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Orientation

Goal of work: Develop HumanEva results
— Algorithms not necessarily state of the art

— Useful as baseline
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Lookup-Based Motion Capture (1)

o Use silhouettes to retrieve known poses

Observations Library of known 3D poses
from video with observations

Candidate
poses



Lookup-Based Motion Capture (2)

e Use second-order hidden Markov model to
select pose sequence with low energy

Frame 1 Frame 2 Frame 3 Optimize for:

=7« Agreement with
' frame observations

e Agreement with
flow observations

e Small inertial
changes between
frames
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Some Related Work

Estimating Human Body Configuration Using Shape
Context Matching
Mori & Malik, ECCV 2002

3D Tracking = Classification+Interpolation
Tomasi, Petrov, & Sastry, ICCV 2003

Silhouette Lookup for Automatic Pose Tracking
Howe, ANM 2004

3D Articulated Models and Multi-View Tracking with
Silhouettes
Delamarre & Faugeras, ICCV 1999

Temporal Integration of Multiple Silhouette-based Body-
part Hypotheses
Kwatra, Bobick, & Johnson, CVPR 2001



Caveats ‘

e Scalability of pose library is a concern
— May limit technique to specific applications
— Walking library: 805 poses
— Boxing library = several thousand poses
— Some work exists on sublinear retrieval

* Lookup employs background subtraction

— Good segmentation result is often achievable

— BS not required in principle for lookup-based methods
» Others have demonstrated edge-based techniques
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Overview

Feature from video
— Background subtraction
— Optical flow

Lookup techniques
Markov chaining
Results




Background Subtraction

Graph cut formulation uses edge data
— Segmentation tends to follow edges

HSV color space with shadow correction
Robust estimation of background
Failures mostly due to poor contrast
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Optical Flow

o Optical flow from Krause method
 Mask by foreground & compute moments
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Pose Lookup

e Candidate pool combines multiple queries:

near the previous
frame’s candidates.

r ‘ S N Most results are
\ @ constrained to lie
o7

) : A few open
\ / retrievals are also
included.
/ ‘ Combinations:
- - | A+B+C
Half-chamfer Turning angle Flow moment A+B

distance (A) distance (B) distance (C) C only




Frame “Stitching”

e First-order Markov chain sufficient for “smoothness”

e Second-order chain is needed for conservation of
momentum

e Flow match & momentum conservation intended to
prevent “shuffle-step” errors %
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Results

* Results available for:
S3 Walking_ 1 (BW2): Mean error 11 pixels
S3 Walking_1 (C2): Mean error 14 pixels
S2 Walking_1 (BW2): Mean error 13 pixels*
S3 Walking_1 (C1l): Mean error 18 pixels*

*Affected by error in background subtraction

« Boxing available soon (hopefully!)

e Observations: f" «
¢-f

— Left-right inversion problems
— Error is highest at extremities
4




 Mean error after swaps is 11 pixels.
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Visualization




Optimization

 Match may be improved by optimization
on pose parameters

 One frame at a time
— Improve chamfer match with silhouette

— Improve smoothness: use quadratic fit to
parameters over 11-frame window

e Error improves to 10 pixels after one round
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S2 Walking 1 (BW2)

 Mean error after swaps is 13 pixels.
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S3 Walking 1 (C2)

 Mean error after swaps is 14 pixels.
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 Mean error after swaps is 18 pixels.
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Visualization




Conclusions

Few results, but some trends are clear:

e Pixel accuracies In the teens

e Limitations of silhouettes evident

— Left-right ambiguity is still an unsolved
problem for this method

— Arm locations drift when obscured by torso
* One set of results for HumanEva







Coordination Between Frames

 Need to pick from top matches at each frame.

— Want good image match at all frames
— Want small change between frames
— Markov chain minimization!

e Best local choices minimize global error




Markov Chain Minimization

1. Compute cheapest path to each state from previous states
(cost = estimate of plausibility)

Frame 1 Frame 2 Frame n I

State 18 /.g FSRE | 2. identity
%ﬁ best (least

-%U >@EeD | expensive)
: :7 _5 i reiult

3. Backtrack, picking out path that gave best result.



Silhouette Comparison

Turning angle

J‘ @(Captures morphology)

1 Chamfer distance
\ Y/

w (Captures overlap) i>

 Combine using Belkin technique
(score = sum of individual ranks)
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