
Recognition-Based Motion Capture and the HumanEva II Test Data

Nicholas R. Howe
Smith College

Northampton, Massachusetts
nhowe@cs.smith.edu

Abstract

Quantitative comparison of algorithms for human mo-
tion capture have been hindered by the lack of standard
benchmarks. The development of the HumanEva I & II test
sets provides an opportunity to assess the state of the art
by evaluating existing methods on the new standardized test
videos. This paper presents a comprehensive evaluation of
a monocular recognition-based pose recovery algorithm on
the HumanEva II clips. The results show that the method
achieves a mean relative error of around 10-12 cm per joint.

1. Introduction
A number of papers have proposed or tested human

pose recovery systems based on recognition of known poses
[15, 6, 19, 16]. Others have focused on techniques for pose
regression [1, 2, 18]. More recent efforts have developed
combinatorial methods for inferring the presence and pose
of human figures based upon configurations of features like
parallel edges, detected faces, etc. [20, 17, 13]. The newer
combinatorial approaches may impose differing (and per-
haps less restrictive) conditions on pose recovery. Nev-
ertheless, advances in other areas may render seeming re-
strictions moot, and a full understanding of the state of the
art requires quantitative comparisons. The HumanEva data
provide a common basis by which the performance of all
algorithms may be compared, and this paper will therefore
present results for one recognition-based family of pose re-
covery algorithms.

This paper does not attempt to survey the full state of
the art in human pose recovery, as others have done so al-
ready [14, 4]. It does not even encompass the growing sub-
set of recognition-based motion capture algorithms [19, 16].
Rather it seeks to provide a comprehensive data point for a
single method, as described in Section 2.

The system tested here is based upon earlier work by
Howe [6, 7, 9], and makes the following set of assump-
tions. Like many methods of its ilk, it relies on accurate

segmentation of the moving subjects from the background
to yield silhouettes. This typically requires that the cam-
era and background both remain static, although some work
has developed methods that can segment people automati-
cally when these assumptions are relaxed [22, 5]. Second,
it requires offline access to a body of motion-captured train-
ing data containing examples of the sorts of movements and
poses to be recovered. The system can recover arbitrary
novel sequences of movements, so long as they do not in-
clude poses that stray too far from poses in the training set.

Under the two assumptions listed above, the system ini-
tializes itself without human assistance. It recovers an ap-
proximation of the subject’s pose and motion without use
of detailed camera calibration parameters or specific knowl-
edge of the subject’s measurements. Of course, such infor-
mation where available can improve the accuracy of recov-
ered poses and provide absolute spatial localization. (Note
that the results presented in this paper do not actually rely
upon camera calibration or subject size information for pose
recovery, even where the HumanEva distribution includes
those data.)

2. Algorithm
The general structure of a recognition-based pose tracker

may be summarized as follows. First, the video input un-
dergoes preprocessing to extract some useful set of fea-
tures from each image frame. These features become the
keys used to retrieve known poses from a library compiled
from the training data. Because the library will typically
not contain an exact match to the observed pose, and be-
cause the extracted features may not clearly differentiate
the true pose from other poses with similar feature values,
a collection of candidate poses should be retrieved for each
frame [6]. This guards against situations where the correct
pose may not be the top-ranked hit using the chosen fea-
ture set. Once the pool of candidate poses has been iden-
tified for each frame, the collection of observations forms
a temporal Markov chain with a finite number of possi-
ble states, and forward-backward dynamic programming
(sometimes called the Viterbi algorithm) can find the se-
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quence of poses that minimizes an objective function. Typi-
cally, the objective function chosen will have both “smooth-
ness” and “data” terms, to discourage solutions that change
pose sharply between adjacent frames or do not closely
match the observations. The remainder of this section de-
scribes each of these steps in further detail.

2.1. Feature Extraction

The method evaluated here uses two sorts of features:
foreground silhouettes recovered via background subtrac-
tion, and optical flow in the foreground area obtained via
Krause’s algorithm [12]. These are complementary, the one
giving precise information about the position of body parts
visible in silhouette, the other giving information about
movements inside the silhouette, yet less affected by cloth-
ing choices than the internal edges.

Krause’s optical flow algorithm runs quickly but gives
less accurate results than more recent, computation-
intensive methods. Masking the flow by the foreground sil-
houette mitigates flow errors measured in the background
due to noise. The flow in the foreground area is ultimately
converted to ten simple low-degree moments in each flow
component, as described in prior work [7]. Use of rotation-
variant moments here reflects the expectation that the ori-
entation of the subjects to be tracked will match that of
the training data. This assumption applies to most video
produced for human consumption, where the vertical world
axis nearly always coincides with the vertical axis in the
image plane. It may require reevaluation in other contexts,
such as security camera video feeds, which will therefore
require different sorts of training. All of the HumanEva
videos use a standard vertical orientation.

The foreground segmentation used here does not em-
ploy any assumptions specific to the pose estimation task.
Recent work has shown that performing segmentation and
pose recovery simultaneously may improve the segmenta-
tion in difficult cases [11], but the staged approach used
here suffices for good segmentation on the HumanEva data.
The foreground segmentation employs background mod-
els trained on each pixel, building a model for each color
plane in HSV space. For the HumanEva data, a single ro-
bust Gaussian per plane suffices, computed on the first 300
frames of each test clip using the trim mean and variance on
the middle 20% of the data.1 This procedure assumes that
the background remains static and that the subject does not
obscure any pixel in more than 40% of the frames, which
is true on the HumanEva II clips and the single HumanEva

1Because hue is an angular quantity, its mean is ill-defined. Expediency
suggests introducing a discontinuity at some point far from observed values
and computing an ordinary mean. The discontinuity goes opposite the
“center of mass” of the angular values in a polar view. For simplicity of
presentation, the remainder of this section assumes that all hue values are
pre-linearized and mapped onto the range (0,1).

I clip with results reported here. Clips not meeting these
standards would require alternate model-building methods.
Note that none of the results here use the background mod-
els supplied with the HumanEva data sets, as they contain
subtle dissimilarities to the test clips that impair background
subtraction quality.

For each frame, the ordinary scaled deviation from the
model is simply the deviation from the mean, divided by the
standard deviation. Experimentally, it turns out that each of
the three HSV color planes requires slightly different treat-
ment for best results. Hue can be noisy at low saturation.
Saturation exhibits lower signal-to-noise than the other two
planes. Value is generally quite accurate, except in the pres-
ence of shadows. These considerations lead to the adjusted
computations below.

∆∗
H(x, y) = |H(x, y)− µH(x, y)| ·min(S(x, y), µS(x, y))

(1)

∆H(x, y) =
max (0, 2π ·∆∗

H(x, y)− zH)
σH(x, y)

(2)

∆S(x, y) =
|S(x, y)− µS(x, y)|

σS(x, y)
(3)

∆V (x, y) =
max

(
0, |V (x, y)− µV (x, y) + zV

2 | − zV

2

)
σS(x, y)

(4)

∆(x, y) = wH∆H(x, y) + wS∆S(x, y) + wV ∆V (x, y)
(5)

The HumanEva II videos all use these parameter values:
zH = zV = 0.1; (WH ,WS ,WV ) = (0.4, 0.2, 0.4).

Foreground segmentation is modeled informally as a
Markov Random Field problem and solved by finding the
minimal graph cut on an appropriate graph [8, 21]. The
composite scaled deviations ∆(x, y) become edge weights
in the graph. The graph cut minimizes an objective func-
tion on segmentations L that also includes a fixed penalty
∆FG for assigning a pixel to the foreground and penalties
for differing assignments on neighboring pixels.

E(L) =
∑

p:L(p)=1

∆FG +
∑

p:L(p)=0

∆(xp, yp)

+ν
∑

p

∑
q

C(p, q)(L(p) 6= L(q)) (6)

Here ν controls the importance of connections between
neighboring pixels, and hence the smoothness of the seg-
mentation. C(p, q) ranges from 0 to 1 and indicates the



Figure 1. Sample foreground segmentation results. Note the detail
visible in most of the boundary, including markers on the hands
and near the shoulders. Shadow artifacts appear near the feet.

degree to which two pixels are considered neighbors. Four-
connected pixels will normally have C(p, q) = 1, unless an
edge appears in the image frame that is not present in the
background model: |I(p)− I(q)| − |µ(p)− µ(q)| > τ , for
4-neighbors p and q. Diagonally connected pixels are con-
nected with a discount C(p, q) = .3204, designed to make
diagonal and straight boundaries equally attractive.

The best parameter choice varies somewhat with differ-
ent cameras. For the HumanEva II videos, all shot with
similar equipment, the same parameters apply throughout:
∆FG = 1.2 and ν = 3. These generate mostly clean seg-
mentations; often the quality is high enough that the ex-
ternal markers used for the motion capture system can be
clearly discerned (Figure 1). Some compromises are neces-
sary; a lower value of ν or higher value of zV would avoid
shadow artifacts around the feet at the expense of occasional
missed body sections.

Once computed, a chain code stores the foreground sil-
houette boundary at moderate resolution (200-300 bound-
ary points). The chain code affords easy computation of the
turning angle and half-chamfer distance metrics used below.

2.2. Pose Retrieval

The pose library comes from the HumanEva I training
set for subjects S1, S2, and S3. Subject S2 also appears in
a separate sequence in the HumanEva II test data, but sub-
ject S4 stands as a control for any undue advantage from
this factor. Each training motion-capture clip is processed
sequentially, with a frame selected for the library if it dif-
fers sufficiently from those already present. The library
stores the chain-code boundary of the rendered silhouette
of selected poses, as well as the flow moments computed
from the instantaneous rendered flow. The library used in
these experiments represents the union of the Jog and Walk-
ing training clips for three subjects, and has 1711 distinct
frames. (Fewer frames would have been selected if the li-
brary processed all the data as a group instead of individ-
ually, because more duplicates would have been rejected.
However, it is more convenient to simply combine libraries
for different activity types.)

For each frame, several similarity measures retrieve their
top poses from the pose library. Multiple measures may be

combined using the sums of their individual rankings of the
poses as a new composite score [3]. The pool of candidate
poses for each frame comprises the following:

• 35 poses retrieved using a composite of flow moments,
turning angle, and half-chamfer distance. 25 of these
come from poses close to one of the last frame’s can-
didate poses, 10 are chosen openly.

• 15 poses retrieved using flow moments alone. 10 of
these come from poses close to one of the last frame’s
candidate poses, 5 are chosen openly.

• 15 poses retrieved using a composite of flow moments,
turning angle, and half-chamfer distance. 10 of these
come from poses close to one of the last frame’s can-
didate poses, 5 are chosen openly.

Due to overlap between the different categories, the can-
didate pool for a frame usually has around 20-30 mem-
bers. A full chamfer match registers each candidate with
the silhouette observations, and the candidate pool is sup-
plemented with the mirrored LOS-inverse poses. (The mir-
ror LOS-inverse swaps the left and right sides of the body
and simultaneously inverts along the camera line-of-sight
axis; the result has the same silhouette as the original, and
similar optical flow [6].) Poses whose chamfer match scores
lag the leader’s by more than 50% are pruned at this point,
unless the pool would be left with fewer than ten candidates
as a result.

2.3. Temporal Chaining

Regarding the video observations as a Markov process
inspires the method for linking poses into a coherent tem-
poral sequence. Unfortunately, the probabilities required
for standard Markov analysis cannot be estimated directly.
The linkage step therefore minimizes a heuristic objective
function with data and smoothness terms.

E =
n∑

f=0

Edata (Θf , If )+
n∑

f=2

Esmooth (Θf ,Θf−1,Θf−2)

(7)
Here Edata(Θf , If ) is simply the symmetric cham-

fer distance computed in the previous section, and
Esmooth(Θf ,Θf−1,Θf−2) represents the smoothness
term. The latter in turn consists of two summed subterms:
conservation-of-momentum [10] and match to flow obser-
vations [7]. Physical kinematics formulae on the articulated
body model give the change in momentum, while the flow
match computes at low resolution the mean error between
the observed flow and the rendered flow from Θf to Θf−1

to Θf−2. In the equations below, let body part j have mass
Mj , moment of inertia Ij , translation ẋj and rotation ϕ̇j .



Further, let P ∗ be the set of points in the intersection of a
low-resolution grid with the subject foreground, φθ the flow
rendered from θf−1 and θf , and phiobs the observed image
flow. |P ∗| ≈ 200.

Esmooth = λ1Emom + λ2Eflow (8)

Emom =∑
j∈Parts

Mj [ẋj(Θf ,Θf−1)− ẋj(Θf−1,Θf−2)]
2

+Ij [ϕ̇j(Θf ,Θf−1)− ϕ̇j(Θf−1,Θf−2)]
2 (9)

Eflow =
∑

p∈P∗

‖ ~φθ(xp, yp)− ~φobs(xp, yp)‖ (10)

This work uses λ1 = 0.01 and λ2 = 100. Prior work
has noted problems with the Markov optimization selecting
solutions that abruptly shift between poses facing opposite
directions [9]. Ideally the pose energy term should force
alternate solutions, but this does not always happen, par-
ticularly when the arms and legs all lie close to the body
axis. This work solves the problem in effective if somewhat
ad hoc manner: ∆Θ (Θf ,Θf−1,Θf−2) =̇∞ for any pair of
successive frames whose pelvis facing differs by more than
90◦. With this restriction in place, the previously observed
instabilities disappear.

3. Experiments
Results appear below for nine clips: four simultaneous

color views of S2-Combo-1, four simultaneous color views
of S4-Combo-4, and one color view of S1-Walking-1 valida-
tion data. All come from the HumanEva II data set except
for the last, which is included for purposes of comparison
with HumanEva I results. All are processed identically save
for the use of ∆FG = 0.7 for S1-Walking-1 in compensation
for camera differences between HumanEva I & II. The re-
sults below treat each camera viewpoint as monocular data,
without considering information available in the other clips.

Analysis of the results appears in several forms. The re-
constructed poses are registered to the 2D image frame co-
ordinate system. Therefore, 2D error is measured in pixels
using the absolute image coordinates. One pixel of error
may correspond to varying world distance depending on the
proximity of the subject to the camera. In three dimensions,
distance from the camera is unknowable without knowledge
of the camera parameters (which are assumed unavailable
in general, even though they are provided for HumanEva
II). Thus 3D error is computed up to an arbitrary transla-
tion of the body root, in millimeter units. Note that this
still requires application of an unknown body scaling factor,

Clip Walking Jogging
Take Cam. 2D 3D 2D 3D
S2 Combo 1 C1 19 120 17 116
S2 Combo 1 C2 19 115 17 109
S2 Combo 1 C3 26 166 17 99
S2 Combo 1 C4 18 145 18 144
S4 Combo 4 C1 25 218 18 129
S4 Combo 4 C2 19 193 16 120
S4 Combo 4 C3 16 188 15 106
S4 Combo 4 C4 22 219 18 155
S1 Walking 1 C4 15 99 N/A N/A

Figure 2. Summary of mean tracking error for sequences in the
HumanEva II comparison set. Walking includes frames 1–350;
jogging includes frames 351–700. 2D error is absolute in image
coordinates and measured in pixels. 3D error is relative to the body
root (pelvis) and measured in millimiters.

which is supplied by using the median subject height from
the training data. The 3D result is transformed into world
coordinates using the camera calibration only to facilitate
evaluation, as the online evaluation form expects answers
in this reference frame.

Each clip comprises three parts: a walking section
(frames 1 to 350), a jogging section (frames 351-700) and
a balancing section (remaining frames). HumanEva I in-
cludes training data for walking and jogging motions, but
not for balancing. Since a recognition-based method can-
not handle the balancing sequence without going outside
the HumanEva data for training data, results appear here
only for walking and jogging.

Figure 2 summarizes the results in tabular form, while
Figures 3 through 7 plot the frame-by-frame error. Analy-
sis of the results shows several trends. Excluding the clips
with evident gross errors, the 2D error appears remarkably
stable, remaining mostly in the 15-19 pixel range. The 3D
error also displays an apparent “baseline” error somewhere
around 10-12 centimeters, but more often makes occasional
forays above this level. The observed error baseline reflects
the degree to which the training data can model the actual
observation. Two strategies could lower this floor. Increas-
ing the density of training data would allow the algorithm to
retrieve poses closer to the observations, albeit at the price
of a larger pose library to search. Alternately, if the prelimi-
nary solution provided by pose recognition could be further
optimized to match the observed motion more closely, one
could reduce the error without expanding the library. The
trick is to optimize without losing the implicit prior on hu-
man poses embodied in the pose library.

The various peaks visible in the different plots appear
where the result contains an obvious qualitative error, with
corresponding effect on the quantitative results. These er-
rors may be grouped according to their nature and severity.



Figure 3. Plots of tracking error by frame for subject S2 walking
(frames 1–350 of the S2-Combo-1 clip) for four cameras (C1 to
C4, top to bottom). Absolute 2D error is shown dotted (red) and
measured in pixels. Relative 3D error is shown solid (blue) and
measured in millimeters.

Figure 4. Plots of tracking error by frame for subject S4 walking
(frames 1–350 of the S4-Combo-4 clip) for four cameras (C1 to
C4, top to bottom). Absolute 2D error is shown dotted (red) and
measured in pixels. Relative 3D error is shown solid (blue) and
measured in millimeters. The peak in error around frames 298–
336 is not visually apparent in the reconstruction and may indicate
a problem with the ground truth.



Figure 5. Plots of tracking error by frame for subject S2 jogging
(frames 351–700 of the S2-Combo-1 clip) for four cameras (C1 to
C4, top to bottom). Absolute 2D error is shown dotted (red) and
measured in pixels. Relative 3D error is shown solid (blue) and
measured in millimeters.

Figure 6. Plots of tracking error by frame for subject S4 jogging
(frames 351–700 of the S4-Combo-4 clip) for four cameras (C1 to
C4, top to bottom). Absolute 2D error is shown dotted (red) and
measured in pixels. Relative 3D error is shown solid (blue) and
measured in millimeters.



Figure 7. Plot of tracking error by frame for subject S1 walking
validation sequence for one camera, C1 (HumanEva I data set).
Absolute 2D error is shown dotted (red) and measured in pixels.
Relative 3D error is shown solid (blue) and measured in millime-
ters.

A stutter-step represents a temporary switching of the feet
in the reconstruction. This can happen when the recogni-
tion/retrieval step does not include a suitable correct candi-
date pose for some frame. A slide occurs when the feet stop
moving for some number of frames as the figure contin-
ues moving forward. These are most commonly observed
when the figure is moving either toward or away from the
camera and the separation of the feet cannot be discerned
in the silhouette. Although they appeared fairly frequently
in early experiments on the HumanEva data, increasing the
flow-matching weight λ2 during chaining has largely elimi-
nated the problem. A reversal error occurs when the turning
direction of the reconstructed pose does not match reality;
i.e., the subject actually turns 180◦ counter-clockwise while
walking in a circle, but the reconstruction turns 180◦ clock-
wise instead. Partial reversals appear at the start of two of
the walking clips (S2-Combo-1-C3 and S4-Combo-4-C1),
reflecting difficult initial pose configurations for those clips.
Erroneous pose reconstructions of this sort are consistent
with the silhouette observations, but not with the flow ob-
servations. However, flow-based cues tend to be weaker
than silhouette cues, and the ends of the Markov chain can
be more difficult to solve when there is not a strongly iden-
tified pose serving to pin down the solution.

One set of peaks in the error does not correspond to any
readily visible mistake in the reconstruction. The high error
in frames 298-336 for all four views of S4-Combo-4 may
be an artifact, because the reconstructed solutions appear
normal. The most likely explanation is some flaw in the
ground truth data for these frames. Omitting these ques-
tionable frames, the mean error for the affected walking se-
quences becomes 21, 15, 14, and 19 pixels (2D), and 146,
118, 111, and 144 mm (3D).

4. Lessons Learned
Evaluating the recognition-based motion capture algo-

rithm on HumanEva data has provided valuable insight into
its virtues and flaws. Simply running it on the eight 1200+
frame sequences in HumanEva II has helped to illuminate
common failure modes and improve default parameter set-
tings. On the other hand, the results also show it recovering
successfully from such errors to return to the correct pose
on subsequent frames. Furthermore, the observed accuracy
shows the technique to be sufficient for many purposes: un-
der good conditions, this form of recognition-based motion
capture achieves relative 3D error around 10 centimeters per
joint compared to the ground truth.
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