‖2

2σ2
y

(6)

The expected displacements should be scaled to match the
image resolution. They may come from measurements on a
training set if available, or from simple heuristics otherwise.
For example, ∆E

y (`i, `i+1) = 0 for English and related



languages, while ∆E
x (`i, `i+1) = w/(n + 1) where W is the

width of the word image.

The scale energy ES accounts for cases where letters in a
word (or expression) may be of different sizes. This difference
can be captured by replacing Qi with Φ(Qi, si), where all the
default offsets in Qi are scaled by the multiplicative factor
si. In this formulation si becomes an additional piece of
configuration data, and Φ(Qi, 1) is an identity for the original
Qi. The scale match energy penalizes mismatches in scale
according to their severity. Note that the form used below
presumes that all characters should be of the same size, an
assumption that might not apply in all applications.

ES =

n−1∑
i=1

‖si − si+1‖2

2σ2
s

(7)

The pixel coverage energy EP measures how well the
proposed configurations explain B+, the set of the foreground
pixels of B. Each poorly explained pixel contributes a fixed
amount toward the energy; to lower its energy, a pixel must
be attributed to exactly one character model Q`i as rendered
in its configuration Ci (see below). In this case, its energy
contribution is discounted by 1 − e−Ei/α where Ei is the
character model fit energy from Equation 1 and α is a soft
threshold. Denote the rendering of Q`i as Ri, its foreground
pixels as R+

i , and the union of the foreground pixels of all the
other character renderings as R̄+

i =
⋃
j∈1..n\iR

+
i .

EP =
1

ρh2

[
‖B+‖ −

n∑
i=1

‖(R+
i ∩B

+) \ R̄+
i ‖e

−Ei/α

]
(8)

The normalization factor of 1/ρh2 provides rough indepen-
dence from image resolution. Here h is the height of the
cropped word image B and ρ is an estimate of ink density,
set at 0.15.

Rendering proceeds as follows: Place a disk of ink at the
location of each node specified in the configuration. The radius
of each disk is taken from the initial sample that generated
the model, as recorded during its creation. The more densely
sampled the model, the more the disks will overlap and the
higher the quality of the rendering.

In practice, problematic overlap usually occurs only be-
tween adjacent letters. Therefore it is more efficient to compute
a modified Ep that accounts just for neighbor overlap. To
simplify the notation below, let R+

0 = R+
n+1 = ∅.

E′P =
1

ρh2

[
‖B+‖ −

n∑
i=1

‖(R+
i ∩B

+) \R+
i−1 \R

+
i+1‖e

−Ei/α

]
(9)

Armed with the energy function defined above, a search
procedure finds the set of configurations C that minimize it.
The first step computes the minimal configuration energies for
all Q`i at every root position, using the dynamic programming
technique described in prior work [5]. The local minima of
these energies across root position and scale (typically fewer
than one dozen per character) are taken as configurations
worthy of further consideration. A second dynamic program-
ming step (essentially the Viterbi algorithm) selects from
these candidates an appropriate sequence of configurations that

Fig. 1. Sample synthetic query images (left) vs. real test images (right)

matches the known word label and minimizes Equation 4.
Section IV-A describes experimental results for this technique.

B. String-Based Search

Character localizations inferred using the technique de-
scribed above help to enable string-based search. Given hard
data on the typical displacement between adjacent letters plus
one or more examples of each letter form, a text query converts
easily to a word image or inkball model.

A lack of observational data for every character bigram
presents one obstacle to this plan. Some character sequences
occur frequently, but others are rare and thus may not be
observed within a specific training set. Nevertheless the QBS
application requires an estimate of the separation for all
character transitions. In some cases queries may even include
characters not represented in the training set at all; this is a
more difficult problem but is fortunately less common.

Appropriate separation estimates for unobserved bigrams
can be filled in via smoothing, by analogy to bigram frequency
estimation in language models. Begin with computed character
locations on training data. Bin the displacements between
adjacent characters according to their character bigram. All
measurements for aa go into one bin, all for ab into a second,
and so on. Some bins will likely still be empty at this point,
so in every bin also include the mean displacement over
all measurements. The typical displacement for a particular
bigram is then taken to be the median over any measurements
in the corresponding bin. The experiments in the next section
follow this procedure, also omitting from the computation the
words with per-character energy above the 90th percentile. The
results in Figures 3-4 suggest that this precaution may be more
conservative than necessary.

Displacement information plus a set of individual character
appearance models give a synthetic rendering for any query
string. The experiments in the next section use a set of charac-
ter samples identified by hand. To render, arrange the samples
according to their order of appearance and the values in the
displacement table. Although a word image can be generated
in this manner, in practice inkball models are produced directly
from the models of the sample characters plus displacements.

Figure 1 shows some sample synthetic query images.
Imperfections may occur in the connections between adjacent
letters, but on the whole they look natural enough. Alternate
forms for a single character sometimes occur, and can be
handled by generating multiple query images. However, this
may not be necessary for good performance: all experiments
in this paper simply use the most common form.



Fig. 2. Histogram of character fit energy for all training words in GW20
(left) and Parzival (right).

25th percentile 75th percentile 90th percentile

95th percentile 99th percentile 99.5th percentile

Fig. 3. Sample character fittings from GW20, sampled according to total
character fit energy.

25th percentile 75th percentile 90th percentile

95th percentile 99th percentile 99.5th percentile

Fig. 4. Sample character fittings from Parzival, sampled according to total
character fit energy.

IV. EXPERIMENTS

The experiments employ two data sets commonly used for
testing word spotting algorithms: 20 pages from the letters
of George Washington (GW20) [12], and 47 pages from a
text in medieval German (Parzival) [13]. Both have predefined
word segmentations, and the Parzival images as distributed
have already been preprocessed for binarization and deslanting.
The GW20 set uses a four-fold separation of words, while the
Parzival set has predefined training, test, and validation sets.
Since the inkball model techniques have no need for validation,
the latter is combined with the training set here.

A. Character Localization

The first set of experiments evaluates the character localiza-
tion algorithm. No ground truth data are available for this task
in either GW20 or Parzival. However, visual inspection shows
that the results are quite good. Figure 2 shows histograms
of the per-character energy for all words in the training set
on each corpus. Figures 3-4 show examples drawn from the
distribution at various points. The word image is shown in
gray, and the fitted characters are a red outline. Even at the
90th percentile and above most results avoid serious errors.

Once character models are fitted to a word image, they
can be used to attribute the pixels in that image toward the

Fig. 5. Example of pixel attribution. Left shows character fit, right shows
attribution boundaries.

particular character they belong to. This can be useful in
applications where multiple realistic examples of a character
would be useful, and annotation by hand is too slow or too
expensive. Figure 5 shows an example.

The attribution process is not quite so simple as matching
with the rendered character models, since characters may
not overlap perfectly, and occasionally multiple models may
overlap at a pixel. The adopted procedure thus follows a set
of heuristics that produce usable results in most cases.

• Connected ink components that overlap in whole or
in part with only one rendered letter model Ri are
attributed entirely to that letter.

• Components that overlap with no rendered letter mod-
els are attributed to noise.

• Components that overlap with multiple rendered letter
models are attributed pixel by pixel to whichever
model is nearest in Euclidean distance. Thus where
two or more Bi overlap at a pixel (distance 0), that
pixel will be attributed to each of the corresponding
characters.

B. Query By String

The string-based query experiments adopt the algorithm
described in Section III-B. Prior work on QBE word spotting
could use only the subset of words common to both the
training and test sets [5], since by definition there are no
examples available for words outside the training vocabulary.
Figure 6 shows the performance of the QBS algorithm from
this paper in comparison on the same limited set.1 As might be
expected, the mean average precision is lower, but still useful
for many purposes: for GW20 the numbers are 54.9% vs.
75.6%, with most of the discrepancy coming at higher recalls,
and for Parzival the mean average precision (mAP) is 59.6%
vs. 79.6%, with nearly a uniform discrepancy across the curve.
The difference between the upper and lower curve in each case
represents the penalty paid for QBS convenience.

However, the true strength of the QBS algorithm lies in its
ability to search for OOV terms, which the QBE algorithms
cannot handle at all. Figure 7 shows the performance on OOV
words only. The mean average precision on this subset is
48.1% for GW20 and 60.3% for Parzival.

Given that QBE does better on known words, while QBS
handles OOV words, a hybrid offers the best performance.

1The recall-precision curves and mean average precision shown in this paper
differ slightly from the cited work [5], but are based upon the same results.
The difference stems from a nonstandard handling of interpolated precision
in the prior work, which is corrected in this paper.



Fig. 6. Precision vs. recall for known words in GW20 (left) and Parzival
(right). Solid line uses QBE, dotted line uses QBS.

Fig. 7. Precision vs. recall for OOV words in GW20 (left) and Parzival
(right). The curves are flat because most OOV words appear in the test set
only once.

Fig. 8. Precision vs. recall for all words in GW20 (left) and Parzival (right).
The solid curve is for the hybrid QBE/QBS approach, the dotted line shows
QBS only, and the dashed line shows QBE with background precision on the
OOV words.

Figure 8 shows results for such a system in comparison with
full QBS and with QBE alone when OOV words are taken into
account. The hybrid system reaches a mean average precision
over all words of 69.9% for Parzival and 63.9% for GW20,
as compared respectively with 60.0% and 51.8% using QBS
for all queries, or 46.7% and 44.0% for unassisted QBE.
By comparison, Aldavert et al. report mAP of 56.54% on
GW20 with OOV words [6], while Almazan et al. report a
corresponding mAP of 91.11% [8].

V. CONCLUSION

Inkball character models provide a tool for understanding
details of handwriting in an intuitive fashion. When character
models fit to a word image, they not only associate the pixels
of that image with an individual character, but with a specific
part of that character. This may have implications for stroke
recovery and style analysis, a promising subject for future

work. In any case, the fit models permit the extraction of
further data from a training corpus, such as the character
separation data demonstrated here.

The query by string method described herein serves both
to demonstrate one of the applications of inkball character
models, and as an interesting goal in its own right. String-
based search provides better convenience for users, and is more
flexible because it can handle out-of-vocabulary terms. The
system demonstrated here shows very good performance on
the data sets used for testing. Many refinements are possible,
for example using multiple interchangeable models of each
character, but these are left for future work.
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