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Abstract. Silhouette recognition can reconstruct the three-dimensional
pose of a human subject in monocular video so long as the camera’s
view remains unoccluded by other objects. This paper develops a shape
representation that can describe and compare partial shapes, extending
the silhouette recognition technique to apply to video with occlusions.
The new method operates without human intervention, and experiments
demonstrate that it can reconstruct accurate three-dimensional articu-
lated pose tracks from single-camera walking video despite occlusion of
one-third to one-half of the subject.

1 Introduction

Intense research interest has focused lately on the recovery of articulated pose
information from monocular video [11, 19, 20]. Despite great progress, current
methods commonly assume that subjects remain fully visible apart from self-
occlusion of one body part by another. Yet outside of controlled studio condi-
tions, extraneous objects can often block a camera’s view either momentarily or
for an extended period of time. This paper develops techniques to handle situa-
tions where some portion of a subject’s body passes either behind a stationary
object or out of the video frame.

Silhouette shape matching has already proven itself well suited for recov-
ering articulated pose in a variety of applications [7, 14].1 Previous work with
silhouette-based pose recovery has assumed that full silhouettes are available,
and employed similarity measures that require complete shape information. This
paper develops a novel approach to shape comparison that can operate with ei-
ther full or partial shape information. Under occlusion, the visible portion of the
shape boundary can thus be extracted and used for pose recovery. Reconstruc-
tions based upon this technique can recover the articulated pose trace (3D joint
positions over time) of a walking human subject undergoing either episodic or
extended partial occlusion by stationary objects.

1.1 Related Work

Much research has looked at recovery of articulated three-dimensional pose from
monocular video without external occlusion [11]. Recent work in this area in-
1 Although the silhouette-to-pose relationship is many-to-one, enforcing temporal con-

tinuity can disambiguate the true pose.



cludes several alternatives to silhouette-based reconstruction [19, 20], as well as
other related results that stop short of recovering full 3D pose [3, 15]. Another
body of research has examined the problem of non-articulated object tracking
under intermittent occlusion [4, 9]. The combination problem of single-camera
articulated pose reconstruction with occlusion has received very little attention.
One alternative to the method presented here would be to track the silhouettes
using an occlusion-resistant deformable shape tracker [16] followed by ordinary
silhouette recognition, but this would require a good prior model on the possi-
ble shapes of human silhouettes. Prior models on human motion can also guide
tracking under occlusion [21]

A number of works have examined techniques specialized for partial shape
matching; one recent paper gives an excellent survey [17]. The approach used
herein resembles the B-spline technique of Salari and Balaji [18], but the use of
the EMD embedding here improves on that work by allowing arbitrarily dense
sampling of the shape boundary without increasing the complexity of the final
representation. The method also somewhat resembles the curvature scale space
[12, 13] and the fast correspondence of Adamek and O’Connor [1], but these do
not address partial matching. The use of EMD embedding herein is adapted
from work using the shape context and various other features.[5, 6].

2 Shape Matching: Sets of Boundary Fragments

This paper develops a measurement of shape similarity based upon matching
many small, overlapping fragments of the shape boundary. Because each bound-
ary fragment can be parameterized in only one dimension, the set of fragments
is potentially simpler than other sets of localized descriptors such as the shape
context [2], and also less affected by occlusions.

Simple metrics like Euclidean distance cannot properly compute similarity
between sets. Fortunately, recent work provides a means of embedding sets of
fragment descriptors in a high-dimensional metric space, such that the L1 dis-
tance in the embedding space approximates the earth-movers distance (EMD)
for the local shape or boundary descriptors [5]. Such an embedding will be re-
ferred to as an EMD embedding. The EMD corresponds to the sum error in the
best global matching between the boundary fragments of the two images. The
EMD embedding of a set of boundary fragments thus constitutes a practical
representation for computing a meaningful similarity measure on binary shape
images.

2.1 Extracting Boundary Fragments

To describe a binary image using boundary fragments, begin by representing the
boundary as a sequence of points with roughly equal spacing. Extract multiple
overlapping subsequences spaced uniformly along the boundary and of similar
length, then express these in a uniform representation. The EMD embedding



transforms the set of fragment representations into a form offering better com-
putational efficiency, as described in Section 2.2.

The specific application will determine the best choice of boundary segment
lengt, based upon one or more heuristics. A fixed scaled length is best when
the scale of the shape can be known; most pose tracking applications fall into
this category once tracking has begun. Alternately, properties of the shape itself
may be used to estimate a scale. For example, the fragment length may be set
at some fraction of the total perimeter length.

Once identified, boundary fragments must be described in a concise numeric
format. Suppose that a fragment is parameterized by s, where s = 0 at one end
of the fragment and s = 1 at the other end, and τ(s) gives the tangent to the
boundary at s. Sample τ(s) at uniform intervals, compute the discrete cosine
transform (DCT), then zero the constant term and truncate high-order terms
beyond k. The inverse DCT then yields a k-dimensional representation of the
fragment shape that is rotation invariant and effectively low-pass filtered.

Rotational information can be restored to the descriptor if desired by in-
cluding sin(τ(0.5)) and cos(τ(0.5)) as additional features. Using two features for
rotation information avoids circular anomalies when comparing values such as 0
and 2π. Including rotation information makes sense when shapes can be oriented
a priori, as for example in video where the the y axis aligns with gravity.

2.2 Embedding the Boundary Fragments

In order to efficiently compute the best matching between shapes, the EMD
embedding takes the set of fragment descriptors and creates a high-dimensional
vector describing the shape as a whole. Each component of the embedded vector
covers a region of the fragment descriptor space, with the magnitude of the com-
ponent depending upon the size of the region and on how many fragments lie
within it. The full embedding algorithm is too involved to give here, but follows
Grauman and Darrell [5], with several modifications. To ensure that new shapes
can be embedded within the same framework as existing ones, the embedding
covers a fixed region of the fragment descriptor space: [−2π, 2π] for the sampled
features, and [−1, 1] for the rotation-dependent features. Furthermore, the hier-
archical subdivision of the feature space into component regions stops after five
levels.

2.3 Partial Shape Matching with the Boundary Fragments

Under occlusion, some portion of a shape is unobservable. Define a partial shape
as the result of hiding some part of a binary shape image with a mask. Note
that a partial shape is not equivalent to the smaller shape made by deleting
the masked portion; instead, the masked portion is simply undefined. Instead
of a closed contour, the boundary of a partial shape becomes one or more open
curves.



Many traditional shape descriptors simply cannot be computed for shape
fragments due to the undefined region. Those comprising sets of localized de-
scriptors, such as boundary fragments and the shape context, can still compute
descriptors for regions that do not overlap with the undefined area. However,
the shape context runs into problems: because it is defined on a circular area, its
descriptors easily overlap unknown areas even when centered on a visible point.
Consider frames 55-60 in Figure 2, where the entire shape lies close to the occlu-
sion, but there are nonetheless long boundaries visible. Without sufficient local
descriptors, the shape context cannot match accurately and becomes inviable
for occluded pose recovery.

Given a partial shape as described above, straightforward computation yields
an EMD-embedded descriptor that incorporates all fully-defined boundary frag-
ments. For matching purposes, the components of this descriptor should be nor-
malized to sum up to the fraction α of contour segments fully visible, while
descriptors of complete shapes are all normalized to sum to one. For pose recov-
ery, Section 3 describes how to estimate α when it is unknown. Experiments on
retrieval tasks show low sensitivity to errors in α: retrieval sets overlap by up to
80% for α values varying by as much as 30%.

2.4 Benchmark Experiments with Boundary Fragment Matching

Boundary fragments shows reasonable performance as a general shape match-
ing tool on standard test sets. For example, on the MPEG7 CE-Shape-1 test
set, boundary fragments score 68.01% on the standard “bullseye” criterion [10].
Experiments in the same framework show a similar result for the shape context
(68.11%). Other work has reported better results for shape context when com-
bined iteratively with geometric warping [2]. Presumably boundary fragment
matching would also benefit from such a treatment, although the procedure is
too slow for application to pose recovery.

3 Pose Recovery Under Occlusion

Monocular video provides only limited cues for reconstructing the full 3D pose
of a subject. Silhouette recognition offers a simple yet effective way to apply
background knowledge to the problem. Silhouettes observed in the video serve as
keys to look up known 3D poses with similar silhouettes for further consideration
[7]. The approach does have drawbacks; most commonly noted is the difficulty
of identifying accurate silhouettes. Although this remains an area of research,
current performance is adequate in some applications [8].

This paper addresses a different problem, occurring when part of a subject’s
body is occluded by stationary objects situated along the camera’s line of sight,
or by the frame boundary. In either case, it becomes impossible to determine
the shape of the entire silhouette, and thus to retrieve the 3D pose directly.



3.1 Boundary Fragments for Silhouette Lookup

EMD-embedded boundary fragment matching provides the framework for sil-
houette lookup. Because other sources describe silhouette-based pose recovery
in detail [7], only an outline appears here. After background stabilization (if nec-
essary) and modeling, change detection yields a silhouette in each video frame
[8]. Each silhouette becomes a query into a database of silhouettes with known
3D poses, acquired via motion capture. The most likely pose-silhouette pairs
are retained and registered to the video frame. A temporal synchronization step
then searches for the sequence of poses that simultaneously maximizes the sim-
ilarity to the observed silhouettes while minimizing the energy of pose changes
from frame to frame. Further postprocessing smooths the results and optimizes
their fidelity to the observations. Boundary fragment matching provides a conve-
nient mechanism for the silhouette lookup stage of the algorithm; other portions
remain unchanged.

Because fragment matching handles both complete and partial shapes, the
method applies easily to the partial shapes that arise during external occlusion.
However, the algorithm must know what portions of the shape are occluded so
that it can distinguish the real silhouette boundaries from the occlusion edges.
The discussion below begins by assuming that an operator provides a manually
created “occlusion map” identifying areas containing potential occluding objects
(Figure 1). Section 3.3 addresses how to generate such maps automatically.

Background Hand mask Automask Confirmed

Fig. 1. Static background with manually provided and automatically generated occlu-
sion maps for two sample videos. The automatic masks are more conservative in the
visible areas they identify. Rightmost column shows confirmed occluded areas after
algorithm has run.

Given an occlusion map, the lookup process first determines whether the ob-
served silhouette touches any occluded areas. If it does not, then normal lookup
proceeds. If occluded areas overlap the silhouette, then the visible portions of the
silhouette generate a partial shape consisting of one or more boundary contours.
The scale of the figure (for boundary section length) and the visibility α may be



estimated in most cases from neighboring frames with silhouettes already reg-
istered. In this case, the partial shape query returns candidate poses from the
database just as a full image query would. Section 3.3 discusses how to bootstrap
scale and visibility estimates for clips consisting entirely of occluded frames.

Registering a retrieved silhouette with its video frame becomes slightly more
complicated when working with occlusion. One or more boundary contours will
be visible in the frame. These must be matched to equivalent portions on the
border of the retrieved silhouette. Phase matching between sequences of equally-
space points extracted along both boundaries yields the desired correspondence.
The registration scale and translation then minimize the Euclidean distance
between the corresponding sequence points. Once the retrieved silhouettes are
registered, the remainder of the computation proceeds as before.

3.2 Experiments with Occluded Video

The evaluation test set comprises two short videos involving significant occlusion.
The first, Pole, shows a walking subject passing completely behind a lightpost.
The second, Ramp, shows the subject walking up a handicapped access ramp. A
low wall at the edge of the ramp obscures the view of the subject’s legs in the
latter half of this video, making pose recovery much more challenging.

The reconstruction of the Pole video entirely avoids any major errors. Occlu-
sions by the post and the frame edges are handled gracefully. There is some small
error in the arm positions and in the hip orientation, similar to those occurring
in silhouette-based reconstruction without occlusion. Space constraints preclude
reproducing the results here, as they are similar to those presented later. This
clip shows boundary fragment matching easily handling transient external occlu-
sions of this sort. Note that the figure can be tracked outside the frame boundary
only so long as a sufficient amount of the boundary is visible; the outer limit for
getting reasonable results seems to be about α = 0.3.

The extended occlusion of the legs in the Ramp video makes pose reconstruc-
tion much more difficult in the second half of the clip. The system must infer
what the legs are doing from the motions of the upper body. When the arms
are visible this is somewhat easier, but there are points in the stride where the
upper body shape appears more or less as an undifferentiated pillar. Despite
this, the shape-fragment matching reconstructs the Ramp motion with only one
significant error, a stutter-step near the very end of the clip. Errors near the
beginning and end of a clip sometimes occur due to the lack of corroborating
observations from neighboring frames on one side.

3.3 Fully Automatic Reconstruction

Manual occlusion maps are a crutch that preclude fully automatic operation.
This section describes an algorithm to automatically determine the non-occluded
areas, using no more information than the silhouette observations already em-
ployed for pose retrieval (as derived from background modeling and change de-
tection). The composition of all the areas where the subject silhouette is observed



over time forms a map of known unoccluded areas. The complement of this set
is the union of two pieces: true occlusion zones and areas of background that are
indistinguishable from occlusion zones because the subject was never observed
there.

Figure 1 shows for each test video the regions containing no observation of
the subject. Although these masks cover much more area than the manually cre-
ated occlusion masks, these masks may nevertheless function in the same role.
Treating zero-silhouette regions as occlusion zones will disregard some valid sil-
houette boundaries that cannot be verified as real. A typical silhouette will now
have undefined regions above the head and below the feet, because the subject
was never observed in these areas. This increases the challenge of database re-
trieval: since occlusions cannot be distinguished from unidentified background,
in practice all frames must use partial shapes for retrieval.

Atomatic occlusion maps may not be error-free, and the penalties for error
are not symmetric. Marking a visible area as occluded merely makes retrieval
slightly more difficult by reducing the length of boundary available as a query.
This is generally much less serious than counting an occluded area as visible,
which will usually introduce spurious boundaries that are more likely to inter-
fere with both retrieval and registration. For example, the railing at the top of
the wall in the Ramp clip is not always segmented properly in the silhouette
of every frame. To prevent such problems, a special high-threshold foreground
segmentation generates the occlusion map, biasing the result against mistakenly
labeling occlusion zones as visible areas.

Estimating the parameter relating library scales to observed silhouette di-
mensions becomes more difficult without frames known to be unoccluded. This
work adopts a heuristic approach, assuming that the silhouettes with maximal
vertical extent are unoccluded or nearly so, and estimating scale based upon
their height. Allowing slow (0.5%) changes in scale between neighboring frames
causes each silhouette to impose a minimum scale on all other frames. Silhou-
ettes whose vertical extent indicates a scale greater than the minimum imposed
by all other frames are considered reliable indicators of the true scale. Interpo-
lation gives the estimated scale of the remaining frames. While effective for the
clips tested here, this heuristic is not universally reliable and might be less suc-
cessful in some cases than a technique based upon boundary curvature or limb
thickness.

Estimating the visibility α is also more difficult without known occlusion-
free frames. The silhouette dimensions for the indicator frames described above
can give a very rough estimate of α. Unoccluded silhouette perimiters average
around four times the figure height, although this ratio can vary by up to 30% in
either direction. In most cases this suffices for adequate retrieval. Nevertheless,
once an initial frame has been solved, using the visibility of registered silhouettes
in a neighboring frame is generally more accurate and therefore preferable.

Figures 2 and 3 show the reconstruction results under fully automatic oper-
ation. Despite the increased difficulty of retrieving and registering correct can-
didate silhouettes from partial shapes at every frame, the boundary fragment



matching reconstructs both clips without major errors. The automatic recon-
structions capture the qualitative features of the walk nearly as well as the
result using the manual occlusion map, but exhibit somewhat larger transient
deviations in scale and body orientation. Interestingly, this reconstruction avoids
stutter-steps in the Ramp clip.

Fig. 2. Automatic reconstruction of Pole clip shown at selected frames.

Fig. 3. Automatic reconstruction of Ramp clip shown at periodic frames.

Although 3D pose ground truth is unavailable for these clips, the results can
be evaluated in comparison to 2D tracking points hand-entered by two individ-
uals. For the Pole clip, the difference between the two humans in placement of
control points averaged 1.9 pixels; the automatic result differed from the human
mean by 6.1 pixels (roughly four inches). No increase in error was observed dur-
ing the occlusion by the lamp pole. The Ramp clip is more difficult for humans
to annotate due to the extended occlusion, and disagreement between human
point placements averaged 4.4 pixels. The disagreement between the automatic
and human results averaged 7.4 pixels. On this clip, occlusion causes a notica-
ble decrease in accuracy for both the humans and the computer algorithm: the
error averaged for the frames before and after frame 40 are 2.1 vs. 6.6 pixels for
humans, and 5.8 vs. 8.7 pixels for the computer.

While walking motions arguably make for a simple evaluation choice, they
are nevertheless of interest in many applications. Furthermore, these experi-



ments indisputably provedemonstrate the utility of shape fragment matching
for handling occlusion. Perhaps this will spur the development of additional
occlusion-handling techniques for other pose reconstruction modalities.

3.4 Refined Occlusion Maps

The automatic reconstruction can proceed one step further to refine the origi-
nal automatic occlusion map, distinguishing between true occlusion zones and
areas with no data. With pose reconstruction in hand, animation and rendering
reveals the region swept out by the moving subject in the image frame. The re-
construction registration may not be entirely accurate, so the outer edge of this
region should be thrown out using morphological erosion. The intersection of the
remaining area and the original occlusion map yields a set of pixels held to be
occupied by occluding objects. Storing these locations may help in subsequent
pose reconstructions, or in other scene interpretation tasks. Figure 1 shows the
refined automatic occlusion maps for the two clips.

4 Conclusion

This paper has described an extension of silhouette-based monocular 3D pose
reconstruction to handle partial occlusions by stationary objects. One enabling
development is EMD-embedded boundary fragments, a novel contour-based de-
scription of shape that allows comparison of partial shapes. The other key is
the explicit use of an occlusion/visibility map, allowing the algorithm to dis-
criminate between valid silhouette boundaries and spurious ones arising from
occlusion. The occlusion map may be created by hand, but it can also be gener-
ated through an automatic process with surprisingly little decrease in the quality
of the final result.
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