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Abstract. Margin-maximizing techniques such as boosting have been
generating excitement in machine learning circles for several years now.
Although these techniques offer significant improvements over previous
methods on classification tasks, little research has examined the appli-
cation of techniques such as boosting to the problem of retrieval from
image and video databases. This paper looks at boosting for image re-
trieval and classification, with a comparative evaluation of several top
algorithms combined in two different ways with boosting. The results
show that boosting improves retrieval precision and recall (as expected),
but that variations in the way boosting is applied can significantly affect
the degree of improvement observed. An analysis suggests guidelines for
the best way to apply boosting for retrieval with a given image repre-
sentation.

1 Introduction

The fields of machine learning and visual information retrieval have indepen-
dently each seen gratifying research progress of late. Boosting [4], support vec-
tor machines [1] and other so-called large-margin techniques consistently demon-
strate improved performance when applied on top of older, more established
classification methods from machine learning. Simultaneously, researchers in the
field of image and video retrieval have devised new representations that allow
quick comparisons between images based upon multiple cues – color and texture
distributions, for example. Retrieval techniques using automatically extracted
feature vectors, such as color correlograms [8], redundant banks of texture fil-
ters [3], and others [7] have shown measurable improvements over earlier, more
simplistic methods such as color histograms [11]. These two bodies of research
combined have the potential to generate powerful image classification and re-
trieval algorithms, and video retrieval algorithms by extension. Unfortunately,
with a few exceptions [12, 2], very little current research appeals to both fields
by incorporating the best elements of each. The combination of the newer image
analysis techniques with the concurrent advances in machine learning turns out
to contain subtle complexities that have not been adequately addressed to date.

Incorporating boosting into retrieval algorithms necessarily implies moving
away from the single-image query typical of many works on information re-
trieval [3, 7, 8, 11], since boosting requires a set of positive and negative exam-
ples to work. Fortunately, there is a movement afoot in the field as a whole in
this direction, toward approaches that might automatically compare images in a



collection with a library of different models for classification and subsequent re-
trieval via keywords. A boosted classifier provides a promising candidate model
for such a library. If single-image queries are desirable or necessary for some
applications, then boosting may still prove useful, employing the top set of re-
trieved images (hand-classified online by the user) as the training set. In this
mode, boosting represents a way to move from simply retrieving a few images
related to the query, toward locating the entire set of images of a target class
that are available in the database.

While this paper does not attempt to address all these possibilities at once,
it does examine the fundamentals of combining boosting with a range of promis-
ing image comparison methods. It examines several candidate approaches (as
detailed in Section 2), since the best way to incorporate boosting using these
techniques has not yet been established. In particular, a novel approach is devel-
oped herein using conic decision boundaries that allows boosting to be combined
with any of the leading image representations. Section 3 gives the experimen-
tal procedure, and a summary of the findings appears in Section 4. The ex-
perimental results show the conic-boundary method to work better with the
high-dimensional image representations that are becoming more common today.

2 The Problem

Several characteristics of image comparison techniques make the straightforward
application of boosting difficult. Image representations typically exhibit a high
number of linearly nonseparable dimensions. This makes the use of machine
learning mainstays such as C4.5 [9] both slower and less effective than they
are in the sorts of problems typically looked at by the learning community.
The comparison metrics developed for image retrieval, on the other hand, also
form an incomplete foundation for boosting. Oriented towards retrieval rather
than classification, they do not address the issue of establishing a classification
threshold. More significantly, these techniques are designed to measure image
similarities given a single target image; they do not necessarily handle a set of
target images, possibly with weights indicating their importance. For boosting,
incorporating such a weighted set of targets is essential.

The näıve approach to expanding from a single-target technique to a multiple-
target technique would be to use some linear combination of the representations
of the multiple targets, such as the mean. Unfortunately, this method does not
work: typically the combined representation is significantly worse at picking out
members of the class than many of the individual training examples alone [6].
This reflects the complexity of image classes: they tend to be only diffusely
clustered in any given image representation, interspersed with non-members of
the class, and rife with outliers. Linear combinations of positive feature vectors
typically lie closer to negative examples than to the positive examples they are
drawn from, and therefore serve as a poorer basis for classification.



2.1 Boosting in Context

Boosting began as a technique for combining differently-trained classifiers with
unique sets of strengths and weaknesses. Properly done, a weighted vote of each
classifiers’ predictions can reinforce the strengths and cancel out the weaknesses
[10]. Thus a classification algorithm that displays marginal success (accuracy
slightly better than chance) can be “boosted” into an algorithm with much higher
accuracy. AdaBoost [4] first provided a widely known algorithmic approach to
boosting. Since then, many variants have appeared that seek to address some
of its shortcomings, such as intolerance to errors in the training data [5], but
AdaBoost continues to be widely used.

AdaBoost and boosting algorithms in general require a base learning algo-
rithm, often referred to as a weak learner, that can classify any set of weighted
instances with better than 50% accuracy. With a two-class system, such weak
learners are not hard to develop: nearly any division of the space of possible
instances will do. Although the theoretical results place only weak requirements
on the base algorithm, empirical experience suggests that more powerful base
classifiers tend to work better when boosted [4]. The base classifier is trained in
successive rounds on different subsets or weightings of the initial training data,
producing the required set of differently-trained classifiers that can be combined
to produce a final, more reliable classification. Those interested in retrieval ap-
plications should note that the algorithm actually produces a numeric score for
each instance that when thresholded yields a classification, but which might as
easily be used to rank the images for retrieval.

Boosting has been shown to exhibit a number of desirable properties, partic-
ularly a resistance to overfitting the training data. Yet in spite of the success of
boosting in other areas, little work has been done to date in applying it to im-
ages. Tieu and Viola [12] use a feature-selection algorithm equivalent to simple
boosting, but the focus of their work is elsewhere. Perhaps one reason that so
little attention has been devoted to the topic is that researchers working with
images have focused mainly on retrieval rather than classification. Only recently
have algorithms developed that offer reasonable classification performance on
any but the simplest of image categories.

2.2 Two Approaches

In order to apply boosting to most extant image representations designed for
retrieval, one must first decide how to adapt a representation designed for pair-
wise determination of similarity so as to produce a class decision boundary. In
doing so, one may decide to adopt an approach that has more of the flavor
found in traditional machine learning, or one may opt instead for an approach
that retains more of the flavor of the original image retrieval technique. This
paper looks at representatives of both of these paths. The first approach uses
simple single-dimension thresholded decision boundaries. Intuitively, it looks for
dimensions (a.k.a. features) demonstrating exceptional values that happen to
be highly correlated with membership in the class. The second approach uses



the entire vector for comparison. It achieves this by using a thresholded cosine
metric (measuring the angle between two normalized vectors) to yield classifiers
whose decision surfaces are hypercones. Intuitively, it looks for images that are
similar enough to the exemplar image according to the cosine metric. One might
expect either or both of these approaches to work better, depending upon the
underlying image representation chosen.

Regardless of the method, any simple classifier used for boosting must con-
form to a few simple assumptions. As input it receives two collections of vectors,
Vp and Vn, containing respectively the representations of positive and negative
training examples of the class to be learned. In addition it receives a collection
of weights on these vectors, Wp and Wn, indicating the importance placed upon
learning to classify the corresponding training example. From these inputs, the
classifier should generate a rule that classifies any image representation v as ei-
ther a class member or not; this may be thought of as a function from the space
of possible representations V onto {0, 1}. Section 3.1 describes several common
image feature spaces V used in this paper.

Two features of most image representations make them somewhat different
from many of the types of data typically used with boosting. They tend to be
of very high dimension, with some schemes using tens of thousands of dimen-
sions [6, 12]. The correlations between individual dimensions tend to be unknown
and presumably highly complicated. Furthermore, any single individual dimen-
sion typically has low correlation with any interesting image class: there are
few “smoking guns”. These considerations have led to the development of the
two techniques described in detail below, one which concentrates on individual
features, and one which looks at the vector representation as a whole.

Feature-Based Boosting The first method, denoted hereafter as feature-based

boosting, or FBoost for brevity, creates a simple classifier as follows. For each
dimension in V , it sorts the values found in Vp and Vn, removing duplicates, to
determine a complete set of candidate decision thresholds. It then scores each of
these decision thresholds in terms of the weighted error rate it would generate if
used as a classifier on the training set. The best threshold is computed for each
individual dimension, and the best of these becomes the rule used to classify
unknown instances.

Feature-based boosting represents a fairly traditional way to apply boosting.
Tieu and Viola [12] adopt this approach in their work. From a machine-learning
viewpoint, FBoost is equivalent to using decision trees with a single branch (also
called decision stumps) as the base classifier. Friedman, Hastie, & Tibshirani
[5] present evidence that the simplicity of the decision stumps as compared to
full decision trees is unimportant, as it may be counteracted by performing a
sufficient number of boosting steps.

Vector-Based Boosting The second method, denoted hereafter as vector-

based boosting, or VBoost for brevity, represents a non-traditional application
of boosting concepts with no close analogues known to the author. Hypercones



form the decision surface of the base classifier. Class membership may be quickly
determined by thresholding the dot product of the normalized candidate feature
vector with the unit vector along the axis of the hypercone. (Although this is
equivalent to selecting a single feature under some arbitrary basis transforma-
tion, the transformation changes with each round of boosting.)

Implementing boosting effectively with this type of classifier turns out to
require some creativity. If only the positive training instances are used as cone
axes in creating the weak classifiers, then the resulting set of decision bound-
aries lacks enough variety for effective boosting. (The algorithm quickly reaches
a point where none of the available decision boundaries are of high quality.)
On the other hand, allowing any axis at all leaves an infinite number of possible
decision boundaries to check, with no guide towards finding the best one. A com-
promise heuristic is therefore used, with reasonable results produced in practice.
The algorithm described below consistently generates individual classifiers with
greater than 50% accuracy even after many successive rounds of boosting.

Let vp and vn be the sum of the vectors in Vp and Vn respectively, as weighted
by the weights in Wp and Wn. Consider the hyperplane that bisects the angle
between vp and vn. Experience shows that the majority of the weight of positive
examples will tend to lie on one side of the hyperplane, while the majority of
the weight of negative examples will tend to lie on the other side. (Usually the
positive examples are clustered on the vp side, but if this is not the case the
algorithm simply exchanges the classification labels for that round of boosting.)
The dot product with a vector orthogonal to the bisecting hyperplane therefore
proves useful in discriminating between positive and negative examples (see Fig-
ure 1). The heuristic algorithm calculates the orthogonal vector v⊥ according to
Equation 1 and then computes its dot product with all the training vectors.

v⊥ = vp −
vn · (vp + vn)

‖vp + vn‖
(1)

As was the case for the previous classifier, the range of dot products between
v⊥ and the elements of the training set offers a finite choice of decision thresholds.
The best can be chosen simply by computing the weighted training error for
each possibility. VBoost runs relatively faster as the number of dimensions rises,
because threshold selection happens only once, as opposed to once per dimension
for FBoost.

3 Experimental procedure

The experimental procedure described below has three axes of variation: the
image representation used, the type of base classfier used for boosting, and the
image category used. Of these, the comparisons between image representations
and between base classifiers are most interesting. All experiments are performed
on the same set, comprising 20,100 images from the Corel photo library. Corel
images have been used in many works on image retrieval, and more details on
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this set of images are available elsewhere [6]. The Corel collection exhibits strong
correlations in image composition within many image categories.

All experiments use 5 × 2-fold cross-validation: For each of five replications,
the image set is split in half, with half of the positive instances in each fold. Each
fold is used to train a classifier, and its performance is tested on the opposite
fold. Comparing results across the five replications provides an estimate of the
deviation.

3.1 Image Representation

Three image representations (correlograms, Stairs, T-V) come from relatively
recent work on ways of describing images that preserve multiple primitive image
cues: color, texture, relative location, etc. Correlograms [8] assemble statistical
information about color co-occurrences on the pixel level. Correlogram features
are of the form “the probability that a pixel B at distance x from pixel A
has the same color as A.” Stairs [7] explicitly records the patches of color and
texture found in different locations within the image. Thus each feature in Stairs
represents the presence or absence of a patch with one discrete combination
of color, texture, and location. An unnamed technique introduced by Tieu and
Viola [12], henceforth referred to as T-V, registers the output of banks of layered
color and texture filters. A feature in this representation corresponds to the
output of a set of three successively applied filters summed over the entire image.
Finally, color histograms [11] are a well-established representation, included here
as a control. Each feature in a color histogram represents the percentage of the
image that is of a particular discrete color.

The T-V representation is altered somewhat here in order to achieve a prac-
tical algorithm. The original representation stores about 50,000 numbers per
image. With a collection of 20,100 images, therefore, the entire data set occupies
roughly 8 GB of memory. While this may easily fit on a disk, it will not fit into
memory for efficient processing. An approximation yields the necessary reduc-
tion in required memory: the values are normalized by subtracting the mean for
each feature and dividing by the standard deviation, after which values differ-



ing from the mean by fewer than 2.5 standard deviations are set to zero. This
allows the data to be stored as a sparse matrix with about 107 elements. Tieu
and Viola hypothesize that the success of their method stems from extreme fea-
ture values in the range of 4 or more standard deviations, so we posit that this
approximation should not unduly affect performance. On the other hand, it is
problematic for the images that show no features at all with values more than
2.5 standard deviations from the mean (roughly one third of the test collection).
Tieu and Viola do not address the memory issue since they run tests with only
3000 images.

3.2 Boosting Application

Strictly speaking, only one boosting algorithm, AdaBoost [4], is used in all exper-
iments. Rather, the variations presented come from changing the base classifier
used, as described in the previous section. Although the base classifier used for
boosting makes no difference in theory, common wisdom holds that some bases
make for better boosting than others. Because the two methods used here work
quite differently, any disparity in their performance should be instructive. As a
control, the experiment includes a third, unboosted classifier. In order to give
a more meaningful comparison to the boosted algorithms, this is not simply a
single application of the base classifier (which does quite poorly). Rather, the
control is a nearest-neighbor classifier using the best exemplars of the class as
selected by a greedy additive approach [6], a method which outperforms retrieval
using any single exemplar image.

3.3 Image Categories

Five hand-defined categories reflect a moderate range of difficulty and subject
category: Sun (226 images of sunrises and sunsets), Wolf (110 images of wolves),
Church (101 images of churches), Tiger (100 images of tigers), and Car (100
images of Formula 1 race cars). Although the number of categories is small, the
choices include both natural and manufactured objects, full scenes and specific
entities within scenes, and wide variation in ease of retrieval.

4 Results

Table 1 shows the mean area under a recall-precision curve computed for each
of the 60 (4× 3× 5) experimental conditions, as a percent of total possible area.
The data are grouped by image category, since the most interesting variations in
performance show up when the category is held constant. The deviations shown
come from the variation observed between the five folds of the experiment.

The results display some interesting trends. First of all, boosting improves
recall and precision over the corresponding control in nearly all cases (36 out
of 40 comparisons). This result is not automatic, since the control case is not a



Table 1. Percent area under the recall-precision curve for two boosting methods and an
unboosted control. The best method in each group of three is boldface, as are methods
with overlapping standard deviations. The best method in each group of twelve is
underlined, as are methods with overlapping standard deviations.

Method Hist Corr Stairs T-V

Control 5.0 ± 0.7 19.3 ± 1.7 17.8 ± 1.9 0.7 ± 0.1

S
u
nVBoost 27.2 ± 4.0 57.2 ± 4.1 26.4 ± 1.8 19.8 ± 2.3

FBoost 39.3 ± 4.8 41.4 ± 8.9 31.4 ± 2.2 21.6 ± 3.2

Control 1.7 ± 0.3 2.0 ± 0.6 1.4 ± 0.1 0.5 ± 0.0

C
h
u
rc

h

VBoost 2.4 ± 0.5 5.9 ± 3.0 3.7 ± 1.4 1.8 ± 0.5

FBoost 2.5 ± 0.4 4.7 ± 1.3 6.0 ± 1.3 1.8 ± 0.5

Control 37.2 ± 3.0 12.9 ± 3.9 2.7 ± 0.2 0.4 ± 0.0

C
a
r

VBoost 14.6 ± 1.5 50.0 ± 3.8 52.9 ± 4.4 2.3 ± 0.4

FBoost 56.3 ± 5.4 61.1 ± 5.0 49.8 ± 3.6 2.0 ± 0.6

Control 43.2 ± 3.8 30.1 ± 3.3 2.5 ± 0.2 0.4 ± 0.0

T
ig

er

VBoost 11.8 ± 0.7 35.9 ± 3.0 13.7 ± 2.2 0.8 ± 0.2

FBoost 49.6 ± 5.8 46.7 ± 4.8 22.9 ± 3.6 0.6 ± 0.1

Control 9.2 ± 1.5 12.3 ± 3.1 4.1 ± 0.6 0.5 ± 0.0

W
o
lf

VBoost 6.6 ± 0.9 13.5 ± 1.9 14.4 ± 3.9 1.6 ± 0.3

FBoost 9.8 ± 1.6 10.5 ± 1.1 16.8 ± 4.8 2.2 ± 0.7

(straw-man) single application of the boosted classifier, but an effective nearest-
neighbor classifier using the best exemplars of the class. A single application of
the unboosted base classifier in fact does little better than chance (Table 2).

4.1 Comparing boosting types

Comparisons between the two types of boosting reveal trends according to the
underlying image representation. For the histograms, feature-based boosting con-
sistently performs better, achieving significantly higher performance on four of
the five image classes. (Bold face type indicates the best boosting method in each
category, along with any other method whose range of standard deviation over-
laps with that of the best.) Correlograms give mixed results, with each boosting
method doing better on two categories, and the fifth a statistical toss-up. For
the Stairs and T-V, most of the results are statistically close, although FBoost
does distinguishably better on two of the categories with Stairs.

Interestingly, the two methods appear most similar when the number of di-
mensions in the feature space grows large. The representations are listed in the
table from left to right in order of increasing vector length: histograms (128 di-
mensions), correlograms (512), Stairs (19,200) and T-V (46,875). The last two
columns show the largest number of statistical ties, and use the largest feature
spaces. This result is interesting in that VBoost is much faster than FBoost for
large dimensions, suggesting that it may be a better choice in these cases. (An-



Table 2. Percent area under the recall-precision curve for a single iteration of the base
classifier. Without boosting, results are scarcely better than chance.

Method Hist Corr Stairs T-V Chance

S
u
nbase VBoost 1.1 ± 0.1 19.7 ± 3.7 3.8 ± 1.1 1.7 ± 0.7

1.1
base FBoost 2.0 ± 0.9 5.9 ± 3.5 4.5 ± 1.3 7.3 ± 1.7

C
h
u
.

base VBoost 0.5 ± 0.1 0.5 ± 0.1 1.4 ± 1.0 0.5 ± 0.0
0.5

base FBoost 0.5 ± 0.1 0.5 ± 0.1 0.6 ± 0.1 0.5 ± 0.1

C
a
rbase VBoost 0.6 ± 0.1 7.8 ± 2.1 0.5 ± 0.0 0.5 ± 0.0

0.5
base FBoost 0.7 ± 0.3 0.5 ± 0.0 0.8 ± 0.4 0.5 ± 0.1

T
ig

.base VBoost 0.5 ± 0.1 1.2 ± 0.5 0.5 ± 0.0 0.5 ± 0.1
0.5

base FBoost 0.5 ± 0.1 0.5 ± 0.1 0.8 ± 0.5 0.5 ± 0.0

W
o
lfbase VBoost 0.6 ± 0.1 1.1 ± 0.5 2.2 ± 0.6 0.6 ± 0.1

0.5
base FBoost 0.6 ± 0.0 0.6 ± 0.1 2.6 ± 1.4 0.6 ± 0.1

other possibility is that some other factor may unite the two right-hand columns,
such as a higher intercorrelation of the individual dimensions.)

4.2 Comparing image representations

Several other trends reveal themselves in Table 1. First, although the T-V repre-
sentation improves considerably under boosting, the ultimate performance using
it does not match that of the other three representations. This may be in part
because of the representational restrictions imposed, as described in Section 3.1.
However, without some such approximation, it is difficult to see how to apply
the technique to larger data sets.

Of the other three representations, histograms display the best overall score
on one category (Tiger), correlograms on two (Sun and Car), and Stairs on two
(Church and Wolf). The latter two categories proved hardest overall, implying
that boosted Stairs may do well on more difficult visual concepts. However, at
least one of the boosted correlogram results was statistically close to the best
on every image category, so this may be the best method of those surveyed to
choose when little is known about the target concept.

5 Conclusion

Boosting becomes relevant for image retrieval in two contexts: in systems where
the user can provide a set of positive and negative exemplars (perhaps hand-
labeled from the results of an initial retrieval attempt), and in systems designed
to automatically annotate large collections with class tags according to previ-
ously learned concepts, for subsequent keyword retrieval. The results presented
here may be viewed as indications of the potential of such systems, as well as
(from a machine-learning perspective) raw classification ability. As expected,



boosting improves the retrieval of image classes virtually across the board. The
two different methods described herein for constructing boostable classifiers from
a base image representation both yield better results than a competitive un-
boosted control. Of these, the method based upon individual features shows
better results when the number of dimensions in the image representation is
small, but runs slowly when the number of dimensions becomes large. For large
feature spaces, the method based upon the entire vector runs more quickly while
showing comparable performance. The former represents traditional applications
of boosting, while the latter uses a novel type of decision boundary for the base
classifier. This work shows that choices must be made about how to combine
advanced image representations with boosting, and that the best approach may
vary depending upon the image representation chosen and the classes to be
learned.
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