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To My Students





PREFACE

This book is a research monograph on a topic that falls under both
combinatorial geometry, a branch of mathematics, and computational
geometry, a branch of computer science. The research described is recent:
the earliest dates from the mid 1970s, and the majority is from the 1980s.
Many of the results discussed have not yet been published. Advances
continue to be made, especially on the algorithms side of the topic, and I
have suffered the frustration of seeing each draft grow out of date before it
was completed. Although the area of art gallery theorems has not stabilized,
I believe the time is ripe for a survey, for two reasons.

First, the material is fascinating and accessible, and should be made
available to a wider audience. Although this monograph is not a traditional
textbook (there are no exercises, for example), I have used some of the
material to great effect in a graduate/undergraduate course on computa-
tional geometry. The only prerequisites for understanding the material are
basic graph theory, data structures, and algorithms. Thus it is easily
accessible to upper-level undergraduates, or indeed to the "amateur." I
have found that students can become very excited at rinding themselves so
quickly at the frontier of knowledge, with a chance of extending the frontier
themselves (and several of mine have).

Second, I hope that this monograph will accelerate the maturing of the
field by drawing attention to the many open problems. These consist of two
types: finding more succinct proofs of the theorems, and proving or
disproving the conjectures. There is a history in this field of proofs being
drastically shortened after a few years, and I expect some of the more
ungainly proofs in this book also will be similarly upstaged. The conjectures
are certainly not all equally difficult. Some may be open only because no
one has tried hard enough to settle them (edge guards?), some are open
because they appear to be genuinely difficult (polygons with holes?), and
some seem to await the new idea that will solve them in a single stroke
(prison yard problem?). I will be disappointed if many of the unsolved
problems posed in this book are not solved in the next decade.

The plan of the book is partly chronological, and partly determined by
the logical progression of the topics. The first chapter covers the original art
gallery theorem (|/*/3j guards are necessary and sufficient), and basic
polygon partitioning algorithms. I have found this material to form a
suitable introduction to computational geometry. Chapter 2 focusses on the
important subclass of orthogonal polygons, and offers several proofs of the
orthogonal art gallery theorem ([n/4j guards are necessary and sufficient).
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Chapter 3 extends the two main theorems of the previous chapters to
"mobile" guards. Several miscellaneous results are gathered together in
Chapter 4. These first four chapters cover the best-developed aspects of the
topic, and contain few open problems.

Chapter 5 discusses polygons with holes, containing proofs of one-hole
theorems for general and orthogonal polygons. No general theorems for
multiple-hole polygons have been obtained to date. Chapter 6 investigates
exterior visibility, and establishes a pleasing counterpart to the original art
gallery theorem ([«/3] guards are necessary and sufficient for the exterior).
This chapter also discusses the "prison yard" problem, another tantalizing
unsolved problem. Chapter 7 presents several results and questions from
recent investigations into the properties of visibility graphs. The central
problem of characterizing such graphs remains far from solution. The topic
of Chapter 8, visibility algorithms, is in considerable flux at this writing, but
the critical problem of computing visibility graphs in subquadratic time
remains unsolved. Chapter 9 establishes the intractability of most questions
of optimal guard placement. The challenge here is to find tractable
restrictions. Chapter 10 closes with several related miscellaneous results and
unsolved problems.

Baltimore J.O'R.
August 1986
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ART GALLERY THEOREMS AND ALGORITHMS





POLYGON PARTITIONS

1.1. INTRODUCTION

In 1973, Victor Klee posed the problem of determining the minimum
number of guards sufficient to cover the interior of an n-wall art gallery
room (Honsberger 1976). He posed this question extemporaneously in
response to a request from Vasek Chvatal (at a conference at Stanford in
August) for an interesting geometric problem, and Chvatal soon established
what has become known as "Chvatal's Art Gallery Theorem" (or some-
times, "watchman theorem"): [n/3\ guards are occasionally necessary and
always sufficient to cover a polygon of n vertices (Chvatal 1975). This simple
and beautiful theorem has since been extended by mathematicians in several
directions, and has been further developed by computer scientists studying
partitioning algorithms. Now, a little more than a decade after Klee posed
his question, there are enough related results to fill a book. By no means do
all these results flow directly from Klee's problem, but there is a cohesion in
the material presented here that is consistent with the spirit of his question.

This chapter examines the original art gallery theorem and its associated
algorithm. The algorithm leads to a discussion of triangulation, and a
reexamination of the problem brings us to convex partitioning. The
common theme throughout the chapter is polygon partitioning. Subsequent
chapters branch off into specializations and generalizations of the original
art gallery theorem and related algorithmic issues.

1.2. THE ORIGINAL ART GALLERY THEOREM AND
ALGORITHM

1.2.1. The Theorem

Problem Definition

A polygon P is usually defined as a collection of n vertices vlt v2, . . . , vn

and n edges vlv2, v2v3, . . . , vn_1vn, vnv1 such that no pair of non-
consecutive edges share a point. We deviate from the usual practice by

1



I POLYGON PARTITIONS

defining a polygon as the closed finite connected region of the plane
bounded by these vertices and edges. The collection of vertices and edges
will be referred to as the boundary of P, denoted by dP; note that dP c P.
The term "polygon" is often modified by "simple" to distinguish it from
polygons that cross themselves, but in this book all polygons are simple, so
we will drop the redundant modifier. The boundary of a polygon is a
"Jordan curve": it separates the plane into two disjoint regions, the interior
and the exterior of the polygon. A polygon of n vertices will sometimes be
called an rc-gon.

Let us say that a point x e P sees or covers a point y e P if the line
segment xy is a subset of P: xy c P. Note that xy may touch dP at one or
more points; that is, line-of-sight is not blocked by grazing contact with the
boundary. For any polygon P, define G(P) to be the minimum number of
points of P that cover all of P: the minimum k such that there is a set of k
points in P, {x1} . . . , xk), so that, for any y e P, some xh 1 < z < k, covers
v. Finally, define g(n) to be the maximum value of G(P) over all polygons
of n vertices.

Klee's original art gallery problem was to determine g(n): the covering
points are guards who can survey 360° about their fixed position, and the art
gallery room is a polygon. The function g(n) represents the maximum
number of guards that are ever needed for an n-gon: g(n) guards always
suffice, and g{n) guards are necessary for at least one polygon of n vertices.
We will phrase this as: g(n) guards are occasionally necessary and always
sufficient, or just necessary and sufficient.

Necessity

A little experimentation with small n quickly establishes a lower bound on
g{n). Clearly a triangle needs exactly one guard, so g(3) = 1. Even a
non-convex quadrilateral can be covered by a single guard, so g(4) = 1. It is
slightly less obvious that g(5) = 1, but there are only three distinct "shapes"
of pentagons possible: those with 0, 1, or 2 reflex vertices (those with
interior angle larger than 180°), and all three can be covered with one
guard; see Fig. 1.1. For n = 6, there are two shapes (also shown in Fig. 1.1)
that need two guards, so g(6) = 2. The second shape easily generalizes to a
"comb" of k prongs and n = 3k edges that requires k guards (Fig. 1.2)
(Chvatal 1975). This establishes that g(n) > [n/3\.

This situation is typical of the art gallery theorems that we will examine
later: it is often easy to establish a lower bound through a generic example
that settles the "necessity" of a particular formula. The difficult part is
establishing sufficiency, as this needs an argument that holds for all
polygons. Before showing our first sufficiency proof, we will briefly explore
a few approaches that do not work.

False Starts

The formula g{n) > [n/3\ could be interpreted as: one guard is needed for
every three vertices. Phrased in this simple form, it is natural to wonder if
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= 3

Fig. 1.1. Polygons with 5 or fewer vertices can be covered by a single guard, but some
6-vertex polygons require two guards.

perhaps a guard on every third vertex is sufficient. Figure 1.3 shows that
such a simple strategy will not suffice: xm in the figure will not be covered if
guards are placed on all vertices i with i = m(mod 3).

A second natural approach is to reduce visibility of the interior to
visibility of the boundary: if guards are placed such that they can see all the
paintings on the walls, does that imply that they can see the interior? Not
necessarily, as Fig. 1.4 shows: guards at vertices a, b, and c cover the entire
boundary but miss the internal triangle Q.

A third natural reduction is to restrict the guards to be stationed only at
vertices. Define a vertex guard to be a guard located at a vertex; in contrast,
guards who have no restriction on their location will be called point guards.
Define gv{n) to be the number of vertex guards necessary and sufficient to
cover an n-gon. Is gv(n) = g(ri)! Certainly there are particular polygons
where the restriction to vertices weakens the guards' power: Fig. 1.5 shows
one that needs two vertex guards but a single point guard placed at x suffices

Fig. 1.2. Each prong of the comb requires its own guard. Here n = 15 and 5 guards are
needed.
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Fig. 1.3. Guards on every third vertex will not cover one of the points x0, x1> or x2.

to cover the entire polygon. But g{n) summarizes information about all
polygons, so this particular case has no more impact on our question than
does the existence of n-gons needing only one guard have on the value of
g(n). It turns out that in fact gv(n) = g(n) and that the reduction is
appropriate. Its validity will fall out of the sufficiency proofs presented
below, so we will not establish it independently. The reader is forewarned,
however, that we will encounter many problems later for which the
reduction to vertex guards is a true restriction and changes the problem in a
fundamental way.

Fisk's Proof

We will step out of chronological order to sketch Fisk's sufficiency proof,
which came three years after Chvatal's original proof (Fisk 1978; Honsber-
ger 1981). Fisk's proof is remarkably simple, occupying just a single journal
page. Its explication will introduce several concepts to which we will return
later.

The first step in Fisk's proof is to "triangulate" the polygon P by adding
internal diagonals between vertices until no more can be added. It is not
obvious that a polygon can always be partitioned into triangles without
adding new vertices this way; it is even less obvious how to perform the
partition with an efficient algorithm. Triangulation is an important topic,

Fig. 1.4. Guards at a, b, and c cover the boundary but not the interior of the polygon.
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Fig. 1.5. Point guards are more powerful than vertex guards.

and will be covered in depth in Section 1.3. For now we will just assume
that a triangulation always exists.

The second step is to "recall" that the graph of a triangulated polygon can
be 3-colored. A k-coloring of a graph is an assignment of colors to the
nodes, one color per node, using no more than k colors, such that no two
adjacent nodes are assigned the same color. The nodes of the triangulation
graph correspond to the vertices of the polygon, and the arcs correspond to
the original polygon's edges plus the diagonals added during triangulation.
Because a triangulation graph is planar, it is 4-colorable by the celebrated
Four Color Theorem (Appel and Haken 1977). We will have to wait for the
discussion of triangulation to formally prove that triangulation graphs of
polygons are 3-colorable. Let us here just make the claim at least plausible
via an example.

Consider the triangulation shown in Fig. 1.6a. Pick an arbitrary triangle,
say acg, and 3-color it as shown with the colors 1, 2, and 3. The three
diagonals ac, eg, and ga force the nodes b, e, and i to be colored 3,1, and 2,
respectively. Now diagonals involving the just-colored nodes force other
colorings, and so on. The result is the coloring shown in Fig. 1.6b, which is
unique given the initial arbitrary coloring of the first triangle: every "move"
is forced after that, and since the polygon has no holes, the coloring never
wraps around and causes a conflict. This argument will be formalized in
Section 1.3.1.

Let us assume that the triangulation graph of a simple polygon can be
3-colored, and finish Fisk's proof.

The third step is to note that one of the three colors must be used no
more than 1/3 of the time. Although this is obvious, let me be explicit since

a b

Fig. 1.6. Three-coloring of a triangulation graph starting from acg.
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variants of this argument are used throughout the book. Let a, b, and c be
the number of occurrences of the three colors in a coloring, with a < b < c.
The total number of nodes is n, so a + b + c = n. Ifa>n/3, then the sum of
all three would be larger than n. Therefore, a < [n/3\ (since a must be an
integer).

Let the least frequently used color be red. The fourth and final step is to
place guards at every red node. Since a triangle is the complete graph on
three nodes, each triangle has all three colors at its vertices. Thus every
triangle has a red node and thus a guard in one of its corners. Moreover,
since the triangles form a partition of P, every point in the polygon is inside
some triangle, and since triangles are convex, every point is covered by a
red guard. Thus the guards cover the entire polygon, and there are at most
[n/3\ of them.

This establishes that [n/3\ guards are sufficient to cover the interior of an
arbitrary polygon. Together with the necessity proved earlier, we have that
g(n)=[n/3\.

ChvdtaVs Proof

The first proof of Chvatal's Art Gallery Theorem was of course given by
Chvatal, in 1975 (Chvatal 1975). His proof starts with a triangulation of the
polygon, as does Fisk's, but does not use graph coloring. Rather the
theorem is proven directly by induction. Although Chvatal's proof is not as
concise as Fisk's, it reveals aspects of the problem that are not brought to
light by the coloring argument, and we will see in Chapter 3 that Chvatal's
argument generalizes in cases where Fisk's does not.

Define a fan as a triangulation with one vertex (the fan center) shared by
all triangles. Chvatal took as his induction hypothesis this statement:

Induction Hypothesis: Every triangulation of an n-gon can be parti-
tioned into g < [n/3\ fans.

For the basis, note that n > 3 since we start with an n-gon, and that there is
just a single triangulation possible when n = 3, 4, and 5, each of which is a
fan; see Fig. 1.7. Thus the induction hypothesis holds for n <6.

Given a triangulation with n > 6, our approach will be to remove part of
the triangulation, apply the induction hypothesis, and then put back the
deleted piece. We will see in the next section that there is always a diagonal
(in fact, there are always at least two) that partitions off a single triangle.
But note that this only reduces n by 1, and if we were unlucky enough to
start with n = 1 or 2 (mod) 3, then the induction hypothesis partitions into
g= l(n- l)/3j = [n/3\ fans, and we will in general end up with g + 1 fans

3 4 5

Fig. 1.7. Triangulations of up to five vertices are necessarily fans.
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Fig. 1.8. No diagonal of this triangulation cuts off exactly three vertices.

when we put back the removed triangle. The moral is that, in order to make
induction work with the formula [n/3j, we have to reduce n by at least 3 so
the induction hypothesis will yield less than g fans, allowing the grouping of
the removed triangles into a fan.

So the question naturally arises: does there always exist a diagonal that
partitions off 4 edges of the polygon, and therefore reduces n by 3? The
answer is no, as established by Fig. 1.8 (this is not the smallest coun-
terexample). Chvatal's brilliant stroke was to realize that there is always a
diagonal that cuts off 4 or 5 or 6 edges:

LEMMA 1.1 [Chvatal 1975]. For any triangulation of an n-gon with n > 6,
there always exists a diagonal d that cuts off exactly 4, 5 or 6 edges.

Proof. Choose d to be a diagonal that separates off a minimum number of
polygon edges that is at least 4. Let k > 4 be the minimum number, and
label the vertices of the polygon 0, 1, . . . , n - 1 such that d is (0,k); see
Fig. 1.9. d must support a triangle T whose apex is at some vertex t with
0 < t < k. Since (0, i) and (k, t) each cut off fewer than k edges, by the
minimality of k we have t < 3 and k — t < 3. Adding these two inequalities
yields k < 6. D

Now the plan is to apply the induction hypothesis to the portion on the
other side of the special diagonal d. Let Gx be the triangulation partitioned
off by d; it has k + 1 boundary edges and hence is a (k + l)-gon (see Fig.

Fig. 1.9. Diagonal d cuts off k vertices in Gv
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Fig. 1.10. Gx is a hexagon.

1.9). Let G2 be the remainder of the original triangulation, sharing d\ it has
n — k + 1 vertices. The induction hypothesis says that G2 may be partitioned
into g'=[(n-k + l)/3j fans. Since k > 4, g' < [(n - 3)/3j = |n/3j - 1.
Thus, in order to establish the theorem, we have to show that Gx need only
add one more fan to the partition. We will consider each possible value of k
in turn.

Case 1 (k = 4). Gx is a 5-gon. We already observed (Fig. 1.7) that every
pentagon is a fan. Therefore, G has been partitioned into [n/3\ — 1 + 1 =
[n/3\ fans.

Case 2 {k = 5). G1 is an 6-gon. Consider the triangle T of Gx supported by
d, with its apex at t. We cannot have t = 1 or t = 4, as then the diagonals
(0, t) or (5, t) [respectively] would cut off just 4 edges, violating the assumed
minimality of k = 5. The cases t = 2 and t = 3 are clearly symmetrical, so
assume without loss of generality that t = 2; see Fig. 1.10. Now the
quadrilateral (2, 3, 4, 5) can be triangulated in two ways:

Case 2a. The diagonal (2, 4) is present (Fig. 1.10a). Then G1 is a fan, and
we are finished.

Case 2b. The diagonal (3, 5) is present (Fig. 1.10b). Form the graph Go as
the union of G2 and T. Go has n — 5 + 1 + 1 = n — 3 edges. Apply the
induction hypothesis to it, partitioning it into g' = [(n — 3)/3j = [n/3\ — 1
fans. Now T must be part of a fan F in the partition of Go, and the center of
F must be at one of T's vertices:

Case 2b.1. F is centered at 0 or 2. Then merge (0,1, 2) into F, and make
(2, 3, 4, 5) its own fan. Now all of G is covered with g' + 1 = [n/3\ fans.

Case 2b.2. F is centered at 5. Merge both (2, 3, 5) and (3, 4, 5) into F, and
make (0,1, 2) a separate fan. The result is g' + 1 fans.

Case 3 (k = 6). Gx is a 7-gon. The tip t of the triangle T supported by d
cannot be at 1, 2, 4, or 5, as then a diagonal would exist that cuts off
4<A:<6 edges, contradicting the minimality of k. Thus t = 3. Each of the
two quadrilaterals (0,1, 2, 3) and (3, 4, 5, 6) has two possible triangulations,
leading to four subcases.

Case 3a. The diagonals (3,1) and (3, 5) are present (Fig. 1.11a). Then Ga

is a fan centered at 3, and we are finished.
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a b c

Fig. 1.11. Gj is a heptagon.

Case 3b. The diagonals (0, 2) and (3, 5) are present (Fig. 1.11b). Join the
quadrilateral (0,2, 3, 6) to G2 to form a polygon Go with n - 6 + l + 2 =
n — 3 vertices, which by the induction hypothesis can be partitioned into
g' = [n/3\ — 1 fans. Let F be the fan of this partition to which the triangle
(0,2, 3) belongs. The center of F must be at one of its vertices:

Case 3b. 1. F is centered at 0 or 2. Merge (0,1,2) into F and make
(3, 4, 5, 6) a separate fan.

Case 3b.2. F is centered at 3. Merge (3, 4, 5, 6) into F, and make (0,1, 2)
a separate fan.

In all cases, G is partitioned into g' + 1 = [n/3\ fans.

Case 3c. The diagonals (1, 3) and (4, 6) are present. This is the mirror
image of Case 3b.

Case 3d. The diagonals (0, 2) and (4, 6) are present (Fig. 1.11c). Merge T
with G2 to form a polygon G0of« — 6 + l + l = n—4 vertices. Applying the
induction hypothesis partitions Go into g' = [(n — 4)/3j < [n/3\ — 1 fans.
Let F be the fan of the partition containing T.

Case 3d.l. F is centered at 0. Merge the quadrilateral (0,1, 2, 3) into F,
and make (3, 4, 5, 6) a separate fan.

Case 3d. 2. F is centered at 3. Since all of G2 is behind the d = (0, 6)
diagonal, it is clear that we can just as well consider F to be centered at 0,
falling into Case 3d.l.

Case 3d.3. F is centered at 6. This is the mirror image of Case 3d.l.

In all cases, G is partitioned into g' + 1 = [n/3\ fans.
This completes the proof. Placing guards at the fan centers establishes the
theorem:

THEOREM 1.1 [Chvatal's Art Gallery Theorem 1975]. [n/3\ guards are
occasionally necessary and always sufficient to see the entire interior of a
polygon of n edges.

Note that both Chvatal's and Fisk's proofs incidentally establish by
construction that the guards can be chosen to be vertex guards. We now
turn to designing an algorithm to perform the stationing of the guards.
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1.2.2. The Algorithm of Avis and Toussaint

A naive implementation of the construction used in Chvatal's proof would
lead to an algorithm that is quadratic at best: O{n) searches for the special
diagonal d would cost O(n2). However, Avis and Toussaint mimicked Fisk's
proof rather directly to obtain an O(n logn) algorithm (Avis and Toussaint
1981a).

Their algorithm follows the main steps of the proof:

Algorithm 1.1.
(1) Triangulate P, obtaining a graph G.
(2) Three-color the nodes of G.
(3) Place guards at the nodes assigned the least-frequently used color.

Step (1) is a very difficult problem, the topic of the next section. We will see
that it can be accomplished in O(n log logn) time. Step (2) is easy if you
assume that complete triangle adjacency information is contained in the
data structure for G output from Step (1). As the triangulation algorithm
papers were unconcerned with this issue, Avis and Toussaint assume only
that a list of the diagonals of the triangulation is available. Under these
minimal assumptions, 3-coloring is not so trivial.

They propose to 3-color by a divide-and-conquer strategy. Their divide
step partitions the polygon into two pieces, each of at least [n/4\ vertices.
Recursively assuming that each piece is 3-colored, the merge step makes a
3-coloring of the whole by relabeling if necessary. Both the divide and the
merge steps require only O(n) time, leading to the familiar recurrence
equation T(n) = 2T(n/2) + O{n), whose solution is T(n) = O{n log n).

We now describe the division step.

LEMMA 1.2 [Avis and Toussaint 1981]. Any triangulation of a polygon P
of n vertices contains a diagonal d that partitions it into two pieces each
containing at least [n/4\ vertices.

Proof. Label the vertices of P 1, . . . , n. Partition the vertices into four
chains Clf C2, C3, C4, each of length at least [n/4\: chain Q consists of
vertices (i — l)[n/4\ + 1 through *[n/4j for / = 1, 2, 3, and C4 consists of
3|n/4| + 1 through n.

First note that there must exist an i and ;, i =£;, such that a vertex in C, is
connected by a diagonal to a vertex in C,. Otherwise an interior region
would be bound by at least four diagonals, contradicting the assumption
that the diagonals form a triangulation.

If there exists such an i and; with \i—j\=2, the lemma is established by
the following argument. Let i = 1 and j = 3 without loss of generality, and
let d be a diagonal from Cx to C3. Then C2 is on one side of d and C4 on the
other; thus each piece is of size at least [n/4j.

Finally, suppose there do not exist such an i and / with \i—j\ = 2. Let i = 1
and / = 2 without loss of generality. Let vx be the lowest numbered vertex in
Cx that connects to a vertex in C2, and let v2 be the highest numbered
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2[n/4]

Fig. 1.12. The apex t of the triangle vlv2t must lie in either C3 or C4.

vertex in C2 that connects to a vertex in Cx. Clearly vxv2 is a diagonal of the
triangulation; see Fig. 1.12. Let t be the apex of the triangle supported by
vxv2 outside of the indices in the range [v1} v2\. t cannot be in either Cx or
C2, as that would contradict the extremality of either vx or v2 in their
chains. If t is in C3, then vxt connects Cx to C3; if t is in C4, then v2t
connects C2 to C4. Both cases contradict our assumptions, showing that this
last case cannot occur. •

We will encounter a significant extension of this lemma in the next section.
Now that we have established the existence of an appropriate dividing

diagonal, it is easy to see how to find one in linear time. Simply check each
of the n — 3 diagonals (see Theorem 1.2 following) and see if its endpoints
lie in either Cx and C3 or C2 and C4.

Finally, we consider the merge step. After recursively applying the
algorithm, we have a 3-coloring of Gx and G2, the two graphs whose union
is G. If the shared diagonal d is colored the same in each part, then no
action is necessary. If the diagonal endpoints are assigned different colors in
Gx and G2, simply relabel the colors in G2 to accord with Gxs assignment to
d. This relabeling will take O{n) time, the size of G2.

Step (3) of the algorithm clearly takes just linear time, resulting in an
O(n log n) algorithm overall.

1.3. TRIANGULATION

We have encountered triangulations several times, and the concept will be
used throughout the book: as the most basic polygon partition possible, its
role in the field is analogous to the role of prime factorization in number
theory. In this section we will first prove that triangulations exist, and then
examine a series of algorithms for constructing a triangulation.
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1.3.1. Theorems

When first confronted with the question, "Must all polygons admit a
triangulation?," a natural reaction is, "How could they not?" Indeed, they
cannot not, but this is still a fact in need of proof; a simple inductive proof
follows.

THEOREM 1.2 (Triangulation Theorem). A polygon of n vertices may
be partitioned into n — 2 triangles by the addition of n — 3 internal
diagonals.

Proof. The proof is by induction on n. The theorem is trivially true for
n = 3. Let P be a polygon of n > 4 vertices. Let v2 be a convex vertex of P,
and consider the three consecutive vertices v1} v2, v3. (We take it as
obvious that there must be at least one convex vertex.) We seek an internal
diagonal d.

If the segment u1u3 is completely interior to P (i.e., does not intersect
3P), then let d = f iU3. Otherwise the closed triangle v1v2v3 must contain at
least one vertex of P. Let x be the vertex of P closest to v2, where distance
is measured perpendicular to v1v3 (see Fig. 1.13), and let d = v2x.

In either case, d divides P into two smaller polygons P1 and P2. If Pt has nt

vertices, i = 1, 2, then n1 + n2 = n + 2 since both endpoints of d are shared
between Px and P2. Clearly nt 2:3, i = 1,2, which implies that nt <n, i = 1, 2.
Applying the induction hypothesis to each polygon results in a triangulation
for P of («! - 2) + (n2 - 2) = n - 2 triangles, and {nx - 3) + (n2 - 3) + 1 =
n — 3 diagonals, including d. •

COROLLARY. The sum of the interior angles of a polygon is (n — 2)JZ.

Proof. Each of the n — 2 triangles consumes ^ of the total interior
angle. •

Next, we make an important observation about the way the triangles in a
triangulation fit together.

LEMMA 1.3. The dual graph of a triangulation of a polygon, with a node
for each triangle and an arc connecting two nodes whose triangles share a
diagonal, is a tree with each node of degree at most 3.

Proof. That each node has degree no greater than 3 is immediate from the

V2

Fig. 1.13. The line segment xv2 is an internal diagonal.
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Fig. 1.14. The dual of a polygon triangulation is a tree.

fact that a triangle has 3 sides. Suppose the graph is not a tree. Then it must
have a cycle. This cycle encloses some vertices of the polygon, and therefore
it encloses points exterior to the polygon. This contradicts the definition of a
polygon. •

Nodes of degree 1 are the leaves of the tree, nodes of degree 2 are parts
of a path, and nodes of degree 3 are the binary branch points of a tree; see
Fig. 1.14. We will see in Chapter 5 that Theorem 1.2 extends to polygons
with holes (Lemma 5.1), but Lemma 1.3 does not.

The technical term for the dual used in the above lemma is "weak dual,"
weak because no node is assigned to the exterior face—that is, the exterior
of the polygon. Throughout this book we will use weak duals but call them
duals.

Lemma 1.3 yields an easy proof of the "two ears theorem" of Meister
(1975). Three consecutive vertices vlt v2, v3 form an ear of a polygon P at
v2 if the segment vxvj, is completely interior to P. Two ears are
non-overlapping if the triangle interiors are disjoint.

THEOREM 1.3 [Meister's Two Ears Theorem 1975]. Every polygon of
n > 4 vertices has at least two non-overlapping ears.

Proof. Leaves in the dual of a triangulation correspond to ears, and every
tree of two or more nodes must have at least two leaves. •

This theorem in turn leads to a straightforward proof of the 3-colorability
of a polygon triangulation graph by induction: cut off an ear triangle from
the graph, 3-color the remainder by induction, and put back the removed
triangle, coloring its degree 2 tip vertex the color not used on the cut
diagonal.

Finally, we should note that in general a polygon has several distinct
triangulations; only in special cases is the triangulation unique.
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1.3.2. Algorithms

As is often the case, the proof of the existence theorem for triangulations
leads directly to an algorithm for constructing one; and, as is again often the
case, the algorithm is rather slow. Consider a naive implementation of the
proof of Theorem 1.2. Determining whether a given diagonal is interior to
the polygon requires O{n) time. The chosen diagonal may partition the
polygon into a small and a large piece; in the worst case the smaller piece
could be a single triangle. Assuming the worst case at each step, complete
triangulation requires

2 O(k) = O(n2).
k=n

Obtaining an optimal algorithm for triangulation is perhaps the outstand-
ing open problem in computational geometry. To 1986, the best algorithms
required O(n log n) time. The number and variety of these algorithms attest
to the effort researchers expended on the problem. As this book was being
revised, Tarjan and Van Wyk announced a breakthrough: an O{n log log n)
algorithm. Whether a linear-time algorithm is possible still remains open at
this writing. In this section we will present several O(n log n) triangulation
algorithms before sketching the latest algorithm.

The first O(n log n) algorithm developed proceeds in two stages: it first
partitions the polygon into monotone pieces, and then triangulates each
monotone piece individually. Thus we must first discuss monotone polygons
and partitions, important topics in their own right.

Monotone Polygons

The concept of a monotone polygon was introduced in Lee and Preparata
(1977) and has since proved to be a very fertile idea; it will be used at
several critical junctures throughout this book. Let px, . . . ,pk be a
polygonal path or a chain. A chain is called monotone with respect to a line
L if the projections of plf . . . ,pk onto L are ordered the same as in the
chain; that is, there is no "doubling back" in the projection as the chain is
traversed. Two adjacent vertices pt and pi+l may project to the same point
on L without destroying monotonicity. A chain is called monotone if it is
monotone with respect to at least one line. We will use the convention that
the line of monotonicity is the v-axis. A polygon is monotone if it can be
partitioned into two chains monotone with respect to the same line. We will
call them the left and right chains; see Fig. 1.15.

Lee and Preparata's monotone partitioning algorithm depends on an
"obvious" characterization of monotone polygons, which, like so many such
obvious statements, requires a careful proof. Define an interior cusp of a
polygon as a reflex vertex v whose adjacent vertices either do not both have
larger or do not both have smaller y-coordinates than v; picturesquely,
interior cusps are stalacitites or stalagmites. The following is proved in
(Gareyefa/. 1978).
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Fig. 1.15. The vertices of a monotone polygon project onto a line in a monotonically
increasing sequence.

LEMMA 1.4 [Garey et al. 1978]. If a polygon P has no interior cusp, then
it is monotone with respect to the y-axis.

Proof. We will prove the contrapositive. Assume therefore that P is not
monotone with respect to the y-axis. Then at least one of its two chains, say
the right one, is not monotone. Let the vertices of the right chain be
px, . . . , pk from top to bottom, and let pt be the first vertex of this chain
such that the y-coordinate of pi+1 is greater than that of pt; pt must exist
since the chain is not monotone. If pi+x is to the right of the line PiPi-x,
then pi is an interior cusp and we are finished. So assume that pi+1 is to the
left of PiPi-i- Now connect pt to pk with line L as shown in Fig. 1.16. Let pj
be a vertex of largest y-coordinate in the chain from pt to pk before it
crosses L. Then p} is an interior cusp: it is reflex since it is a local maximum
in the y direction with the polygon interior above it, and neither of its
adjacent vertices can have larger y-coordinate. •

Lee and Preparata's algorithm removes all interior cusps by the addition
of internal diagonals. It uses a general technique called "plane sweep"

Fig. 1.16. If pj is not an interior cusp, then pj is.
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(Nievergelt and Preparata 1982), which we will have occasion to use
repeatedly in this book. The vertices are sorted by decreasing height and
labeled v0, . . . , vn, with v0 highest. We will assume for simplicity that no
two points have the same v-coordinate. A horizontal line L is now
(conceptually) swept over the polygon from top to bottom. At all times a
data structure is maintained reflecting the structure of the polygon in the
vicinity of L. Each time a vertex is encountered, the data structure is
updated, and perhaps some output is produced.

The data structure S is a list of [edge, vertex] pairs. Let line L intersect
the interior of edges e0, . . . , ek in that order from left to right. Then S is the
list

[e0, Mb], [ei, wi]> • • • > Vk, Wk],

where wt is a vertex of minimum y-coordinate between et and ei+1—that is,
within the trapezoid bounded by L, et, ei+1, and the line parallel to L
through the lower of the upper endpoints of et and ei+1 (H>- could be this
lower endpoint). An example is shown in Fig. 1.17. The point of this data
structure is that, when L encounters an upward-pointing interior cusp such
as Vj in Fig. 1.17, it must lie between two edge et and ei+1, and v}- can then
be connected with a diagonal to wt.

The algorithm has the following overall structure:

Algorithm 1.2. Monotone Partitioning Algorithm

(1) Sort vertices by decreasing height: v0, . . . , vn.
(2) {Descending pass}

for * = 1 to n do
Remove upward-pointing interior cusps.

(3) {Ascending pass}
for i = n — 1 downto 0 do

Remove downward-pointing interior cusps.

We will only describe the descending pass, step (2). An artificial edge e0

corresponding to the line x = — °° is used to bound the list S from the left.
The algorithm is best described by a mixture of pseudo-code and pictures.
The definitions of the symbols will be found in the corresponding figures.

\

/ \ ' /

Fig. 1.17. When the sweep line L encounters vjt the diagonal {vj} w,) is output.
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{Descending pass}
S^[e0, v0]
for i = 1 to n - 1 do
begin

/<—smallest index such that vt is between ey and ej+1, or on eJ+1 {See Fig.
1.18a}
{Let / be the number of edges incident to vt from above.}
{Sou = ••• [ej-i, wy-i], [e,-, Wj], [ej+1, wj+1], [eJ+2, wj+2] • • •}
case / of
1 = 2: {Fig. 1.18b}

Snew < [ej-i, Vi], [eJ+2, wj+2] • • •
1=1: {Fig. 1.18c}

Snew* [ej-i, v^, [er, v^ [ej+1, wj+l] • • •
1 = 0: {Fig. 1.18d}

Snew* [ejt v^, [e1, v^, [e", vt], [ej+l, wj+1] • • •

if vt is reflex then draw diagonal (vi} w;)
end

We will now run through a small example. Consider the polygon in Fig.
1.19. The vertices are labeled by integers in descending order, and the edges
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Fig. 1.19. Monotone partitioning example: diagonals (5, 4) and (6, 5) partition the polygon
into monotone pieces.

are labeled with letters. Table 1.1 shows the values of the critical variables
and the data structure S throughout the execution of the algorithm.

One can easily see that the algorithm is prepared to remove external
cusps also, and it is only by checking whether vt is reflex that we ensure that
internal cusps are removed. Their algorithm was originally designed for
planar point location, an application for which all cusps need to be
removed.

We now turn to an analysis of the time complexity of the algorithm. The
initial sorting step takes O(n logn) time. If the list S is implemented as a
dictionary, say by a height-balanced tree (Knuth, 1973), then insertions and
deletions can be performed in O(logn) time. As each vertex is processed
only when it is passed by the sweeping line L, there are O(n) such insertions
and deletions, leading to an O(n log n) algorithm. The "trapezoidization"

Table 1.1

i j I S Output

0
1
2
3
4
5

6
7

8
9

a

!
i

— 00

i
i
e
h

— 00

0
1
2
1
0
0

2
2

2

0][/,
0][/,

[-«,
[-00,

4][«,

6\[h,
4]fc
[-00,

0][«, 0][c,
2}[b, 2][c,
0][/, 3][d,

4][i, 4][d,

5][/", 5][e,

6][g, 6][f,
6] [/», 6][g,
4][i, 6 P ,

[-«, 9]

1]K
l][d,

1]
1]
5p,
5][e,
6][/,
8]

1]
1]

1]

5][d, 1]

7]

5 ^ 4
6-^5
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algorithm in Tarjan and Van Wyk (1986), to be described shortly, improves
this time complexity to O{n log log n).

Finally we note that Preparata and Supowit have designed an algorithm to
decide in linear time whether or not a given polygon is monotone with
respect to any direction (Preparata and Supowit 1981).

Triangulation Algorithm of Garey, Johnson, Preparata, and Tarjan

The reason that monotone polygons have proven so useful is not due to
their natural shape (they can be rather unnatural), but rather that often
algorithms are much simpler if they are designed to work specifically on this
restricted class. Triangulation is the best illustration of this: Garey et al.
demonstrated that monotone polygons may be triangulated in linear time.
Together with the O(n log n) algorithm for monotone partitioning just
presented, this gives an O(n logn) algorithm for triangulating a polygon.

One might at first think that the dual of a triangulation of a monotone
polygon must just be a simple path rather than the tree guaranteed by
Lemma 1.3, but Fig. 1.20 shows that the structure can be quite complicated.
Nevertheless, the situation is sufficiently constrained that Garey et al. were
able to triangulate with a single stack algorithm.

Assume that the polygon P is monotone with respect to the y-axis. The
first step of their algorithm is to sort the vertices in descending order by
y-coordinate. Normally this would require O(n log n) time, but as the
vertices on both the left and right chains of P are already sorted by y, the
total sort can be obtained in linear time by a simple merge of the two
sequences. Let p0, . . . ,pn be the vertices in sorted order, with p0 at the
top. We will assume that no two vertices have the same y-coordinate to
simplify the presentation.

The algorithm successively reduces P by chopping triangles off the top. At
all times it maintains a stack of all the vertices examined so far but not yet
completely processed. Let v0, . . . , vt be the vertices on the stack, with t;0
on the bottom and vt on the top of the stack, and let Pt be the polygon
remaining as step i commences. Then the following stack properties are

Fig. 1.20. The triangulation dual of a monotone polygon is not necessarily a path.
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maintained throughout the processing:

(1) v0, . . . , vt decrease by height, vt lowest.
(2) vQ) . . . , vt form a chain of consecutive vertices on the boundary of

Pi-

(3) vlf . . . , vt_x are reflex vertices.
(4) The next vertex pt to be processed is adjacent via a polygon edge of

Pi to either v0 or vt (or to both).

The algorithm connects diagonals from the next vertex to the vertices on the
top of the stack, pops these off the stack, and pushes the just processed
vertex onto the stack.

Algorithm 1.3. Triangulation of a Monotone Polygon
Sort vertices by decreasing y-coordinate, resulting in p0, . . . , pn.
Push p0.
Push p1.
for / = 2 to n — 1 do

H Pi is adjacent to v0 then {Fig. 1.21a}
begin

while t > 0 do
begin

Draw diagonal/?,—>vt.
Pop.

end
Pop.
Push vt.
Push ph

end
else if Pi is adjacent to vt then {Fig. 1.21b}

begin
while t > 0 and vt is not reflex do
begin

Draw diagonalpt-*vt-x-
Pop.

end
Push pt.

end

The stack contents as the algorithm processes the polygon shown in Fig.
1.22 are shown in Table 1.2. The algorithm ends when/?, is adjacent to both
v0 and vt. Rather than insert special code to handle this case, we permit the
redundancy of drawing one diagonal [(17,16) in the above example] that is
superfluous.

We now establish that each diagonal output by the algorithm lies entirely
within the polygon. Consider first the diagonal (ph vj in Fig. 1.21a, which
is drawn by the first while loop of the algorithm. It forms a triangle
T = (v0, vu p^. None of the vertices v2, . . . , vt can lie inside of T, since
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Fig. 1.21. Triangulation algorithm cases: pt is adjacent to the stack bottom (a) or to the stack
top (b).

the reflex angles at those vertices (stack property (3)) force them to lie on
the opposite side of vov1 as pt. Every p, with j > i has smaller y-coordinate
than pif so none of these can lie in T. We have thus established that T
cannot contain any vertex of P(. It still could happen that T is crossed by an
edge of Pi without any vertices being interior. But this is not possible
because vopi and i>0^i are boundary edges of Pt. Therefore, (/?,, vx) is an
internal diagonal. Now the remaining diagonals output by the first while
loop are internal by the same argument (or by induction).

Fig. 1.22. Triangulation algorithm example.
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i

2
3
4

5

6
7

8
9

10
11
12
13
14
15
16
17

Table

Stack (top^)

0 1
0 1 2
0 12 3
0 12 3 4
0 1 5
5 6
6 7
7 8
7 9
9 10
9 11
9 12
12 13
13 14
13 15
13 15 16

1.2

Diagonals Drawn

(5, 3) (5, 2) (5,1)
(6, 5) (6,1)
(7,6)
(8,7)
(9,7)
(10,9)
(11,9)
(12,9)
(13,12)
(14,13)
(15,13)

(17,16) (17,15)

Consider second the diagonal (/?,, vt-^) in Fig. 1.21b, drawn by the
second while loop. Let T be the triangle {vt_l9 vt, /?,). The vertices
v0, . . . , vt_2 are above T and pj for j > i are below. So no vertex of Pt is
inside T. And again, no edge of Pt can cross T since vtvt_x and vtpt are
boundary edges of Pt. Thus the diagonal (ph vt_x) is internal. The remaining
diagonals are internal by the same argument.

Finally, we argue that the four stack properties are maintained by the
algorithm. Only pt and vt are pushed onto the stack, and when both are
pushed they are pushed in the correct vertical order. Thus the vertices are in
decreasing order by y -coordinate (1). The vertices form a chain (2) because
either (a) the stack is reset to two adjacent vertices (Fig. 1.21a) or (b) by
induction (Fig. 1.21b). The internal angles are reflex (3) because pt is only
pushed when vt is reflex in the second while. And finally, p, is either
adjacent to v0 or vt (4) because the montonicity of Pt guarantees that /?, has
a (unique) neighbor above it, and in the chain v0) . . . , vt, only v0 and vt do
not have all their neighbors accounted for.

Concerning time complexity, each vertex is pushed at most twice on the
stack, once as pt and once as vt. Examination of the code shows that for
each Push there is a corresponding Pop, and thus the algorithm requires
O{n) time. Together with the O(n log n) algorithm for partitioning a
polygon into monotone pieces, which adds on O{n) additional edges, this
yields the claimed O{n logn) overall time complexity.
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The algorithm has been presented as merely producing diagonals, without
the adjacency information contained in the dual graph of the triangulation.
It is not difficult, however, to modify the algorithm to produce the complete
graph structure for each monotone piece, and then to stitch together the
graphs from the pieces, without increasing the time complexity. With this
graph structure available, Avis and Toussaint's divide-and-conquer coloring
algorithm may be replaced by a straightforward linear recursive graph
traversal.

Recent Triangulation Algorithms

In this section we review four recent triangulation algorithms. The
algorithms will only be sketched and no proofs will be given; often the
authors themselves have only published sketches of their algorithms. Our
main point is to illustrate the variety of approaches available.

Plane Sweep Algorithm of Hertel and Mehlhorn. The algorithm pre-
sented in the previous two sections uses a plane sweep to partition into
monotone pieces, then sweeps over each piece to triangulate it. It is natural
to wonder if the triangulation cannot be done during the same sweep that
performs the partitioning. Hertel and Mehlhorn showed that indeed a plane
sweep algorithm can be constructed (Hertel and Mehlhorn 1983).
Moreover, their algorithm is not a trivial merging of the algorithms of Lee
and Preparata and of Garey et al.\ for instance, Hertel and Mehlhorn's
algorithm achieves a complete triangulation in a single forward pass,
whereas the monotone partitioning algorithm requires a reverse pass as
well.

The plane sweep algorithm runs in O(n log n) time: O(n log n) to sort the
vertices for the sweep, and O(n) instances of data structure updates, each
costing O(logn), so no asymptotic advantage has been gained over the
Garey et al. algorithm. What makes the Hertel and Mehlhorn approach
noteworthy is that they can modify it to achieve O(n + r log r) time, where r
is the number of reflex vertices of the polygon. Since r can be as large as
n — 3, this is no gain in the worst case, but it could be a significant gain in
practice. Moreover, it was one of the first hints that perhaps better than
O{n logn) might be achievable.

Two changes are made to achieve this new bound. First, the sweep line
stops only at the r reflex vertices (and O{r) other vertices that we will not
specify here) rather than at all n vertices. Thus only O(r) vertices need to be
sorted. Second, the sweep line breaks into pieces, some of which may lag
behind others. The data structure representing the state of the polygon "at"
this now crooked sweep line is only of size O{r), so that processing each of
the O(r) "event" vertices costs O(logr) each. Of course, O(n) is still
needed to output the n — 3 diagonals. The result is an O(n + r log r)
algorithm.

Chazelle's Polygon Cutting Theorem. We remarked earlier that a naive
implementation of the proof of the triangulation theorem results in an
inefficient triangulation algorithm. The next algorithm we will discuss is in
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some sense a sophisticated implementation of the same idea. But rather
than depending on the triangulation theorem, it depends on Chazelle's
Cutting Theorem. We will present a specialized version of his more general
result (Chazelle 1982):

THEOREM 1.4 [Chazelle 1982]. After O{n log n) preprocessing, it is
possible to find, in O{n) time, a diagonal that divides the polygon into two
pieces Px and P2 that satisfy |Pj| < \P2\ < (2/3) |P| + 2 (where \Q\ indicates
the number of vertices of Q).

We must have that | i \ | + \P2\ = \P\ + 2. Solving this equation for \P2\
and substituting into the inequality shows that the theorem implies that
(1/3) \P\ < |i\ | . Thus the cutting theorem says that a preprocessed polygon
can be divided into nearly equal-sized pieces in linear time. This immedi-
ately leads to a recursive algorithm for triangulating a polygon: namely, find
a cutting diagonal as guaranteed by the theorem, and recurse on the two
pieces. If the polygon has fewer than seven vertices, stop the recursion (as
the theorem may result in fewer than three vertices in Px) and triangulate by
some brute-force method. Because the search for a cutting diagonal is
linear, we have the recurrence relation T(n) < 2T(2n/3) + O(n) for the time
complexity, whose solution is O(n logrc).

Sinuosity Algorithm of Chazelle and Incerpi. The only supralinear step
in the Garey et al. algorithm is partitioning into monotone pieces, which
costs O(n log n). Chazelle and Incerpi have shown how the monotone
partitioning can be improved to O(n log s), where s is the "sinuosity" of the
polygon (defined below) (Chazelle and Incerpi 1983,1984). The sinuosity
may be O(n), but it is "usually" very small. Their algorithm works by first
finding a "trapezoidization" of the polygon, from which it is easy to derive a
monotone partition. Indeed, Lee and Preparata's algorithm discussed in the
previous section can be viewed as computing a trapezoidization.

The trapezoidization Tr(P) of a polygon P is obtained by drawing a
horizontal line through every vertex, extended to the point where it first
crosses to the exterior of the polygon. Figure 1.23 shows an example. The
horizontal lines partition the polygon into trapezoids, or triangles, which
can be considered degenerate trapezoids. Each trapezoid T is "supported"
on its top and bottom sides by a vertex of P. The vertices v of P that violate
monotonicity in the >>-direction are those that lie on the interior of a
horizontal segment. Connecting each such v to the unique w that is the
other support vertex for T partitions P into pieces monotone with respect to
v. This is also illustrated in Fig. 1.23.

Chazelle and Incerpi compute the trapezoidization of a polygon by
divide-and-conquer. To do this, they first note that a trapezoidization may
be defined for any simple, oriented polygonal path, or a chain: it does not
have to be a closed polygon. The horizontal partition lines are simply
permitted to run to infinity if they meet no obstruction.

Given a polygon P defined by the verticesplt . . . ,pn in counterclockwise
order, let Px be the chain plf . . . , P[n/2\ and P2 the chain p^^j+i, . . . , pn.
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Fig. 1.23. A trapezoidization (dashed lines) leads to a monotone partitioning with the
addition of diagonals to "internal" vertices (dotted).

The divide-and-conquer algorithm recursively computes Tr{Px) and Tr(P2),
and then merges these two into Tr(P). Obviously all the cleverness is
embodied in the merge procedure.

Consider the example of Fig. 1.24. Starting from v1 = w1, the merge
processing walks along the chains vlt . . . , vm and wx, . . . , wm

simultaneously, stitching together the trapezoids to obtain the trapezoidiza-
tion for their union. The process has many similarities to merging two
sorted lists, but it is of course much more complicated. We will skip the
details, and just note one important point: it is possible for the processing to
take "short-cuts." For example, one can jump from va to vb on f\ without
examining any of the vertices in between, as P2 never crosses the vavb line.

vm=w,

Fig. 1.24. Stitching together trapezoids from separate chains to form a trapezoidization.
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We now define the sinuosity of a polygonal path p1} . . . , pk. Assume for
simplicity that no two adjacent vertices have the same y-coordinate. As i
moves from 1 to k — 1, the ray R through Pipi+1 may pass the horizontal
(positive x-axis) either counterclockwise (ccw) or clockwise (cw). The path
is called spiraling if R never passes the horizontal cw twice in a row, and
antispiraling if it never passes ccw twice in a row. Here by "twice in a row"
we mean two successive horizontal crossings, independent of the number of
chain vertices between these crossings. Thus a spiraling path winds ccw,
with perhaps some cw movements of less than 360°, and an antispiraling
path winds cw. It is easy to partition a simple polygon into maximal
spiraling and antispiraling chains in linear time. The number of chains is
somewhat (±1) dependent on the starting position. The maximum number
of chains over all starting positions for a polygon P is defined as the
sinuosity s of P. For example, the polygon in Fig. 1.25 has s = 1: it is a
spiral.

Chazelle and Incerpi have established that (a) the horizontal decomposi-
tion of any spiraling or antispiraling chain can be computed in linear time
using shortcuts, and (b) that this leads to an O(nlogs) algorithm for
triangulating a simple polygon of sinuosity 5. This result lent further
credence to the long-standing conjecture that O(n log n) is not the lower
bound on triangulation.

Triangulation Algorithm of Tarjan and Van Wyk. The conjecture
just mentioned was finally settled by Tarjan and Van Wyk, who found
an O(nloglogw) algorithm for triangulation (Tarjan and Van Wyk 1986).
As one might suspect from a problem so resistant to solution, their
algorithm is rather complex. It would take us very far afield into current
data structure theory to explain the algorithm in detail, so we will only
sketch it at a high level.

They start with the same observation used by Chazelle and Incerpi (and
made independently in (Fournier and Montuno 1984)): triangulation is
linear-time reducible to trapezoidization—that is, a triangulation may be

Fig. 1.25. A polygon with sinuosity 1: there are no two successive clockwise transitions across
the horizontal.
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constructed from a trapezoidization in linear time. Again similar to
(Chazelle and Incerpi 1983), Tarjan and Van Wyk construct the trapezoidi-
zation by divide-and-conquer. But they divide the polygon, not chains. At
any stage of the algorithm, a set S of subpolygons of P are maintained. A
polygon P' is removed from S, and a vertex vcut of P' is selected. A
horizontal line L is drawn through vcut, and P' is partitioned into pieces that
lie above and below L. This is a complicated step, and requires a novel use
of "finger search trees" (Brown and Tarjan 1980). The points at which P'
crosses L are found in the order in which they occur in a traversal of the
boundary of P', which is (in general) not the same as their left-to-right
sorted order along L. The intersection points can, however, be sorted in
linear time. This is another complicated step, and one of the keys to the
algorithm's efficiency. The linear sorting depends on the points forming a
"Jordan sequence" (Hoffman et al. 1985). After splitting and sorting, all
those pieces that are triangles or trapezoids are output; those that are
neither are added to S, and the process repeats.

Although it is unclear at this writing if this algorithm is of practical utility,
its theoretical impact is felt throughout computational geometry, since so
many algorithms depend on triangulation. Even improving on
O(ftloglogtt) would be a major theoretical advance. The fundamental
question of whether a linear-time triangulation algorithm is achievable
remains open at this writing.

1.4. CONVEX PARTITIONING

We saw in the preceding sections algorithms whose performance was
measured as a function of a variable (r and s) other than n, the number of
vertices of the polygon. This suggests asking Klee's original art gallery
question, but requesting the answer as a function of something besides n.
As a convex n-gon only needs 1 guard, not [n/3j, it makes sense to use a
variable that is a more accurate measure of the "shape" of the polygon. In
this section we investigate the art gallery question as a function of r, the
number of reflex vertices of the polygon.

We first note that r can be as large as n - 3 ; see Fig. 1.26. This figure

Fig. 1.26. Of a polygon's n vertices, as many as n — 3 may be reflex.
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shows that r no more captures the "shape" of the polygon than n does, since
only one guard is needed for this polygon regardless of the size of r.
Nevertheless, the pursuit of this issue will draw us into the important topic
of convex partitioning.

1.4.1. Theorems

Necessity

Superficially it appears that perhaps no more than roughly r/2 guards are
ever necessary to see the interior of a polygon of r reflex vertices, but the
"shutter" examples in Fig. 1.27 demonstrate that in fact r guards are
sometimes necessary.

Sufficiency

Intuition suggests that placing a guard at each reflex vertex suffices to cover
any polygon with r > 1 reflex vertices. That this is indeed the case can be
established by Chazelle's "naive" convex partitioning (Chazelle 1980).

LEMMA 1.5 [Chazelle 1980]. Any polygon can be partitioned into at most
r + 1 convex pieces.

Proof. The proof is by induction. The lemma is clearly true when r = 0. In
the general case, draw a ray from a reflex vertex bisecting the internal angle
up to its first intersection with the polygon's boundary. This ray divides the
polygon into two polygons with rx and r2 reflex vertices, respectively.
rx + r2 ^ r — 1, since the ray resolved at least one reflex vertex (it may have
resolved another at its point of contact with the boundary). Applying the
induction hypothesis yields r1 + l + r2 + l^r + l convex pieces. •

Fig. 1.27. "Shutter" shapes show that r guards can be necessary.
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THEOREM 1.5 [O'Rourke 1982]. r guards are occasionally necessary and
always sufficient to see the interior of a simple n-gon of r > 1 reflex vertices.

Proof. Necessity has already been established. For sufficiency, apply
Chazelle's naive convex partition lemma. Each convex piece must have at
least one reflex vertex on its boundary. Thus guards placed on every reflex
vertex see into each convex piece. •

We now turn to a discussion of algorithms for finding convex parti-
tionings.

1.4.2. Algorithms for Convex Partitioning

It is rather easy to compute the naive convex partition in O(rn) = O(n2)
time as follows (Chazelle 1980). For each reflex vertex, intersect every edge
of the polygon with the bisection of the reflex angle. Connect the reflex
vertex to the closest intersection point. Chazelle shows how this speed can
be improved to O(n + r2 \og(n/r)) time, and I believe a plane-sweep
algorithm can achieve O(n log n), but we will not present the details.

Because at most two reflex vertices can be resolved by a single cut, the
minimum number of convex pieces into which a polygon may be partitioned
is [Y/2] 4-1. Thus, if an optimal partitioning results in OPT pieces,
OPT> \rll\ + 1. The naive partition achieves no more than r + 1 <2OPT
pieces in O(n2) time. We will discuss two more algorithms, one faster but
with a poorer performance ratio, and one slower but optimal.

The first results from an observation of Hertel and Mehlhorn (1983).

THEOREM 1.6 [Hertel and Mehlhorn 1983]. Any triangulation of a
polygon can be converted into a convex partitioning of no more than 2r + 1
pieces by removing diagonals.

Proof. Let d be an internal diagonal of the triangulation incident with a
vertex v. Call d essential for v if its removal would result in a non-convex
interior angle at v. Then a reflex vertex cannot have more than two essential
diagonals incident to it: an angle smaller than 360° cannot be partitioned
into more than three intervals such that adjacent intervals span more than
180°. If each reflex vertex does have exactly two essential diagonals, and no
two reflex vertices share essential diagonals, then 2r of the triangulation
diagonals cannot be removed, resulting in a partition into 2r + 1 convex
pieces. •

Note that 2r + 1 < 4OPT. Although the performance ratio is lower, the
algorithm implied by the theorem runs in O(n log log n) time: O(n log log n)
for triangulation, and linear time for removal of inessential diagonals.

Finally, we briefly mention Chazelle's remarkable optimal algorithm
(Chazelle 1980; Chazelle and Dobkin 1985). Construction of an optimal
convex partition requires the introduction of "Steiner points": points that
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Fig. 1.28. An optimal convex partition may require interactions between the cuts resolving
several reflex vertices.

are not vertices of the original polygon.1 Such points were introduced by the
naive partitioning, but in a very controlled manner. The situation for
optimal partitions is more complicated, as illustrated in Fig. 1.28. This
complexity leads one to believe that perhaps the problem is NP-hard, and
indeed, we will see in Chapter 9 that many minimal partition problems are
NP-hard. Nevertheless, Chazelle was able to obtain an O(n3) optimal
algorithm using dynamic programming, and much else besides. His descrip-
tion fills 97 pages (Chazelle 1980), and we will make no attempt to
summarize it here.

Convex partitions will be revisited for three-dimensional polyhedra in
Chapter 10.

1. Convex partitions without Steiner points are discussed in Greene (1983).



ORTHOGONAL POLYGONS

2.1. INTRODUCTION

In this chapter we consider orthogonal polygons, an important subclass of
polygons that yield many interesting partitioning and art gallery theorems.
An orthogonal polygon is one whose edges are all aligned with a pair of
orthogonal coordinate axes, which we take to be horizontal and vertical
without loss of generality.1 Thus the edges alternate between horizontal and
vertical, and always meet orthogonally, with internal angles of either 90° or
270°. Orthogonal polygons are useful as approximations to polygons; and
they arise naturally in domains dominated by Cartesian coordinates, such as
raster graphics, VLSI design, or architecture.

The orthogonal art gallery theorem was first formulated and proved by
Kahn, Klawe, and Kleitman in 1980 (Kahn et al. 1983). It states that [n/A\
guards are occasionally necessary and always sufficient to see the interior of
an orthogonal art gallery room. Thus the constrained nature of an
orthogonal polygon permits covering with three-fourths as many guards as
are needed for unrestricted polygons. Several different proofs of this
theorem have been discovered, and several associated algorithms de-
veloped. As Fisk's proof of the unrestricted art gallery theorem eclipsed
Chvatal's original proof, so Kahn et al. 's proof has been eclipsed by simpler
proofs. But, as with Chvatal's proof, the original proof still retains
considerable interest in its own right. So we will start with Kahn et a/.'s
proof, which establishes a beautiful partitioning result that is as important
for orthogonal polygons as triangulation is for polygons: namely, that every
orthogonal polygon may be partitioned by diagonals between vertices into
convex quadrilaterals. The next section concentrates on establishing this
theorem, from which the orthogonal art gallery theorem follows easily.

1. These polygons commonly have been called "rectilinear" polygons in the literature, but
Griinbaum pointed out to me that "rectilinear" has the well-established meaning "charac-
terized by straight lines," so that every polygon is rectilinear. Other terms used include
"isothetic" and "rectanguloid."

31
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2.2. KAHN, KLAWE, KLEITMAN PROOF

2.2.1. Convex Quadrilateralization

That a polygon can be partitioned with diagonals into triangles is almost
obvious, perhaps because connecting any two vertices that can see one
another is a valid first step in forming a triangulation: no care is required.
Such is not the case with convex quadrilateralization: considerable care is
required. Grouping pairs of triangles from a triangulation is not sufficient, as
shown by Fig. 2.1a: no pairing of triangles in the illustrated triangulation
leads to a convex quadrilateralization. I believe the main difference is the
difficulty of finding "orthogonal ears." This is illustrated in Fig. 2.1b. It is
natural to consider the quadrilaterals (1, 2, 9,10), (3, 4, 5, 6), and (6, 7, 8, 9)
as "ears," but removing them leaves the non-convex quadrilateral
(2, 3, 6, 9). The unique convex quadrilateralization of this polygon is shown
in Fig. 2.1c, which shows that (6, 7, 8, 9) is not an ear, although (1, 2, 9,10)
and (3, 4, 5, 6) are. In general, convex quadrilateralization is not unique, as
demonstrated in Fig. 2.2.

Henceforth we will shorten "convex quadrilateralization" to "quadri-
lateralization"; the only quadrilateralizations that will be used in this book
are convex quadrilateralizations.

The concept that plays the role of an "ear" is what Kahn et al. call a
"tab." To define this, we must first study the neighbor relation. Let P be an
orthogonal polygon. Call a horizontal edge of P a top edge if the interior of
P lies below it, and a bottom edge if the interior lies above it; left and right
edges are defined similarly. A top edge T and a bottom edge B are
neighbors if:

(a) T and B can see one another (that is, there are points t and b on T
and B, respectively, such that tb is never exterior to P),

(b) there is no bottom edge B' higher than B such that T can see B',
and

(c) there is no top edge T' lower than T such that B see T'.

Note that the neighbor relation is symmetric by definition. Not every

Fig. 2.1. Neither triangle pairing (a) nor ear removal (b) can lead to the unique
quadrilateralization (c).
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a b

Fig. 2.2. Quadrilateralization is not unique.

horizontal edge has a neighbor, but if it does, it is clearly unique. So the
relation matches certain pairs of top and bottom edges; see Fig. 2.3 for
examples. We will see later that there must be at least one pair of
neighboring edges in any orthogonal polygon.

A tab is a pair of neighboring edges connected to each other by a vertical
edge. In Fig. 2.3a, (ab, cd) and {ef, gh) are tabs. What makes tabs
important for convex quadrilateralization is that they can only be quadri-
lateralized in one way: in Fig. 2.3a, the quadrilaterals abed and efgh must be
part of any convex quadrilateralization. This will be proved in Lemma 2.3.

a

c

— - - —

b

^»

Fig. 2.3. Neighboring top and bottom edges; (ab, cd) and (ef, gh) are tabs.
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Fig. 2.4. An orthogonal polygon lying on several levels.

Unfortunately, it is not true that every orthogonal polygon has a tab; Fig.
2.3b shows an example that does not. Moreover, the concept can obviously
be extended to define vertical tabs, but it is not even true that every
orthogonal polygon must have either a horizontal or a vertical tab: Fig. 2.2
provides a counterexample. We will see below that Kahn et al. were forced
to use a more complex structural characterization to achieve their result.

We now proceed with the proof. It is long and complicated. The proof is
inductive, showing that any orthogonal polygon is reducible to a "smaller"
one, which is convexly quadrilateralizable by the induction hypothesis. It is
shown that any orthogonal polygon has at least one of three structural
features:

(1) neighboring edges that do not form a tab;
(2) a "good" tab; or
(3) a "tab pair."

(These terms will be defined later.) The presence of these features is the
"hook" that allows the reduction: for polygons without holes, the reduction
amounts to cutting the polygon into two pieces, convexly quadrilaterizing
each, then suturing the two quadrilateralizations together at the cut to form
a convex quadrilateralization of the original.

The proof is remarkably general: it not only holds for orthogonal
polygons, but also for orthogonal polygons with orthogonal holes, and also
for orthogonal polygons that self-overlap in such a way that they can be
considered to lie on several levels connected by "ramps." Figure 2.4 shows
an example. A precise technical definition of the class is: a orthogonal
polygon on a Riemann surface corresponding to a function with singularities
outside of itself. We note that the triangulation theorem could be similarly
extended to the analogous class of unrestricted polygons.

Geometric Lemmas

The first lemma permits degeneracies to be ignored. Define an orthogonal
polygon to have its vertices in general position if no two vertices have the
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same horizontal or vertical coordinate. In the remainder of the section we
will often shorten "orthogonal polygon" to "polygon" when there is no
possibility of confusion.

LEMMA 2.1. A polygon P that is not in general position has the same
quadrilateralization as any "nearby" P' that is in general position.

Proof.2 Consider a sequence of orthogonal regions with the same number
of edges as P, all in general position, that converge to P; distance between
regions is measured by the Hausdorff metric. Since there are only finitely
many quadrilaterizations of these regions, each region in the "tail" of the
sequence must have the same convex quadrilaterization. Since convexity is
closed under taking limits, this quadrilateralization must also be a convex
quadrilaterization for P. •

We will follow (Kahn et al. 1983) in first demonstrating the reductions,
and then establishing the structural characterization that guarantees re-
ducibility. We first need a geometric fact about neighboring edges. If
a = (ax, ay) and b = (bx, by) are two points, let a#b be the point (ax, by),
and let D(a, b) be the rectangle or box with vertices a, b, a#b, b#a. Figure
2.5 illustrates these definitions. If H and V are a horizontal and vertical
edge, respectively, then H#V represents the point on the intersection of the
lines containing H and V.

LEMMA 2.2. Let T and B be neighboring top and bottom edges of a
polygon P. Then there is a left edge L left of both T and B, whose top
endpoint is at least as high as T and whose bottom endpoint is at least as
low as B, and a right edge R with analogous properties, such that
D(L#B, R#T) is completely interior to P.

Proof. Since T and B are neighbors, a point t on T sees a point b on B.
We can clearly chose these to be interior points of T and B. For any point p
interior to P, define the left-bounding edge to be the first vertical edge hit
by a horizontal leftward ray from p. Choose L to be the rightmost of the
left-bounding edges for the points of tb (we will see below that all the points
of tb have the same left-bounding edge, L).

Assume without loss of generality that t is left of b as illustrated in Fig.
2.6. L must be to the left of t, since otherwise, if L were between t and b, T

9 a # b = ( a x , bv )

= ( a x , c i y )
x ,c iy

Fig. 2.5. Definition of the " # " and " • " symbols.

2. This proof assumes mathematical knowledge not used elsewhere in the book; it may be
skipped without loss of continuity.
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Fig. 2.6. If T and B are neighbors, then • (L # 5, /? # T) is empty.

would see some bottom edge above the top of L, and so above B,
contradicting the neighborliness of T and B (this claim is justified in more
detail in Kahn et al. (1983)).

Let / be any point on L between T and B. Then / must be visible to both t
and b. For suppose otherwise: then there must be a point a of P on tl that
blocks visibility. Let /3 be the point on tb horizontal from a, as illustrated in
Fig. 2.6. Then somewhere between a and /3 there must be a vertical edge of
P, which is the left-bounding edge for fi, contradicting the fact that L is the
rightmost left-bounding edge.

Therefore L must have its top at or above T, for otherwise T could see a
bottom edge higher than B, contradicting the neighbor relation. Similarly,
L's bottom must be at or below B. Exactly analogous arguments establish
the same properties for R, the leftmost right-bounding edge.

Finally, we show that Q = n(L#B, R#T) is empty. Any vertical edge
that intersects the interior of Q must have an endpoint in Q, for otherwise it
would block the visibility of t for either L or R. So we can restrict discussion
to horizontal edges. Let H be a horizontal edge that intersects Q. Draw a
line of visibility from t to L or R (say R) such that it passes above H at some
point h, as illustrated in Fig. 2.6. Let H' be the horizontal edge of P that
minimizes the vertical distance to a point on th [H' may be the same as if].
Then if' is a bottom edge visible to T from t, contradicting the neighbor
relation. •

This geometric fact implied by the neighbor relation leads to the crucial
property of tabs.

LEMMA 2.3. If ab and cd are the horizontal edges of a tab, then any
quadrilaterization must include the quadrilateral abed.

Proof. Lemma 2.2 establishes that the situation is as illustrated in Fig. 2.7;

Fig. 2.7. A tab (ab, cd) forces the inclusion of quadrilateral abed.
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here L = ac. Any vertex visible to a, aside from b, c, and d, must lie below
d. But connecting a to such a point means that c cannot be part of any
convex quadrilateral. Similar arguments show that connecting c to any point
above b blocks a from being part of a convex quadrilateral. Thus the
quadrilateral abed is necessary. •

This is the key to the reductions: once a tab is isolated, the local
quadrilaterization is known. We now proceed to describe the three
reductions, after which the conditions supporting the reductions will be
established.

The Three Reductions

We have yet to describe the quantity that is reduced by the reductions, and
that forms the counter for the induction proof. A simple count of the
number of vertices is not adequate because the reductions do not necessarily
reduce the number of vertices. However, they either reduce the number of
vertices or the number of holes. This suggests defining an orthogonal
polygon Px of h1 holes and n1 vertices as smaller than P2 with h2 and n2 holes
and vertices if (1) h1<h2> or (2) h1 = h2 and n1<n2. Thus, for polygons
without holes, "smaller" just means fewer vertices. Finally, define a
polygon to be reducible if, whenever every smaller polygon P' is quadri-
lateralizable, then so is P.

LEMMA 2.4. If P has a pair of neighboring edges that do not form a tab,
then P is reducible.

Proof. Let the top edge T = ab and the neighboring bottom edge B = cd
with a to the left of c. Let b' = d#b and c' = a#cas illustrated in Fig. 2.8b.

Fig. 2.8. Reduction for non-tab neighboring edges ab and cd.
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Note that the rectangle R = D(a, d) = D(c', b') is empty. Modify P to a
multilevel polygon P' by introducing two tabs, one formed by the vertices
a,b', d, c, and the other by the vertices d, c', a, b. In the special case when
P has no holes, P' consists of two separate pieces P1 and P2, as illustrated in
Fig. 2.8a. In any case, if P' is disconnected, then both Px and P2 are smaller
than P, since each has no more holes than P but fewer vertices. We claim
that if, on the other hand, P' is connected, then P' has fewer holes than P,
and so is smaller. This claim may be established by the following argument.

Let T be a point immediately above T and /3 a point immediately below B.
Both T and /3 are exterior to P, since T is a top edge and B a bottom edge.
Now r and (5 are in the same connected component of the exterior of P' , as
they may be connected by a path that skirts either of the new tabs. But %
and j8 cannot be in the same connected component of the exterior of P:
since P' is connected, there must be a path within P that encircles either r
or /3, so that the cutting performed to make P' does not disconnect.
Therefore, the reduction has reduced the number of holes of P by 1, and
therefore P' is smaller.

Now assume the induction hypothesis: that all polygons smaller than P
are quadrilateralizable; this guarantees that the reduced P' is quad-
rilaterizable. By Lemma 2.3, each of the introduced tabs can be quadri-
laterized in just one way, as shown in Fig. 2.8a: ab'dc and bac'd must be
included. Now, in P, replace these two quadrilaterals by abdc as shown in
Fig. 2.8b, and otherwise use the remainder of the quadrilateralization of P'.
The result is a quadrilateralization of P. We have shown therefore that P is
reducible, establishing the lemma. •

The second reduction is based on the presence of certain types of tabs.
This reduction is more complicated, and requires several definitions. Call a
tab an up tab if its bottom edge extends horizontally further than its top
edge, and a down tab if its top extends further than its bottom. Of the two
bounding vertical edges guaranteed for a tab by Lemma 2.2, one connects
the top to the bottom edge; call the other the facing edge of the tab. The top
endpoint of the facing edge is called the step point and the adjacent
horizontal edge the step edge for an up tab; for a down tab the step point
and edge are at the bottom of the facing edge. These definitions are
illustrated in Fig. 2.9.

Although tabs can be quadrilaterized in just one way, the mere presence
of a tab does not lead immediately to a reduction. We classify tabs as either
good or bad, depending on whether they do or do not lead to a reduction.
Let ab and cd be the top and bottom edges of an up tab, and 5 its step point,
as in Fig. 2.9. Then an up tab is bad if (1) its step edge is a bottom edge,
and (2) D(b, s) is empty. These conditions are illustrated in Fig. 2.9. A
good tab is one that is not bad. Thus a good up tab is one either whose step
edge is a top edge, or whose step edge is a bottom edge but there is an edge
within D(b, s), and therefore necessarily a top edge. We will see below that
the presence of a top edge in D(b, s) permits the polygon to be cut near the
tab in such a way as to establish reducibility.
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step point

s» step edge

facing
edge

Fig. 2.9. Definitions of tab components; the tab (ab, cd) is bad.

LEMMA 2.5. If P has a good tab, then P is reducible.

Proof. Assume that the tab is an up tab; the argument for a down tab can
be obtained by turning every figure upside-down. Let the vertices be labeled
as in Fig. 2.9: ab and cd are the top and bottom edges of the tab, e is
adjacent to b, and s is the step point of the tab. Since the tab is good, either
some edge intersects the interior of \3(b, s), or the step edge is a top edge.
In the former case let xy be the lowest edge that intersects n(b, s), and in
the latter let xy be the step edge. In either case, let x be left of y.

The analysis proceeds with two cases: x is left of b, in which case x must
also be above e (Fig. 2.10a), or x is right of b, in which case it may be above
or below e (Figs. 2.10b and 2.10c). In all three figures, it may be that y =s
so that the step edge is a top edge.

Case 1 (x is left of b (Fig. 2.10a).). Replace xy and the chain e, b, a, c, d
with two tabs, one down tab defined by the chain y, b#y, b#c, d, and one
left horizontal tab defined by the chain x, y, y#b, b, e. Call the modified
polygon P'. HP has no holes, then these alterations separate P into two
polygons P1 and P2, as illustrated in Fig. 2.11a; otherwise the tabs overlap
on different levels in P'.

Assume that any polygon smaller than P can be quadrilateralized. If P
has no holes, then P' is clearly smaller, as both Px and P2 have fewer
vertices. If P has holes, then P' has one fewer hole. This can be seen by
considering two exterior points r and /3, with r above xy and /3 below cd;
the argument is identical to that used in Lemma 2.4. Thus in either case P'
is smaller and can therefore be quadrilateralized. It will be easier to assume

b c

Fig. 2.10. Three good tab cases.
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Fig. 2.11. Good tab reduction for Fig. 2.10a.

henceforth that P has no holes, although the argument is identical in the
general case. By Lemma 2.3, the introduced tabs may only be quad-
rilateralized in one way: the quadrilateral (y, y#b, b, e) is included in Px

and (y, b#y, b#c, d) is included in P2, as illustrated in Fig. 2.11a. Note that
the diagonal ey cuts off Px and yd cuts off P2 in such a manner that the two
quadrilateralizations can be put together as shown in Fig. 2.11b: the tab
quadrilaterals are removed and replaced by yebd, and abed is added. The
result is a quadrilateralization of P, establishing that P is reducible.

Case 2 (x is right of b (Figs. 2.10b and 2.10c).). The two situations
illustrated in Figs. 2.10b and 2.10c are handled with the same reduction; we
will use the case where x is above e (Fig. 2.10b) as illustrated. The
replacements made are the same as in Case 1, but the argument is a bit
different. Perform the same alterations as in Case 1, resulting, when P has
no holes, in Px and P2 as illustrated in Fig. 2.12a. As in Case 1, P' is smaller,
and so can be quadrilateralized. The tab introduced to P2 requires the
inclusion of the quadrilateral (y, b#y, b#c, d), just as in Case 1, but
(y, y#b) and eb are no longer neighbors in Ply and so do not form a tab.
Nevertheless, we claim that either the diagonal ey or bx is a part of any
quadrilaterization of Pi.

Suppose to the contrary that y#b lies on more than one quadrilateral.
Then a diagonal from y#b must either (1) go to the left of eb, blocking b
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Fig. 2.12. Good tab reduction for Fig. 2.10b.

from being a vertex of any quadrilateral, or (2) go above xy, blocking any
quadrilateral from containing v. Both (1) and (2) follow from the fact that
D(b, y) is empty, since xy was chosen to be the lowest edge that intersects
U{b, s).

Thus either (e, y, y#b, b) or (b, x, y, y#b) is in the quadrilateralization
of Pj. In the former case, we make the same replacements as in Case 1:
replace the end quadrilaterals in Pl and P2 with yebd. In the latter case
replace with ydbx. In both cases add abed. The result is a quad-
rilateralization of P, illustrated in Fig. 2.12b, establishing that P is
reducible. •

The third and final reduction depends on the presence of a tab pair: an up
tab U and a down tab D such that the step edge of U is the bottom edge of
D and the step edge of D is the top edge of U. Thus, as shown in Fig. 2.13b,
the tabs "face" one another without intervening edges. Reduction is
comparatively straightforward in this case.

LEMMA 2.6. If P contains a tab pair, then P is reducible.

Proof. Let ab, cd form the up tab, and fg, hi form the down tab, as
illustrated in Fig. 2.13b. Move ab up to form the tab («#/ , / ) , cd, and move
fg down to form the tab (b, g#b), hi. If P' is disconnected, then two pieces
JF\ and P2 (Fig. 2.13a) are both smaller than P. UP' is connected, then P'
has one less hole than P, as can be seen by considering paths from an
exterior point A just left of ac and an exterior point p just right of ig. Thus
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Fig. 2.13. Tab pair reduction.

P' is smaller. The induction assumption then guarantees that each is
quadrilateralizable, and Lemma 2.3 ensures the introduced tabs have a
unique quadrilateralization, as shown in Fig. 2.13a. These can be replaced
by abed, bdfh, and hifg in P, producing a quadrilateralization of P (Fig.
2.13b), and establishing that P is reducible. •

We now have established that if any one of the three structural features is
present in P, then P is reducible—that is, the quadrilateralization theorem
can be established by induction. We now turn to proving that in any
orthogonal polygon, at least one of the three structures is present. The
proof is by contradiction: we show that if P is irreducible, and therefore
contains no instances of the three reducible structures, then P must have an
infinite number of edges.

An important tool in the proof will be an association of every horizontal
edge E with a tab tab(E) as follows. If £ is a top edge, define n(E) to be the
highest bottom edge below E that is visible to E; if E is a bottom edge,
n(E) is the lowest top edge above E visible to E. Clearly n(E) is
well-defined for any E, so it may be composed an arbitrary number of
times. Note that if n{n{E)) = n\E) = E, then E and n{E) are neighbors.
Since P has a finite number of edges, the sequence E, n{E),
n\E), ..., nk{E), nk+\E), nk+\E), . . . must be finite. Since visibility is
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n«(E)

n(E)

Fig. 2.14. The chain induced by n(E) leads to tab(E).

symmetric it must be the case that ni+2(E) falls between or at the heights of
n\E) and ni+1(E): otherwise ni+\E) would map to nl{E), which would be
closer and visible by symmetry. Therefore, the sequence cannot terminate
with n\E) = nJ\E) with j-i>2; it must terminate with nk(E) = nk+2(E)
for some k, as illustrated in Fig. 2.14. As we observed above, this implies
that nk{E) and nk+1(E) are neighbors. Because we are assuming that P is
irreducible, it cannot have any neighboring edges that do not form a tab, by
Lemma 2.4. Therefore, nk(E) and nk+\E) form a tab, which is designated
as tab(E). Moreover, since an irreducible polygon cannot contain a good
tab by Lemma 2.5, tab{E) must be a bad tab.

We now prove that the relationship between E and tab{E) illustrated in
Fig. 2.14 is the only possible configuration.

LEMMA 2.7. Let E be a horizontal edge, tab(E) its tab, and F the facing
edge of tab{E). Then if E is a top edge, E falls horizontally between F and
the top edge of tab(E), and if E is a bottom edge, between F and the
bottom edge of tab(E).

Proof. Without loss of generality let the tab tab{E) be an up tab with top
edge nk+\E) and bottom edge nk(E) as illustrated in Fig. 2.15, and
consider the top edge nk~\E). If it overlaps horizontally with nk+\E), then
it must see a bottom edge A that is higher than nk(E), and if it extends left
of F, then it must see a bottom edge B that is higher than nk(E).3 The same
argument can be applied to nk~z(E), and so on, backwards to E. •

So far we have not explored the implications of the fact that since P is
irreducible, each tab(E) must be a bad tab. The next lemma depends
crucially on this constraint.

nk"1(E)

n*(E)

Fig. 2.15. E falls between F and the top edge of tab(E).

3. See Kahn et al. (1983) for a detailed proof of these claims.
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x E

t o b ( E )

Fig. 2.16. There must exist a bottom edge h(E) in the illustrated situation.

LEMMA 2.8. Suppose P is irreducible and that E is a bottom edge such
that tab(E) is a down tab not containing E. Then there is a bottom edge
h(E) that is not part of a down tab.

Proof. Let the top and bottom edges of the tab tab(E) be ab and cd, and
let F be the facing edge, s the step point, and S the step edge, as illustrated
in Fig. 2.16. Since tab(E) is a bad tab, (1) 5 is a top edge, and (2) D(s, c) is
empty. The second condition implies that E is below S. Now E cannot see
S, since tab(E) must fall between E and n(E). Thus a line xz from E to 5
must intersect an edge of P. Let v be the intersection closest to x. Clearly
the edge through y cannot be a bottom edge, since x sees y, nor can it be a
top edge, for the same reason that E cannot see S. So there must be a
vertical edge through y. Let h{E) be the horizontal edge adjacent to the
upper end point of this edge. If h(E) were a top edge, then either x sees it
or one even lower, contradicting the fact that abed is tab(E) and F faces this
tab. Thus h(E) is a bottom edge. However, h(E) could not be the bottom
edge of a down tab, for then x could either see the top of this tab, or some
edge even lower. •

Application of this lemma repeatedly will show that irreducible polygons
must have an infinite number of bottom edges. We must also employ the
restriction that irreducible polygons cannot contain a tab pair.

LEMMA 2.9. If P is irreducible, then P has an infinite number of edges.

Proof. Suppose to the contrary that P has a finite number of edges. Then,
as described previously, the sequence E, n(E), n2{E), . . . must lead to a
tab U, which we can assume without loss of generality to be an up tab. Let
ab be the top edge of the highest up tab U of P, and let S be t/'s step edge.
We seek to establish that there is a bottom edge E that is above ab and not
part of tab(E); then Lemma 2.8 will be applied to obtain a contradiction.

Because U is a bad tab, its step edge 5 must be a bottom edge. Now,
since S is above ab, tab(S) is above U, and since U is the highest up tab,
tab(S) is a down tab. So if S is not part of tab{S), then S can serve as E. So
assume that 5 is the bottom edge of the down tab tab{S). Let d be the step
point of U, e the upper endpoint of the vertical edge incident to b, / the step
point of tab{S), and let E be the horizontal edge meeting e. U and tab{S)
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Fig. 2.17. U is the highest up tab, and 5 its step edge.

cannot form a tab pair (since P is irreducible), so fi=b. Since U is a bad
tab, \3(b, d) is empty, which implies that E is a bottom edge. Since tab{S) is
also a bad tab, U(d,f) is empty, so e must be lower than /. These
relationships are illustrated in Fig. 2.17.

We now show that E is not part of tab(E). Suppose to the contrary that E
is the bottom edge of tab(E), and let T be its top edge. Since tab(E) must
be a down tab, there is a point x of T strictly between b and d horizontally.
x must be above S since D(b, d) is empty, and it must be below the top of
tab{S), since otherwise E and T would not be neighbors. But then x lies
within the rectangle determined by tab{S), guaranteed to be empty by
Lemma 2.2. This contradiction establishes that E is not part of tab(E).

Now we may apply Lemma 2.8 to E (since tab(E) is a down tab) to obtain
a bottom edge h(E) above E that is not part of a down tab. Since again
tab(h(E)) must be a down tab, h(E) is not part of tab(h(E)), and the
lemma is again applicable. Proceeding in this manner we obtain an infinite
sequence of distinct edges E, h(E), h2{E), . . . , thus establishing that P has
an infinite number of edges. •

We can summarize the argument in the following theorem.

THEOREM 2.1 [Kahn, Klawe, and Kleitman 1980]. Every orthogonal
polygon P (with or without holes) is convexly quadrilateralizable.

Proof. By Lemma 2.1 it suffices to consider polygons whose vertices are in
general position. The basis of the induction proof is established by a
rectangle, which is itself a convex quadrilateral. Assume then that all
polygons smaller than P can be quadrilateralized. Lemma 2.9 establishes
that P must contain an instance of at least one of the following structures:

(1) A pair of neighboring edges that do not form a tab.
(2) A good tab.
(3) A tab pair.

Lemmas 2.4, 2.5, and 2.6 show that each of these features permits P to be
reduced to a smaller P' in such a way that a quadrilateralization for P'
(available by the induction hypothesis) extends to a quadrilateralization for
P. D
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2.2.2. The Orthogonal Art Gallery Theorem

With Theorem 2.1 available, an easy proof of [n/4\ sufficiency for coverage
of an orthogonal polygon without holes is possible along the same lines as
Fisk's proof of [n/3\ sufficiency for general polygons.

THEOREM 2.2 [Kahn, Klawe, and Kleitman 1980]. [n/4\ guards are
sometimes necessary and always sufficient to cover the interior of an
orthogonal polygon of n vertices.

Proof. Necessity is established by the orthogonal version of Chvatal's
comb example: one guard is needed for each tong in Fig. 2.18.

For sufficiency, construct a graph G from a quadrilateralization of P by
adding both diagonals to each quadrilateral, as illustrated in Fig. 2.19.
Although it is not immediately obvious, G is planar, and therefore
4-colorable. We can establish 4-colorability without invoking the Four Color
Theorem as follows.

Let Q be the dual of the quadrilateralization of P: each node of Q
corresponds to a quadrilateral, and two nodes are connected by an arc if
their quadrilaterals share a side. Then Q must be a tree, for if it contained a
cycle, this would imply that P has a hole. Now proceed by induction.
Remove any leaf quadrilateral q, leaving the tree Q'. Since q has degree 1,
it may be removed by cutting along a single diagonal d of the quad-
rilateralization. Four-color Q' by the induction hypothesis, and reattach q
to Q'. Two of q's vertices are assigned different colors at the reattachment
points, the endpoints of d, and the other two vertices of q can be assigned
the remaining two colors.

Fig. 2.18. Orthogonal version of Fig. 1.2 establishes [n/4\ necessity.

\
^ /'/ '
A
/

/ / 1

' / '
/ /

/ y
^ 1/

A

/

/ '

/
I

Fig. 2.19. A 4-colorable graph derived from a quadrilateralization by adding all quadrilateral
diagonals.
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Since the quadrilaterals cover P and are convex, placing guards at the
vertices assigned the least frequently used color will cover the interior of P.
As this color must be used no more than [n/4\ times, the theorem is
established. •

Note that the quadrilaterals clipped in this proof are "orthogonal ears";
thus every orthogonal polygon has at least two such ears, providing an
orthogonal counterpart to Theorem 1.3.

We will see in Section 2.5 below that the powerful quadrilateralization
theorem is not necessary to prove [n/4j sufficiency, but it does seem to be
an essential tool in many other proofs. We now turn to an algorithm for
constructing a convex quadrilateralization.

2.3. SACK'S QUADRILATERALIZATION ALGORITHM

2.3.1. Introduction

The proof presented in the preceding section does not immediately lead to
an efficient algorithm. The first such algorithm is due to Sack (1984), and
although it has been superseded to a certain extent by Lubiw's algorithm
(Section 2.4), it remains interesting because it is an exact parallel of Lee and
Preparata's monotone partitioning algorithm (Section 1.3.2). In addition,
when supplemented by proofs of correctness, it can be seen as an alternative
proof of the quadrilateralization theorem. Most of the proofs will only be
sketched in this section; the reader is referred to Sack's thesis (Sack 1984)
for more thorough proofs.

His algorithm factors the problem into three subproblems: partitioning
into monotone polygons, quadrilateralization of monotone polygons, and
quadrilateralization of "pyramids." This latter problem (first analyzed in
Sack and Toussaint (1981)) is solved repeatedly during the quadri-
lateralization of a monotone polygon. We will describe the algorithm
"bottom up," starting with pyramids.

2.3.2. Pyramid Quadrilateralization

Define a (vertical) histogram as an orthogonal polygon with one horizontal
edge (the base) equal in length to the sum of the lengths of all the other
horizontal edges (Edelsbrunner et al, 1984). A (vertical) pyramid is then
defined as a vertical histogram that is monotone with respect to the vertical
direction.4 It is easily seen that a pyramid must consist of two (perhaps
empty) "staircases" as illustrated in Fig. 2.20. It is not surprising that these
highly specialized polygons are easy to quadrilateralize.

Label the reflex vertices on the left staircase ll} . . . , la-x from top to

4. This is equivalent to being horizontally convex, which requires that the polygon meet every
horizontal line in a single segment.
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\

Fig. 2.20. Quadrilateralization of a pyramid by list merging.

bottom, and label the left endpoint of the pyramid base la. Similarly let
rx, . . . , rb-1 be the reflex vertices in the right staircase sorted by height, and
let rb be the right endpoint of the base.

Now merge the two sorted lists of vertices; for the example in Fig. 2.20
the result is

Finally, for each vertex lt in the list, draw a diagonal to the next r}- in the list,
and similarly for each rj} draw a diagonal to the next /,-. We will show that
this procedure quadrilateralizes the pyramid in linear time. First we present
a more formal description of the algorithm.

Algorithm 2.1 (Pyramid Quadrilateralization)
(1) Form two lists la, . . . , l2) l\ and rb, . . . , r2, r1} sorted bottom to top,

of the reflex vertices in the left and right staircases, with la and rb the
endpoints of the base.

(2) Merge these two sorted lists; call the result L.
(3) target ^head(L).

L<-tail(L).
while L not empty do
begin

if head(L) on same staircase as target
then target^-head(L)
else output diagonal (head(L), target)

L«-tail(L).
end

It is clear that this algorithm only requires linear time: the stairway lists
can be constructed (1) in linear time, merging (2) takes only linear time,
and the while loop (3) removes an element with each pass, and so also
consumes just linear time.

We now turn to correctness. Each pair of adjacent reflex vertices on one
staircase is connected to a common vertex on the other staircase. Thus the
pieces of the induced partition are quadrilaterals. All the convex vertices
are included in these quadrilaterals, and every reflex vertex is the source for
a diagonal. Thus the quadrilaterals cover the polygon. It only remains to
show that the quadrilaterals are convex.
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B

Fig. 2.21. /, is connected to a vertex in B.

Let ^ be a reflex vertex on the left stair, as illustrated in Fig. 2.21, and let
Yj be one of the target vertices on the right stair to which it is connected by
the algorithm. Since ry is on the right stair, it cannot be in region A of the
figure. Since r; is later in the list L than /,-, it is lower and cannot be in region
C. Thus Yj is in region B, and so the concavity at /, is "broken." Since every
reflex concavity is broken, the resulting quadrilaterals are all convex. This
completes the proof of correctness.

In the next section we will need a slightly stronger result. Define a
pseudo-pyYamid5 as a monotone pyramid whose horizontal step edges may
be slanted—that is, non-horizontal but sloping upwards maintaining
monotonicity—and whose base edge may be sloped in either direction as
long as both endpoints are below the lowest reflex vertex; see Fig. 2.22. It is
easy to establish that Algorithm 2.1 also works for pseudo-pyramids, and we
will use this result in the next section.

2.3.3. Orthogonal Monotone Quadrilateralization

Sack's monotone quadrilateralization algorithm makes a single pass over the
polygon from top to bottom (the polygon is assumed to be monotone with
respect to the vertical). Let the horizontal edges encountered in such a pass
be ex,..., en, with e1 highest. The algorithm will sometimes treat one of
the diagonals it outputs as one of the eh a slanted horizontal edge. In either
case, the action taken depends on whether e, is a top edge or a bottom edge.
Top edges are pushed onto a stack, forming the non-vertical edges of a
pseudo-pyramid. Bottom edges cause one or two diagonals to be output,
and perhaps the pyramid algorithm to be called to quadrilaterahze the
pyramid contained in the stack.

Edges will be identified as touching the left, the right, or both chains. Of

Fig. 2.22. A pseudo-pyramid.

5. Sack's nomenclature is "worn-pyramid."
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two edges a and b touching the left chain only, a is said to extend further
inside than b if tf's right endpoint is right of 6's right endpoint; the term is
similarly defined for edges touching the right chain only.

The algorithm is presented next, followed by an example and analysis.

Algorithm 2.2 (Monotone Quadrilateralization).
Sort horizontal edges from top to bottom; let elf

Push ex onto stack S.
i^2
while S not empty or i =£ n do
begin

if i = n then
begin

Push e, on S.
Call pyramid algorithm for 5.
exit.

end.

en be the result.

case et

(1) top segment:

(2)

Push e, on 5.

Pop 5.bottom segment: e
case e
(A) e and et touch same chain:

Join other ends of e and et by diagonal d.
if e touches both chains or e extends further inside
than e,

then
begin

Push d on S.

end
else et<—d {NB: i is not incremented}

(B) e and e, are on opposite chains:
Join e and e, with diagonals dx (higher) and d2.
Push dx on 5.
Call pyramid algorithm for S;
Push d2 on 5;

end

An example illustrating the execution of the algorithm is shown in Fig.
2.23; Table 2.1 shows the stack after processing et. Note that an upside-
down pyramid is quadrilateralized directly, without calling the pyramid
algorithm (e.g., ex through e4); only pyramids with bases at the bottom are
pushed onto the stack (e.g., diagonals I through K). This asymmetry makes
it clear that the upright pyramids do not have to be handled with a special
algorithm, but factoring the problem this way does make it easier to
understand (and prove correct).
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Fig. 2.23. A partition produced by the monotone quadrilateralization algorithm.

Table 2.1

1

2

3

4

5

D

6

7

8

9

10

G

11

12

13

14

15

16

17

1

A

B

C

5C

C

E

7E

FE

9 F E

9 F E

FE

H E (pyr)

I

111

JI

13 JI

14 13 JI

15 14 13 JI

K15 14 13 JI (pyr)

L

17 L (pyr)
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We now sketch an inductive proof of correctness; a more detailed proof
may be found in Sack (1984). The induction hypothesis is the conjunction of
these three statements:

(1) The stack S contains only the non-vertical edges of an upright
pseudo-pyramid.

(2) No two edges in S contain points with the same y-coordinate.
(3) The next edge examined by the while loop, ei} is connected by a

vertical edge to the lowest edge of S on the same chain.

These statements are trivially true initially. If et is a top edge (Case 1), the
stack is augmented, and by (3), this is a proper augmentation of a pyramid.
Clearly statement (3) remains true, either because ei+1 is on the chain
opposite that of et, or because ei+1 is directly connected to et by a vertical
edge.

If e, is a bottom edge on the same chain as the stack top e (Case 2A), then
regardless of whether e touches both chains, or extends further inside than
eh (3) guarantees that adding a single diagonal d will cut off a convex
quadrilateral. If e extends further inside, then d represents a "wearing
down" of the pyramid, and is properly pushed. Otherwise d acts just like a
bottom edge. It is easily verified that in either case the truth of statements
(2) and (3) is maintained.

If et is a bottom edge on the chain opposite that touched by the stack top
e (Case 2B), then by properties (2) and (3), the region from the top of e to
e, is empty, and et and e can be connected by a pair of diagonals. The upper
diagonal connects the two chains of the pyramid in S, and the stack is
emptied by a call to Algorithm 2.1. The lower diagonal forms a new
pyramid top.

This completes the proof of correctness. The algorithm clearly requires
just linear time: sorting the horizontal edges can be accomplished by a
linear merge of the edges in the two monotone chains, and the while loop
makes at most as many passes as there are edges and diagonals, which is
also linear. Finally, the pyramid algorithm is itself linear.

As with the generalization of pyramid to pseudo-pyramid, it will be
important in the next section to generalize the class of polygons for which
Algorithm 2.2 applies from orthogonal monotone to pseudo-monotone
polygons. These are polygons that are:

(1) monotone with respect to the vertical,
(2) composed of vertical edges alternating with non-vertical edges,

which must be either horizontal or upwardly slanting to satisfy (1),
(3) and such that the shadow of a slanted edge contains no vertices,

where the shadow of a slanted edge is defined to be the set of points
of the polygon visible to e by a horizontal line segment that is
nowhere exterior to the polygon, but not including the endpoints
of e.

This third requirement (similar to clause (2) of the induction hypothesis) is
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Fig. 2.24. A non-quadrilateralizable monotone polygon.

needed to avoid polygons such as the one shown in Fig. 2.24 that do not
admit a convex quadrilateralization.

It is easily established that Algorithm 2.2 will work on pseudo-monotone
polygons. The next section presents an algorithm for partitioning an
orthogonal polygon into pseudo-monotone pieces.

2.3.4. Partitioning into Monotone Polygons

Define a bottom peak to be a bottom horizontal edge whose endpoints are
both reflex vertices; define a top peak similarly for top edges. Then it is
clear that an orthogonal polygon fails to be monotone with respect to the
vertical direction precisely when it contains top or bottom peaks: these
peaks play the role of up and down cusps in a general polygon (Section
1.3.2). Sack's algorithm is exactly analogous to Lee and Preparata's: the
polygon is cut at each bottom peak by adding diagonals to the closest
horizontal edge above it, and similarly for top peaks. The geometric lemma
that permits the diagonals to be added is as follows.

LEMMA 2.10. Let ab be a bottom peak, and let cd be the lowest
horizontal edge above ab that is partially visible to either a or b. Then:

(a) If cd is a top edge, then the rectangle bounded by ab, cd, and the
facing edges of this neighboring pair (see Lemma 2.2), is empty. See
Fig. 2.25a.

(b) If cd is a bottom edge, then ab and cd do not overlap horizontally,
and the rectangle bounded by ab, the visible endpoint of cd, and the
"facing" vertical edges, is empty. See Fig. 2.25b.

Proof. (Sketch). Part (a) is equivalent to Lemma 2.2. For part (b), if cd

W/,
III,'//ia

c

m
b

d

7/WFf/t/MA

a b
Fig. 2.25. Empty rectangles above bottom peaks.
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and ab overlapped horizontally, then there would have to be an edge lower
than cd and visible to a or b, contradicting the assumption that cd is the
lowest. An argument similar to that used in Lemma 2.2 can be used to
establish the emptiness of the rectangle illustrated in Fig. 2.25b. •

Because the algorithm is so similar to Lee and Preparata's Algorithm 1.2,
we will only present a high-level version here; a detailed version may be
found in Sack (1984). The reason that Lee and Preparata's algorithm cannot
be used without modification is that the monotone pieces resulting from
their algorithm do not necessarily satisfy condition (3) in the definition of
"pseudo-monotone.''

Algorithm 2.3 (Pseudo-Monotone Partitioning of an Orthogonal Polygon).
Sort the horizontal edges, top to bottom; let e1} . . . , en be the result.
for i = 2 to n do

if et is a bottom peak
then e <— lowest horizontal or slanted edge above and visible to et.
if e is a top edge

then Join e and et into a convex quadrilateral
else Join the visible endpoint of e to the closest endpoint of e,.

{Data structure manipulation here.}
else if et is a top peak then {Similar to above.}

This algorithm makes a single pass over the polygon. The algorithm could
be simplified by handling the bottom peaks on a top-to-bottom pass and the
top peaks on a bottom-to-top pass (as is done in Algorithm 1.2), but we will
maintain this more complicated form to simplify the correctness discussion.
Note that the step that joins e and et into a convex quadrilateral is a special
case of the first reduction (of neighboring edges that do not form a tab) in
the Kahn, Klawe, Kleitman proof presented in the previous section.

An example of the partition created by the algorithm is shown in Fig.
2.26, where upward pointing arrows resolve bottom peaks, and downward
arrows resolve top peaks.

We now argue that this algorithm partitions an orthogonal polygon into
pseudo-monotone pieces in O(n log n) time. Assume as an induction
hypothesis that all bottom and top horizontal peaks above a certain height

Fig. 2.26. A partition produced by the monotone partition algorithm.
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a b

Fig. 2.27. The diagonals chosen by the algorithm pass through empty (shaded) regions.

have been resolved by the algorithm, and that the resulting monotone
chains above this height satisfy the pseudo-orthogonal criteria:

(1) Vertical and slanted edges alternate.
(2) The shadow of each slanted edge contains no vertices.

Consider now the next peak encountered, and assume it is a bottom peak
et = ab (the argument for a top peak is slightly different and will not be
presented).

Let cd be edge e selected by the algorithm. There are two cases,
illustrated in Fig. 2.27.

Case A {cd is a top segment). Since cd satisfies condition (2) above, both c
and d project horizontally to the same vertical edge. By a slight modification
of Lemma 2.10, the entire shaded region of Fig. 2.27a is empty, and abed
forms an internal convex quadrilateral.. Diagonals ac and bd satisfy both
properties (1) and (2) of the induction hypothesis. Compare Fig. 2.8: in Fig.
2.27a, ab and cd also are non-tab neighboring edges.

Case B {cd is a bottom segment). The situation is illustrated in Fig. 2.27b.
Assume that the diagonal added by the algorithm is ad. This diagonal is
easily seen to satisfy condition (2) of the induction hypothesis, but it does
not satisfy condition (1), as now ad and dc are consecutive slanted edges.
The solution is to replace a by d#a in the upper polygon. Then the upper
polygon satisfies conditions for a pseudo-orthogonal monotone polygon, and
can therefore be quadrilateralized by Algorithm 2.2. Is is possible to show
(see Sack (1984)) that this algorithm will not use d#a as the endpoint of a
diagonal, and that the unique quadrilateral that includes this vertex remains
convex when d#a is replaced by a.

This completes our sketch of the correctness of Algorithm 2.3. Its time
complexity is O{n log n) for the same reasons Lee and Preparata's has this
bound: the initial sorting of the horizontal edges requires O{n log n), and
there are O{n) insertions and deletions into a dictionary data structure. I
believe that Tar j an and Van Wyk's trapezoidalization algorithm mentioned
in Section 1.3.2 can be used to improve the speed of Sack's algorithm to
O{n log log n).
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2.4. LUBIW'S PROOF AND ALGORITHM

2.4.1. Introduction

In this section we present a clever and succinct proof of the convex
quadrilateralization theorem due to Lubiw (1985). Her proof leads rather
directly to another O(n log n) algorithm. In fact, we present two proofs: one
for orthogonal polygons without holes, and one for those with holes. The
latter obviously encompasses the former, but the proof for polygons without
holes is so elegant that it deserves separate consideration.

Both proofs have the same structure, and depend on the following
observation. From a quadrilateralization of an orthogonal polygon (with or
without holes), remove one quadrilateral. What remains are perhaps several
polygons each of which is quadrilateralizable. But these polygons are not (in
general) themselves orthogonal. Thus there is a broader class of polygons
beyond orthogonal to which the theorem applies; no one has characterized
this class to date. Lubiw identified such classes for orthogonal polygons both
with and without holes. For each member of the class, there is a
quadrilateral whose removal results in smaller polygons within the same
class. The quadrilateralization theorem follows immediately by induction.

Kahn, Klawe, and Kleitman's proof (Section 2.3) stays within the class of
orthogonal polygons at all times; Lubiw's proof starts with a wider class
more suited to the removal of quadrilaterals. The result is a simpler proof.

2.4.2. Orthogonal Polygons without Holes

Define the dual of a quadrilateralization of a polygon as in Section 2.2.2: a
graph with a node associated with each quadrilateral, and an arc between
two nodes if the corresponding quadrilaterals share a diagonal.6 As
previously mentioned, the dual graph of a quadrilateralization of a
orthogonal polygon without holes is a tree, for the same reason that the
dual of a triangulation of a polygon without holes is a tree (Lemma 1.3).
Removal of one quadrilateral from a quadrilateralization of a polygon
therefore disconnects the polygon into quadrilateralizable pieces, each of
which is orthogonal except for one slanted edge. This observation motivates
the following definition.

A 1-orthogonal polygon is a polygon of no holes with a distinguished edge
e called the slanted edge, such that the polygon satisfies four conditions:

(1) There are an even number of edges.
(2) Except for possibly e, the edges are alternately horizontal and

vertical in a traversal of the boundary.
(3) All interior angles are less than or equal to 270°.
(4) The nose of the slanted edge contains no vertices.

6. These graphs will be studied further in the next chapter.
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Fig. 2.28. The nose of a slanted edge.

The nose of a slanted edge e is the right triangle toward the inside of the
polygon whose hypotenuse is e; the nose includes the interior of e but
excludes the remainder of the boundary. See Fig. 2.28. Clearly the
requirement that the nose not contain vertices implies that it is completely
empty, since all other edges must be vertical or horizontal and could not
intersect the nose without including their endpoint.

An orthogonal polygon is 1-orthogonal, where e may be any edge.
Violation of any of the four conditions can lead to non-quadrilateralizable
polygons, as is illustrated in Fig. 2.29.

THEOREM 2.3 [Lubiw 1985].
quadrilateralizable.

Any 1-orthogonal polygon P is convexly

Proof. The proof is by induction. If P has just four edges, then it has
(perhaps after rotation by 90°) two horizontal edges and one vertical edge
by (2). Regardless of the orientation of the slanted edge, P must be convex.
This establishes the basis of the induction.

Assume now that P has more than four edges. We will show that there
exists a removable quadrilateral, a convex quadrilateral whose removal
disconnects P into smaller 1-orthogonal polygons.

Properties (1) and (2) jointly imply that the two edges adjacent to the
slanted edge e = ab are either both horizontal or both vertical. The interior
angle requirement (3) then implies that one of the two situations illustrated
in Fig. 2.30 holds (perhaps after rotation and/or reflection). In both cases, a

3 4

Fig. 2.29. Four unquadrilateralizable polygons, each violating one of the 1-orthogonal
conditions.
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Fig. 2.30. The slanted edge ab in standard orientation; the shading indicates the interior of
the polygon.

top edge has b as its left endpoint. The removable quadrilateral has a and b
as two of its vertices. We now specify the other two vertices c and d. Vertex
c is the leftmost then highest vertex within the region R1 shown in Fig. 2.31.
Rx is closed along the left and top, does not include the two left corners,
and is open elsewhere. Since R1 contains at least the vertex at the other end
of the top edge E incident to b, c must exist. If c is not this other endpoint,
then because it is leftmost, it is at the top of a vertical edge. Thus it is either
at a corner as in Fig. 2.32a, or at the other end of E as in Figs. 2.32b and
2.32c.

Fig. 2.31. Definition of vertex c and region R1.

Corner d of the removable quadrilateral is specified according to two
cases. Define region R2 as shown in Fig. 2.33. It is closed on the top and
right, excludes a and c, and is otherwise open. Define d to be, if it exists,
the highest then rightmost vertex in R2. If either of the situations illustrated
in Fig. 2.32a or 2.32b obtains, then R2 contains at least the vertex at the
lower end of the vertical edge F incident to c, and so d is defined. In these
cases, if F =£ cd, then because d is highest, it is at the top of a vertical edge,
and because rightmost, it is at the right of a horizontal edge, and thus at a
corner.

If the situation shown in Fig. 2.32c holds, however, d may be the left
endpoint of a bottom edge G in R2 (marked as d' in Fig. 2.34a) or R2 may
contain no vertex at all (Fig. 2.34b). In either of these situations, define the
region R3 as illustrated; it is closed on the left and bottom, excludes the two
left corners, and is otherwise open. Now define d to be the leftmost then
lowest vertex in R3. Since R3 includes at least the right endpoint of G, d
must exist.

a b c

Fig. 2.32. Either c is at a corner (a) or at the other end of E (b and c).
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Fig. 2.33. Definition of vertex d and region R2.

Having now defined vertices c and d under all circumstances, remove the
quadrilateral abed. First note that it is convex: the angle at b is convex
because c is in /?x; the angle at a is convex because d is in R2 or R3; the
angles at c and d are convex both when R2 and R3 are applicable.

Removal of abed potentially leaves three polygonal regions, bounded by
be, cd, and ad. Each of these diagonals is clearly the only slanted edge in its
respective polygon; thus condition (2) in the definition of 1-orthogonal is
satisfied for each. Condition (3), that all angles are less than or equal to
270°, is easily seen to hold by examining the cases considered above, which
are gathered in Fig. 2.35. That the nose of each slanted edge is empty
(condition (4)) is guaranteed by choice of c as leftmost then highest, and the
similar constraints on d. These constraints force the shaded regions in Fig.
2.35 to be empty. In all cases, the nose of each slanted edge is empty.

Finally, to prove that each remaining polygon has an even number of
edges (condition (1)), we use the following clever counting argument of
Lubiw. Define the endpoints of top, bottom, left, and right edges as
partitioned into two types as specified in Fig. 2.36a. Endpoints of a slanted
edge are given a type by the adjacent horizontal or vertical edges. It should
be clear that each vertex of a 1-orthogonal polygon is assigned an
unambiguous type by this scheme since, for example, a convex corner
formed by a bottom and a left edge can only be a type 1 vertex. In any
traversal of a 1-orthogonal polygon, the vertices alternate in type. Now note
that a is type 1 and b is type 2 (Fig. 2.30); the cases shown in Fig. 2.35 show
that c is always type 1 and d always type 2. Thus each of the diagonals be,
cd, and ad has both type 1 and type 2 endpoints (see Fig. 2.36b), and

a b

Fig. 2.34. Definition of vertex d and region R3.
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Fig. 2.35. The noses of the diagonals of the removable quadrilateral are all empty (shaded
regions).

therefore the polygon pieces bounded by these diagonals maintain the type
1/2 alternation. Thus they must have an even number of vertices.

We have therefore shown that each of the pieces remaining is a
1-orthogonal polygon. Clearly they have fewer vertices than P, so the
induction hypothesis guarantees they are quadrilateralizable. Joining their
quadrilateralizations to abed yields a quadrilateralization of P, establishing
the theorem. •

An example of a quadrilateralization obtained by repeatedly removing
the removable quadrilateral defined in this theorem is shown in Fig. 2.37. In
the original polygon, edge 12 is chosen as the (degenerate) slanted edge.
Rotations and reflections are often necessary to orient the slanted edge to
match Fig. 2.30, but the procedure is entirely deterministic.

We now turn now to the more difficult case of orthogonal polygons with
holes.

a b

Fig. 2.36. Vertex types; the shading in (a) represents the polygon interior.
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Fig. 2.37. Quadrilateralization by repeated deletion of a removable quadrilateral. The
notation "-90°, Y" means that the figure is rotated 90° clockwise and then reflected in the
Y-axis; the remaining arrow labels may be interpreted similarly.

2.4.3. Orthogonal Polygons with Holes

Because the dual of a quadrilateralization of a polygon with holes is not a
tree, the removal of one quadrilateral may introduce more than one slanted
edge into the remainder. For example, removal of any quadrilateral from
the polygon shown in Fig. 2.38 introduces two slanted edges. Thus the class
of 1-orthogonal polygons will not be sufficient to prove the more general
theorem by the same technique.

Here Lubiw uses the same basic insight (independently) employed by
Sack with his pseudo-pyramids and pseudo-monotone orthogonal polygons:
if the horizontal edges of an orthogonal polygon are slanted, and some
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Fig. 2.38. Removal of any quadrilatenral produces two slanted edges.

further conditions are satisfied, then the resulting polygon is still quad-
rilateralizable. This leads to the following definition:

A pseudo-orthogonal polygon is one that satisfies three conditions:

(1) Every other edge in a traversal is vertical. The other edges are called
slanted; note a slanted edge may be horizontal.

(2) All interior angles are less than or equal to 270°.
(3) The shadow of any slanted edge contains no vertices.

The shadow of an edge e is, as defined in Section 2.2, the horizontal
projection of e. For the precise purposes of her proof, Lubiw defines the
shadow to be open on the bottom if e is a left edge, and open on the top if a
right edge, and in either case not including e's endpoints; see Fig. 2.39.
Closing the open boundaries does not lead to unquadrilateralizable poly-
gons, but the definition as stated leads to precise meshing of regions in the
proof. A horizontal edge is defined to have no shadow; thus all orthogonal
polygons (with or without holes) are pseudo-orthogonal.

Fig. 2.39. The shadow of an edge; the shading indicates the interior of the polygon

THEOREM 2.4 [Lubiw 1985]. A pseudo-orthogonal polygon P is con-
vexly quadrilateralizable.

Proof. The proof is by induction. If P has just four edges, then two must
be horizontal by (1), and regardless of the slant of the slanted edges, P is
convex. This establishes the basis step.

If P has more than four edges, then we show that P has a removable
quadrilateral: one whose removal leaves smaller polygons which are
themselves pseudo-orthogonal. Toward this end, define the upper neighbor
u of a vertex v as the lowest then rightmost vertex above v that is visible to
v, but not connected to v by a slanted edge, and strictly above v if v is on a
top edge.7 Not every vertex has an upper neighbor: for example, a convex
corner at the junction of a top edge and a right edge has none.

We can now specify a removable quadrilateral. Throughout the remain-
der of the proof we will use x < y to mean that x is lower than y, or they

7. These latter qualifications will not be needed in the proof, but only in the algorithm
correctness discussion to follow.
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b b

a b

C <J

Fig. 2.40. b always has an upper neighbor; the shading indicates the interior of the polygon.

have the same height and x is right of v. Let ab with a < b be a bottom
edge, and let b's upper neighbor be c. If c is on a top edge cd, then afr and
cd define a removable quadrilateral.

We must establish that this quadrilateral always exists. First we show that
b always has an upper neighbor. If ab is not horizontal, then the vertical
edge incident to b must be above b to satisfy the 270° requirement (2) (see
Figs. 2.40a and 2.40b). The other endpoint of this edge guarantees that b
has an upper neighbor. If ab is horizontal, then b is at the left. If the angle
at b is convex (Fig. 2.40c) then the situation is as above. If the angle is
reflex (Fig. 2.40d), then there clearly must be at least two vertices above
and visible to b, so again b has an upper neighbor.

Second, we need to show that there is an ab as specified with fr's upper
neighbor on a top edge. Let ab with a < b be the bottom edge with b
maximum among all bottom edges with respect to " < " . Thus b is the
uppermost upper endpoint of all the bottom edges. Then fr's upper neighbor
c cannot be on a bottom edge. Since every vertex has a bottom or top (i.e.,
a slanted) edge incident to it by (1), c must be on a top edge.

Having shown that the quadrilateral always exists, we now show that it is
removable. Let A be the set of points vertically between b and c, excluding
those right of b and left of c, as illustrated in Fig. 2.41. Since c is the upper
neighbor of b, A contains no vertices. Let d be the other end of the top
edge containing c. If d < c, then it must be that d < b to avoid A. But this
would put b in the shadow of dc, violating condition (3). Thus we must have

Fig. 2.41. The region A between b and its upper neighbor c.
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Fig. 2.42. The removable quadrilateral in all its orientations. The horizontal solid and dashed
edges represent the closed and open boundaries of B.

c<d. This leads to four cases, as illustrated in Fig. 2.42. Let B be the union
of A and the shadows of ab and cd. Then B is empty and so the
quadrilaterals illustrated in the figure are each internal to P.

Next we show that the removable quadrilateral is convex. If ab is not
horizontal, then the angle at a is clearly less than 180°, and the angle at b is
less than 180° because the vertical edge incident to b must extend upwards
to satisfy (2). If ab is horizontal, then both angles are less than 180° since c
and d are both above ab. Exactly analogous arguments show that the angles
at c and d are less than 180°, thereby establishing that the quadrilateral is
convex.

Removal of the quadrilateral introduces two new slanted edges in each
case of Fig. 2.42. Notice that in each case, the shadow of these slanted

\ >-

/

/

1

2 . ,

4

" \ 7

Fig. 2.43. Quadrilateralization by repeated deletion of removable quadrilaterals. The
quadrilaterals are numbered in the order in which they are removed. The dashed arrows
represent the upper neighbor relation.
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edges is in B and so is empty, thus satisfying condition (3). Since vertical
edges are incident to a, b, c, and d, the alternation of vertical and slanted is
maintained (1). Finally, since angles less than or equal to 270° are being
subdivided by the removal, condition (3) holds for the remainder. Thus the
removal leaves pseudo-orthogonal pieces. Applying the induction hypothe-
sis to these pieces, and merging the resulting quadrilateralizations with the
removed quadrilateral, provides a quadrilateralization for P and establishes
the theorem. •

An example of repeated application of the theorem to an orthogonal
polygon with two holes is shown in Fig. 2.43. In the next section we show
that this procedure can be implemented in O(n logn) time.

2.4.4. Lubiw's Algorithm

The proof in the preceding section leads to a surprisingly straightforward
O(n log n) algorithm for quadrilateralizing a pseudo-orthogonal polygon.
First, the upper neighbors of all vertices are found in O(n log n) time by a
procedure nearly identical to Lee and Preparata's monotone partitioning
algorithm (Section 1.3.2). Then quadrilaterals are removed as in Theorem
2.4 in linear time. The reason this simple approach works is the remarkable
fact, proved by Lubiw, that the upper neighbors do not change when
quadrilaterals are removed. If they did, recomputation would be necessary,
and it would be very difficult to achieve O(n logn) time.

Because the algorithm is so simple and similar to others discussed
previously, it will only be sketched. However, its correctness will be proved
in detail.

The first step of the algorithm is to find the upper neighbor of every
vertex. Note the similarity between the connection of a vertex to its upper
neighbor and the connection of a cusp to the closest visible vertex above it
that is used in Lee and Preparata's monotone decomposition algorithm, or
Sack's algorithm 2.3. Upper neighbors may be found in a single plane sweep
in the same way that all upward cusps can be cut in a single sweep. The
details differ in only minor ways; see Lubiw (1985) for a precise exposition.

The second step of the algorithm is to make a list L of all bottom edges,
sorted bottom to top by their uppermost then leftmost endpoint. This can
be accomplished during the same sweep that computes upper neighbors.

The final step of the algorithm is to remove the uppermost edge ab in L,
identify the upper neighbor c of its upper endpoint b, and remove the
removable quadrilateral specified in Theorem 2.4. This bottom edge ab
satisfies the conditions of the theorem because it is the highest bottom edge.
Moreover, the (at most) two new bottom edges introduced by the removal
of the quadrilateral are above all other bottom edges in L, and so are placed
the end of L.

What remains to be established is that the upper neighbors computed in
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the first step remain valid throughout the execution of the algorithm.
Lubiw's precise statement of this property is the following lemma.

LEMMA 2.11. Let P' result from P by repeated removal of quadrilaterals
according to Theorem 2.4. Then if ab is a bottom edge of P' with a < b, the
upper neighbor c of b in P' is the same as the upper neighbor of b in P.

Proof. Let bx be the vertical edge incident with b in P'. There are three
possible relationships between a, b, and x, as illustrated in Fig. 2.40: x may
be below b only if ab is horizontal (Fig. 2.40d); otherwise it must be above
(Figs. 2.40a, 2.40b, and 2.40c). The vertical edge incident to a vertex is only
removed with a quadrilateral when the vertex itself is removed; thus bx is
also the vertical edge incident to b in P.

Let c be the upper neighbor of b in P. Let A be the union of the two
shadows of the chord be towards the left and right. Because c is an upper
neighbor of b, A is devoid of vertices. The only way that c could not be the
upper neighbor of b in P' is if the removal of some quadrilateral Q blocks
the line of visibility be. Since A is empty, such a Q must contain a vertex
y < b and a vertex z>c. \ib itself is not a vertex of Q, then it falls within a
shadow of one of <2's edges, inside the region B in the proof of Theorem
2.4, a contradiction. So b must be a corner of Q.

Consider now two cases. Suppose b is on the top edge forming Q. Then
either b is at the right of a horizontal edge (Fig. 2.44a) or it is the highest
endpoint of the top edge (Fig. 2.44b). Note that in the former case, the
definition of upper neighbor implies that the left endpoint of the horizontal
edge incident to b is not the upper neighbor of b, by requiring that the
upper neighbor be strictly above b in this case. In either case, Q must lie
below b, and there can be no vertex z of Q, z>c.

Finally, suppose b is on a bottom edge forming Q. Then examination of
Fig. 2.42 shows that b is either removed or converted to a lowest vertex of a
bottom edge. And once it is this type of vertex, further quadrilateral
removals can only reduce the internal angle, keeping it lowest on a bottom
edge, contradicting our assumption that it is highest on a bottom edge in P'.

Thus no such obstructing Q will be removed by the algorithm, and
therefore the upper neighbor relation remains fixed throughout. •

As with Sack's algorithm, I believe Tarjan and Van Wyk's trapezoidaliza-
tion algorithm improves the speed of Lubiw's algorithm to O(n loglogrc).

a b

Fig. 2.44. Removal of Q cannot block b from its upper neighbor.
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2.5. PARTITION INTO L-SHAPED PIECES8

Although the convex quadrilateralization theorem is deep and beautiful, it
is not the only means of proving that [n/4\ guards are sufficient to cover an
orthogonal polygon, nor the only avenue for placing the guards in
O(n log n) time. In this and the succeeding section, a different proof and
algorithm are offered, based on a partition into L-shaped pieces rather than
convex quadrilaterals. In this section we reprove the orthogonal art gallery
theorem (Theorem 2.2), using the L-shaped partition introduced in
O'Rourke (1983b).

2.5.1. Main Inductive Argument

The proof is phrased in terms of r, the number of reflex vertices of the
orthogonal polygon, rather than n, the total number of vertices. This
rephrasing is justified because there is a fixed relationship between r and n:

LEMMA 2.12. In an orthogonal polygon of n vertices, r of which are
reflex, n = 2r + 4.

Proof. Let c be the number of vertices at which the internal angle is JT/2;
clearly, n = c + r. Since the sum of the internal angles of a simple polygon is
(n — 2)TT, and since the angle at each reflex vertex is 3JT/2,

(n - 2)JT = C(JT/2) + r(3n/2).

Solving for c and substituting into n=c + r yields n = 2r + 4. •

Since [n/4\ = L(2r + 4)/4| = [r/2\ + 1, Theorem 2.2 can be stated as
follows:

THEOREM 2.5 \r/2\ + 1 guards are necessary and sufficient to cover the
interior of an orthogonal polygon of r reflex vertices.

The "comb" example (Fig. 2.18) establishes occasional necessity; an
alternate sufficiency proof follows.

Define a cut of an orthogonal polygon as an extension of one of the two
edges incident to a reflex vertex through the interior of the polygon until it
first encounters the boundary of the polygon (see Fig. 2.45). A cut
"resolves" its reflex vertex in the sense that the vertex is no longer reflex in
either of the two pieces of the partition determined by the cut. Clearly a cut
does not introduce any reflex vertices. The induction step of the proof cuts
the polygon in two, and applies the induction hypothesis to each half. This
will yield the formula of the theorem if a cut can be found such that at least
one of the halves contains an odd number of reflex vertices. The only
difficult part of the proof is establishing that such an odd-cut always exists.
This sketch will now be formalized.

8. An earlier version of this section appeared in O'Rourke (1983b), © 1983 Birkhaiiser
Verlag.
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Fig. 2.45. A cut partitions a polygon into two pieces of L and R reflex vertices; since the cut
resolves one reflex vertex, r - L + R + 1.

Proof of the Theorem

The theorem is clearly true for r < 1: a single guard suffices. So assume that
r > 2 and that the theorem holds for all r' < r. Consider now two cases.

Case 1 (There exists a cut that resolves two reflex vertices). This case
occurs when two reflex vertices can "see" one another along a vertical or
horizontal line. Cut the polygon in two along this line, and let L and R be
the number of reflex vertices in the two pieces produced. Since r =
L + R + 2, the formula to be proved is

I//2J 2)/2j + 1 > |L/2J + [R/2\ + 2.

Applying the induction hypothesis to each half yields a coverage of both
polygons (and so the entire original polygon) with [L/2\ + 1 + [R/2\ +1
guards, which, by the above calculation, is less than or equal to the formula
to be established.

Case 2 (No two reflex vertices can see one another along a vertical or
horizontal line). Lemma 2.17 below will establish that in this case, there
exists an odd-cut: a cut such that one of the two pieces has an odd number
of reflex vertices. Let such a cut be chosen, and let L and R be the number
of reflex vertices in the halves, with R odd. As one reflex guard is resolved
by the cut, r = L + R + l. The formula of the theorem can therefore be
written as

I//2J + 1 = [(L + R + 1)/2J + 1 > [L/2J + [(R - l)/2j + 2.

Applying the induction hypothesis to each half yields coverage by [L/2J +
1 + [ ( / ? - l)/2j + 1 (since R is odd), which, by the above calculation, is less
than or equal to the formula to be proved. •

2.5.2. Existence of Odd-Cuts

The existence of odd-cuts will now be established. First note that an odd-cut
may not exist if reflex vertices can see one another along horizontal or
vertical lines (see Fig. 2.46), but that this falls under Case 1 of the proof
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L = 2

R = 0

n = 12

r 4

Fig. 2.46. A polygon that does not admit an odd-cut, but that permits a single cut to resolve
two reflex vertices.

above. Therefore, in this section it will be assumed that the vertices of the
polygon are in "general position" in the sense that no cut can resolve two
reflex vertices. Second note that the existence of an odd-cut is trivial if r, the
total number of reflex vertices, is even: any cut partitions the reflex vertices
according to r = L + R + l, so one of L or R must be odd and the other
even. When r is odd, either L and R are both even or both odd; the task is
to show that a cut can be found such that they are both odd. Finally note
that a horizontal odd-cut does not always exist: Fig. 2.47 shows an example
with r = 5. In this case, only a vertical odd-cut exists. Thus cuts in both
directions must be considered; call a horizontal cut an H-cut and a vertical
cut a V-cut.

The proof depends on a particular orthogonal partitioning of the polygon,
which will now be defined for H-cuts. Call a reflex vertex H-isolated if the
other endpoint of its incident horizontal edge is not reflex, and otherwise
call it a member of an H-pair. Partition the polygon by forming an H-cut at
each reflex vertex that is a member of an H-pair (see Fig. 2.48); the only
reflex vertices not resolved in this partitioning are H-isolated vertices. This
decomposition is a partition into pieces monotone with respect to the v axis,
as was used in Section 2.3. It will be proved that either an H-odd-cut exists
or there is precisely one H-isolated vertex. The proof depends on a rather
close analysis of the structure of this partition, which will be explored in
terms of its region adjacency graph, called its H-graph.

Each piece of the partition corresponds to a node of this graph, and node
A is connected by an arc directed to node B iff (1) A and B are adjacent
pieces, separated by an H-cut, and (2) the H-pair corresponding to the
H-cut lies on the boundary of the A piece. See Fig. 2.48. The following
lemma classifies the nodes according to their incident arcs.

n =14
r - 5

Fig. 2.47. A polygon that has no horizontal odd-cut.
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Fig. 2.48. The H-graph associated with a polygon records region adjacency in the partitioned
formed by cutting at each H-pair member.

LEMMA 2.13. The H-graph corresponding to the above defined partition
of an orthogonal polygon can have just four types of nodes (see Table 2.2).

Table 2.2

Name Total Degree Incoming Arcs Outgoing Arcs

leaf
branch
source
sink

1
3

2 or 4
2

1
1
0
2

0
2

2 or 4
0

Proof. The general position assumption prevents a single cut linking two
reflex vertices. Thus each region can have at most two H-pairs and therefore
four H-cuts on its boundary. Thus the degree of a node is less than or equal
to 4. The definition of "arc" implies that a node cannot have just one
outgoing arc. Thus a degree 1 node must be a leaf. A degree 2 node can
have two outgoing (source) or two incoming (sink) arcs; one outgoing arc is
not possible. A degree 3 node must be a branch, again because one
outgoing is not possible. A degree 4 node must have two H-pairs on its
boundary, which implies that all four arcs are outgoing. •

It will now be shown that the graph for a polygon that does not admit an
H-odd-cut must have a very special structure.

LEMMA 2.14. If a polygon's H-graph contains a sink node, then it admits
an H-odd-cut.
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Fig. 2.49. A sink region 5 always permits an odd-cut.

Proof. Let S be the region corresponding to a sink node, and let C+ and
C_ be the upper and lower H-cuts on the boundary of S. Let S contain k
H-isolated vertices, and let the total number of reflex vertices in the portion
of the original polygon above C+ (not including the vertex forming C+) be
u. See Fig. 2.49.

If u is odd, then C+ is an H-odd-cut. If u is even, a cut at the highest
H-isolated vertex in S (if k > 0) or C_ (if k = 0) is an H-odd-cut. •

Thus, if a polygon does not admit an H-odd-cut, it cannot have any sink
nodes. This implies that such a graph has just a single source node, as two
source nodes can only interlink via sinks. Thus the graph is a tree with a
source root node, and otherwise binary directed towards the leaves.

LEMMA 2.15. If a polygon does not admit an H-odd-cut, then it has
exactly one H-isolated vertex located in its sole source region.

Proof. First it will be shown that all leaf and branch nodes must be devoid
of H-isolated vertices. The proof is by induction on the number of arcs to
the nearest leaf node, which we call the frontier distance.

Suppose some leaf L contains k > 0 H-isolated reflex vertices. Let C be
the H-cut corresponding to its single incoming arc (see Fig. 2.50). Then if k
is odd, C is an odd-cut, and if k is even, then the H-isolated vertex in L
closest to C is an odd-cut. This establishes the basis of the induction.

Suppose now that all leaf and branch nodes with frontier distance d' <d
have no H-isolated vertices, and consider a branch node B at distance d. Let
C be the H-cut corresponding to its single incoming arc, and let k > 0 be the
number of H-isolated vertices in B. If k is odd, then C is an odd-cut, since
by the induction hypothesis none of the descendants of B have any
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Fig. 2.50. If a leaf region L has k >0 H-isolated vertices, then it admits an H-odd-cut.

H-isolated vertices, and otherwise the reflex vertices come in H-pairs. If k is
even, then the H-isolated vertex in B closest to C can form an odd-cut.

Finally, it will be shown that the single source region S must have exactly
one H-isolated vertex to avoid an H-odd-cut. Suppose S contains an even
number k of H-isolated vertices, and let C be a cut corresponding to one of
5"s outgoing arcs (see Fig. 2.51). Then C is an odd-cut, since it resolves one
reflex vertex of an H-pair, and otherwise all other reflex vertices are either
in the even k H-isolated vertices or they come in H-pairs. If k is odd and
greater than 1, then the second closest one to C forms an odd-cut. Thus
there must be exactly one H-isolated vertex. •

Clearly Lemmas 2.13-2.15 holds for V-cuts as well as H-cuts. Thus, if a
polygon does not admit an H-odd-cut nor a V-odd-cut, then it must have a
single H-isolated vertex h and a single V-isolated vertex v, both located in
source regions of the H- and V-graphs, respectively. That these conditions
are impossible to achieve is shown by the following lemma.

LEMMA 2.16. A polygon of r > 3 reflex vertices cannot have exactly one
H-isolated vertex in a region corresponding to a source node of its H-graph,
and exactly one V-isolated vertex in a region corresponding to a source
node of its V-graph.

Proof. Let h and v be the H- and V-isolated vertices, respectively. All
reflex vertices besides h and v (there is at least one such since r > 3) are

k=3 H-isolated

Fig. 2.51. A source region S admits an H-odd-cut if it contains k # 1 H-isolated vertices.
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Fig. 2.52. Reflex vertices that are members of both H- and V-pairs form a spiral chain whose
end-points are either H- or V-isolated.

members of both an H-pair and a V-pair, else they would be isolated. This
implies that they are all adjacent, forming a contiguous chain of reflex
vertices. This chain cannot close upon itself without forming a hole,
contradicting the assumption that the polygon has no holes. The polygon is
therefore a spiral (having a single concave chain) whose endpoints are h and
v (see Fig. 2.52). But then h is in a leaf region of the H-graph and v in a leaf
region of the V-graph, contradicting the requirement that they be located in
source regions. •

The existence of odd-cuts is now established:

LEMMA 2.17. An orthogonal polygon with an odd number r > 3 of reflex
vertices, no two of which can see one another along a vertical or horizontal
line, admits an odd-cut.

This completes the proof of Theorem 2.5.9 This proof easily extends to
"multi-level" orthogonal polygons connected by ramps, as used in Theorem
2.1, but it does not immediately extend to orthogonal polygons with holes.
This latter case will be considered in Chapter 5.

2.6. ALGORITHM TO PARTITION INTO L-SHAPED PIECES10

The proof described in the previous section does not translate directly into
an algorithm, because of the difficulty of finding odd-cuts. Nevertheless, we
now show that, with the addition of a few new ideas, it can be implemented
to run in O(n log n) time. Application of the new trapezoidalization
algorithm reduces the time to 6(« loglogn). We will assume throughout
that the polygon is in general position; this is the hard case, as was pointed
out in Section 2.5.2.

9. A somewhat simpler proof along similar lines was offered in Mannila and Wood (1984). As
this book was being revised a third, even simpler proof was published (Gydri, 1986).
10. An earlier version of this section appeared in Edelsbrunner et al. (1984), © 1984 Academic
Press.
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At a coarse level, the algorithm is very simple. First the polygon is
preprocessed to detect which horizontal cuts are odd-cuts. Then it is
partitioned at every such horizontal odd-cut. Finally, guards are placed in
each of the resulting pieces. This will achieve coverage with [r/2\ +1
guards.

The simplicity of this procedure results from care applied at two critical
junctures. First, it is easier algorithmically to make an odd-cut in a polygon
with an odd number r of reflex vertices than in one with an even number.
The reason, which will be detailed below, is that no updating of the
preprocessed computations are necessary for each cut when the number of
reflex vertices is odd. We therefore take the counterintuitive step of
complicating the polygon by introducing a new reflex vertex if r is even; the
bound of |//2j + 1 is clearly unaffected.

The second critical juncture arises when all horizontal odd-cuts have been
made, and only vertical odd-cuts remain. As previously mentioned, the
polygon must then have a restricted structure, and guard placement is
nearly trivial. This is fortunate, as otherwise the preprocessing step might
have to be repeated with each oscillation between horizontal and vertical
cuts.

These claims are justified in the following section.

2.6.1. The Algorithm

The algorithm for locating [r/2\ + 1 guards in an orthogonal polygon of n
vertices, r of which are reflex, consists of six distinct steps:

(1) If r is even, then add an additional reflex vertex.
(2) Perform a plane sweep to find all horizontal cuts.
(3) Traverse the boundary once, labeling the parity of the cuts.
(4) Partition the polygon at each horizontal odd-cut.
(5) For each resulting piece, place a guard at every other reflex vertex.
(6) Remove the extra reflex vertex, if introduced in step (1).

Each of these steps will now be described in detail and justified.

Add Reflex Vertex: O{n)

If r is even, then [(r + l)/2j + 1 = [r/2\ + 1, so the addition of a reflex
vertex is justified. The reason for doing so was alluded to above and will be
expanded on below. The extra reflex vertex can be added in linear time as
follows. Choose an arbitrary convex vertex v = (x, v). Find the smallest
non-zero horizontal and vertical separations Ax and Av from x and v to
other vertices by examining the coordinates of each of the O(n) vertices.
Delete vertex v and replace it with three others as illustrated in Fig. 2.53.
Since no edges of the polygon can cross the rectangle with corners (x, y) and
(x + AJC/2, v + Ay/2), clearly this "dent" maintains the simplicity of the
polygon. That it does not interfere with visibility will be shown later.
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(x + Ax/2, y+Ay/2)

Fig. 2.53. A reflex vertex introduced by removing a "chip" from the polygon at a convex
vertex v.

Plane Sweep for Horizontal Cuts: O(n log n) or O(n log log n)

Each reflex vertex determines a unique horizontal cut. The goal of this step
is to find each horizontal cut and to insert a new "artificial" vertex into the
circular list of vertices representing the polygon at the end of each cut,
doubly linking each reflex vertex with its associated artificial vertex. This
data structure then serves as input to step (3) of the algorithm.

The locations of the artificial vertices are found by a sweep of a horizontal
line from top to bottom over the polygon. This is a standard plane sweep,
and is nearly identical to the monotone partitioning algorithm of Lee and
Preparata (Algorithm 1.2), or to that used in Sections 2.3 and 2.4. The
vertical edges of the polygon are sorted by their maximum v coordinate. At
each position of the sweep line H, a data structure S holds all those vertical
edges pierced by H, organized left to right. When H moves down and
encounters a reflex vertex v, the vertical edge hit by u's horizontal cut is
available in S as adjacent to the vertical edge whose top or bottom is v (see
Fig. 2.54). After computing the coordinates of the corresponding artificial
vertex, a vertical edge is either inserted or deleted from the data structure
S, depending on whether v is the top or the bottom of a vertical edge. The
data structure can be chosen to support O(logn) insertion and deletion
time, which leads to O(n logn) time overall. Since these horizontal cuts are
precisely what the trapezoidalization algorithm of Tarj an and Van Wyk
constructs (Section 1.3.2), use of that algorithm instead of a plane sweep
reduces the time complexity of this step to O(n log log n). As this is the only
step that might be supra-linear, the entire algorithm is O(n log log n).

V

I • - > -

Fig. 2.54. When the sweep line H hits a reflex vertex v, the artificial vertex a on its cut lies on
a vertical edge adjacent to u's edge in S.
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Boundary Traversal to Compute Cut Parity: O(n)

The next step is to determine which of the horizontal cuts are odd-cuts—
that is, have an odd number of reflex vertices to one side or another. As the
total number of reflex vertices r is known, finding the number to one side of
a cut determines the number to the other side. The number to one side of
each cut can be found in a single boundary traversal of the polygon as
follows.

U 7 |6

7A__-
—*S 5« 014

Fig. 2.55. Labels on reflex (solid dots) and artificial vertices (open circles) are generated in a
counterclockwise scan of the boundary, incrementing the label counter at each reflex vertex.

Distinguish three types of vertices: convex, reflex, and artificial. Start at
an arbitrary vertex, initialize a counter to zero, and proceed counterclock-
wise around the polygon. If the next vertex is convex, do nothing; if the
next vertex is artificial, label it with the counter value; if the next vertex is
reflex, increment the counter value and label the vertex with this new value
(see Fig. 2.55). As soon as both end points of a cut are labeled, the number
of reflex vertices k to one side is determined by the difference between the
two labels. When the artificial vertex of a cut is encountered second, then
the exact difference of the labels is k\ when the reflex vertex is second, then
k is the difference less 1 (see Fig. 2.56).

a b
- - O

c = b - a c - b - a - l

Fig. 2.56. The labels a and b assigned to the two ends of a cut determine the number of reflex
vertices c to one side by their difference or difference less 1.

It is not actually necessary to compute the number of reflex vertices to
each side, as only the parity is needed. Thus each reflex and artificial vertex
can be labeled as even or odd during the traversal, and the parity of the cuts
determined by straightforward modification of the rules above.

Cut at Each Horizontal Odd-Cut: O(n)

The goal of the fourth step is to cut the polygon at each horizontal odd-cut;
the remaining pieces will then be easy to cover with guards. The only
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odd

odd
even

even
odd

even
even

even
odd

Fig. 2.57. Partitioning at an odd-cut can either flip or leave the parity of other cuts unchanged
when the total number of reflex vertices is even.

potential difficulty with this step is that, after a particular cut is made, the
parities computed in the previous step may no longer be correct for the cuts
in the two pieces. For example, Fig. 2.57 shows that a particular odd-cut can
either leave the parity of other cuts unchanged, or it could flip their parity,
depending on whether the odd number of reflex vertices is inside the
portion including the cut or not. However, note that the situations in Fig.
2.57 can only arise when the total number of reflex vertices r is even. When
r is odd, then there is only one type of odd-cut: a cut that has an odd
number of reflex vertices to each side. Partitioning the polygon at such an
odd-cut leaves the parity of the cuts in each half unchanged (see Fig. 2.58).

Since step (1) of the algorithm guarantees that r is odd, all the horizontal
odd-cuts may be made without any updating to the parities computed in
step (3). At the conclusion of this partitioning, we are left with several
orthogonal polygons, all of which have only even horizontal cuts remaining.

even
even

odd
odd

odd
odd

^

even
even

odd
odd

Fig. 2.58. If the total number of reflex vertices is odd, then partitioning at an odd-cut does
not affect the parity of other cuts.
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Guard Placement'. O(n)

Consider now an orthogonal polygon with no horizontal odd-cuts. If it has
no reflex vertices, then it is a rectangle and can be covered with a single
guard placed anywhere within the interior. This satisfies the bound
I//2J + 1 of the theorem.

If there is at least one reflex vertex, then Lemma 2.17 establishes that a
vertical odd-cut exists. However, finding such a cut would require repetition
of the previous four steps of the algorithm, and ultimately may lead to
switching back to horizontal cuts again. Such oscillation and the computa-
tion it entails could be very expensive. Fortunately, polygons without
horizontal odd-cuts have a special structure that makes guard placement
easy.

It was proven in Section 2.5.2 that a polygon with only even horizontal
cuts must appear as in Fig. 2.59: it is formed by two "histograms" joined at
their bases. This structural restriction was stated in a different but
equivalent terms in Lemma 2.15. More precisely, define a vertical histogram
as in Section 2.3.2: an orthogonal polygon that has one horizontal edge (the
base) equal in length to the sum of lengths of all the other horizontal edges.
Then a polygon that has no horizontal odd-cuts must have a reflex vertex
whose horizontal cut partitions the polygon into two vertical histograms (as
in Fig. 2.59). Such a polygon clearly must have an odd number of reflex
vertices.

Guards placed at every other reflex vertex from left to right will
necessarily cover such a polygon. To see this, let the reflex vertices be
v1} v2, • • • , vk in sorted order from lowest x coordinate to highest; here k is
odd. Make a vertical cut at v2, v4> . . . , v2[ki2\- The polygon has now been
partitioned into \k/2\ +1 L-shaped pieces, each containing one reflex
vertex (see Fig. 2.59). Place guards on vx, v3, . . . , v2|*:/2j+i- This clearly
covers the polygon with [k/2\ + 1 guards, achieving the bound of the
theorem.

The sorting of the reflex vertices can be accomplished in linear time by

Fig. 2.59. Polygons with no horizontal odd-cuts have a horizontal cut (dashed) that parititions
them into two vertical histograms, which can then be cut vertically into L-shaped pieces at
every other reflex vertex.
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Fig. 2.60. The chip region C is visible to some guard g, regardless of whether a horizontal (a)
or vertical (b) cut emanates from v.

merging the two histogram chains, which are necessarily already sorted.
Once the order is determined, no vertical cuts need actually be made: the
guards are simply assigned to every other reflex vertex. Note that after step
(5) is completed, the polygon has been implicitly partitioned into L-shaped
pieces; one of these may be modified to a rectangle in the final step
discussed next.

Finally, we note that the same simple guard location procedure would
work if the polygon were monotone with respect to the x axis. This is a
wider class of shapes than the double histograms that result from step (5).

Replacement of Chip: O(n)

If an extra reflex vertex was introduced by removing a "chip" C at a convex
corner of the polygon in step (1) of the algorithm (see Fig. 2.60), then
returning the polygon to its original form will not require any more guards,
nor even a movement of the existing guard locations.

Consider two cases. If the introduced reflex vertex v is assigned a guard
during step (5), then retract the chip back to the original convex corner, and
place the guard in that corner. Clearly the L-shaped region formerly
covered by the guard at v is now a rectangle and covered by the guard in the
corner. If v is not assigned a guard, then a cut was made at that vertex in
the algorithm, either a horizontal cut in step (3) or a vertical cut (implicitly)
in step (4). In either case, one of the two edges incident to v is a complete
edge of an L-shaped region that has a guard g in it (see Fig. 2.60). This
follows since the edges of the chip were chosen too small to be hit by any
cuts. Clearly the guard g sees into C.

2.6.2. Discussion

We have assumed that no two reflex vertices of the polygon can see one
another along a vertical or horizontal line. Lemma 2.17 depends on this
assumption: without it a polygon may have no odd-cuts, either horizontal or
vertical (Fig. 2.46). Fortunately this degeneracy is in our favor, so to speak,
and is easy to handle.
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~l

Fig. 2.61. Guards positioned in the polygon of Fig. 2.55. The dashed lines are the horizontal
cuts made in step (4) of the algorithm, and the dotted lines are the vertical cuts implicit in step
(5). Here r = 19, and [r/2j + 1 = 10 guards are used.

If two reflex vertices see one another along a horizontal, this can be
detected during the plane sweep, step (2) of the algorithm. Before
commencing step (3), we can cut the polygon into pieces at each such
horizontal. As established in Section 2.5.1, recursive application will
achieve the desired bound, and each piece can be processed by the
algorithm separately.

If two reflex vertices see one another along a vertical, one of the
L-shaped regions formed by the implicit vertical cuts in step (5) may
degenerate to a rectangle, but this in no way affects the execution of the
analysis of the algorithm.

The guard locations chosen by the algorithm for the example used in Fig.
2.55 and the partition they induce, are shown in Fig. 2.61.11

11. I thank Carmen Castells and David Shallcross for implementing this algorithm.



MOBILE GUARDS

3.1. INTRODUCTION

In this chapter we explore an interesting variant of the art gallery problem
suggested by Toussaint. Rather than modify the shape of the polygons as in
the previous chapter, we modify the power of the guard. Specifically, each
guard is permitted to "patrol" an interior line segment. Let s be a line
segment completely contained in the closed polygonal region P.s^P. Then
x e P is said to be seen by s, or is covered by s, if there is a point yes such
that the line segment xy c P. Thus x is covered by the guard if x is visible
from some point along the guard's patrol path. This is the notion of weak
visibility from a line segment introduced in Avis and Toussaint (1981b)
(strong visibility requires x to be seen from every point of s), a concept
further explored in Chapter 8.

The main reason that mobile guards are interesting is that they lead to
some clean theorems, some difficult theorems, and to interesting open
problems. Secondarily they connect to the important notion of edge
visibility, to be discussed further in Chapters 7 and 8. A covering by mobile
guards induces a partition into edge-visible polygons.

We present two long proofs in this chapter. The first establishes that
[n/4\ mobile guards are occasionally necessary and always sufficient to
cover an n vertex polygon. The second proof, which is quite complex,
establishes the equivalent result for orthogonal polygons: [(3«+4)/16j
mobile guards are necessary and sufficient. This latter quantity may seem
ugly in comparison to the simpler fractions we have encountered so far, but
there is a clean logic behind it, as revealed in Table 3.1. Mobile guards are
more powerful than stationary guards: only 3/4's as many are needed, in
both general and orthogonal polygons—the second column is 3/4 times the
first. Moreover, orthogonal polygons are 3/4's easier to cover than general
polygons: the second row is 3/4 times the first. Thus orthogonal polygons
require about (3/4)2[n/3j mobile guards.

The first proof, presented in Section 3.2, is entirely combinatoric,
following the outline of Chvatal's proof (Section 1.2.1). The second proof,
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Guard —>
Shape

General

Orthogonal

MOBILE GUARDS

Table 3.1

Stationary

[n/3\

[n/4\

Mobile

Ln/4J
L(3n+4)/16j

presented in Section 3.3, is an instance where no reduction to combinatorics
has been discovered, and complex geometric reasoning seems necessary.
The chapter closes with a discussion of related results.

3.2. GENERAL POLYGONS1

We first define various types of guards, both geometric and combinatorial.
Three geometric mobile guards types with different degrees of patrol
freedom can be distinguished. An edge guard is an edge of P, including the
endpoints. A diagonal guard is an edge or internal diagonal between
vertices of P, again including the endpoints. A line guard is any line
segment wholly contained in P. (Recall that P is a closed region.)
Geometric guards are said to cover the region they can see.

The combinatorial counterparts of these guards are obtained by defining a
guard in a triangulation graph T of a polygon P to be a subset of the nodes
of T. Then a vertex guard in T is a single node of T, an edge guard is a pair
of nodes adjacent across an arc corresponding to an edge of P, and a
diagonal guard is a pair of nodes adjacent across any arc of T. The analog of
covering is domination: a collection of guards C = {gl) . . . , gk) is said to
dominate T if every triangular face of T has at least one of its three nodes in
some gi e C.

The goal of this section is to prove that [n/4j combinatorial diagonal
guards are sometimes necessary and always sufficient to dominate the
triangulation graph of a polygon with n > 4 vertices. It is clear that if a
triangulation graph of a polygon can be dominated by k combinatorial
vertex guards, then the polygon can be covered by k geometric vertex
guards. The implication is that a proof of the sufficiency of a [«/4j of
combinatorial diagonal guards in a triangulation graph establishes the
sufficiency of the same number of geometric diagonal and line guards in a
polygonal region.

Necessity is established by the generic example due to Toussaint shown in
Fig. 3.1: each 4 edge lobe requires its own diagonal guard.

1. An earlier version of this section appeared in O'Rourke (1983a), © 1983 D. Reidel.
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Fig. 3.1. A polygon that requires [n/4j edge, diagonal, or line guards.

3.2.1. Sufficiency Proof

The proof is by induction and follows the main outlines of Chvatal's
inductive proof (and Honsberger's exposition (Honsberger 1976)). Before
commencing the proof, it will be convenient to establish certain facts that
will be used in various cases of the proof. The most important of these
concerns "edge contractions." Let P be a polygon and T a triangulation
graph for P, and let e be an edge of P, and u and v the two nodes of T
corresponding to the endpoints of e. The contraction of e is a transformation
that alters T by removing nodes u and v and replacing them with a new
node x adjacent to every node to which u or v was adjacent.2 Compare Figs.
3.2a and 3.2d. Note that an edge contraction is a graph transformation, not
a polygon transformation: the geometric equivalent ("squashing" the
polygon edge) could result in self-crossing polygons. Edge contractions are
nevertheless useful because of the following lemma.

LEMMA 3.1. Let T be a triangulation graph of a polygon P, and 7" the
graph resulting from an edge contraction of 7. Then 7" is a triangulation
graph of some polygon P'.

Proof. We construct a figure with curved edges corresponding to 7", then
straighten the edges to obtain P'.

Let Pt be the planar figure corresponding to the triangulation T, and let e
be the edge contracted and u and v its two endpoints in Pt. Let the vertices
to which u and v are connected by diagonals and edges be y0, . . . , yt and
z0, . . . , Zj, respectively, with y0 = v and z0 = u, and the remainder labeled
according to their sorted angular order. See Fig. 3.2a. Note that y1 = z1 is
the apex of the triangle supported by e.

Now introduce a new vertex x on the interior of e, and connect the y and
z vertices to x by the following procedure. Connect y1 to x; this can be done
without crossing any diagonals because yx is the apex of a triangle on whose
base x lies. Remove the diagonal (u, yx). Connect y2 to x within the region

2. Harary calls this transformation an elementary contraction (Harary 1969).
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Fig. 3.2. If all the arcs in a triangulation graph (a) incident to u and v are made adjacent to x
(b and c), the resulting graph may be deformed into a straight line graph (d).

bounded by (x,y1,y2, u); the line may need to be curved but again no
crossings are necessary. Remove the diagonal (u, y2). Continue in this
manner (see Fig. 3.2b) until all the v's have been connected to x. Then
apply a similar procedure to the z vertices. The result is a planar figure
whose connections are the same as those of 7". See Fig. 3.2c.

Finally, apply Fary's theorem (Giblin 1977): for any planar graph drawn
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in the plane, perhaps with curved lines, there is a homeomorphism3 in the
plane onto a straight-line graph such that vertices are mapped to vertices
and edges to edges. Applying such a homeomorphism to the figure
constructed above yields P', a polygon that has V as one of its
triangulations. See Fig. 3.2d. •

The main use of this contraction result is the following.

LEMMA 3.2 Suppose that f(n) combinatorial diagonal guards are always
sufficient to dominate any rc-node triangulation graph. Then if T is an
arbitrary triangulation graph of polygon P with one vertex guard placed at
any one of its n nodes, then an additional f{n -1) diagonal guards are
sufficient to dominate T.

Proof. Let u be the node at which the one guard is placed, and let v be a
node adjacent to u across an arc corresponding to an edge e of P. Edge
contract T across e, producing the graph T of n - 1 nodes. By Lemma 3.1
T' is a triangulation graph, and so can be dominated by f(n - 1) diagonal
guards. Let x be the node of T' that replaced u and v. Suppose that no
guard is placed at x in the domination of T. Then the same guard
placements will dominate T, since the given guard at u dominates the
triangle supported by e, and the remaining triangles of T have dominated
counterparts in T. Again compare Figs. 3.2a and 3.2d. If a guard is used at
x in the domination of T, then this guard can be assigned to v in T, with
the remaining guards maintaining their position. Again every triangle of Tis
dominated. •

We note in passing that the same lemma holds for other types of guards,
but we will only need to use it with diagonal guards. Intuitively, one can
view this lemma as saying that one edge can be "squashed" out for guard
coverage calculations if a guard is assigned to either of the edge's endpoints.

The next three lemmas establish special diagonal guard results for small
triangulation graphs.

LEMMA 3.3. Every triangulation graph of a pentagon (n = 5) can be
dominated by a single combinatorial diagonal guard with one endpoint at
any selected node.

Proof. Let T be a triangulation graph of a pentagon, and let the selected
node be labeled 1. It is easy to show that there are only five distinct
triangulations. In each case, a single combinatorial diagonal guard (pair of
adjacent nodes), with one end at node 1 can dominate the graph (see Fig.
3.3). D

LEMMA 3.4 Every triangulation graph of a septagon (n - 7) can be
dominated by a single combinatorial diagonal guard.

3 A homeomorphism is a continuous one-one onto mapping whose inverse is also continuous;
intuitively it is a deformation without tearing or pasting—that is, it preserves topological
properties.
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1 2 1 2 1 2 1 2 1 2

Fig. 3.3. A pentagon can be dominated by a single diagonal guard (shown dashed) with one
end at node 1.

Proof. Let T be a triangulation graph of a septagon, and let d be an
arbitrary internal diagonal. This diagonal partitions the seven boundary
edges of T according to either 2 + 5 = 7 or 3 + 4 = 7; clearly the partition
1 + 6 = 7 is not possible.

Case 1 (2 + 5 = 7). Let d = (1, 3). Then d supports another triangle T,
either (1,3,4), (1,3,5), (1,3,6), or (1,3,7). Only two of these cases are
distinct.

Case la (T = (1, 3, 4)). Then (1, 4, 5, 6,7) is a pentagon (see Fig. 3.4a).
By Lemma 3.3, this pentagon can be covered with a single diagonal guard
with one end of node 1. This guard dominates the entire graph.

Case lb (T = (1, 3, 5)). Choose diagonal (1,5) for the guard (see Fig.
3.4b). Regardless of how the quadrilateral (1, 5, 6, 7) is triangulated, all of
T is dominated.

2 (3 + 4 = 7). Let d = (1, 4). Then both ways of triangulating the
quadrilateral (1, 2, 3, 4) lead to situations equivalent to Case la above. •

LEMMA 3.5 Every triangulation graph of an enneagon (n = 9) can be
dominated by two combinatorial diagonal guards such that one of their
endpoints coincides with any selected node.

Proof. Let T be a triangulation graph of an enneagon, let the selected
node be labeled 1, and let d be any internal diagonal with one end at 1. This
diagonal partitions the boundary edges of T according to either 2 + 7 = 9,
3 + 6 = 9, or 4 + 5 = 9.

Case 1(2 + 7 = 9). Let d = (1, 3). The diagonal d supports another triangle
T whose apex is at either 4, 5, 6, 7, 8, or 9. Only three of these cases are
distinct.

1 2 1 2

Fig. 3.4. A septagon can be dominated by a single diagonal guard.
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I 2

Fig. 3.5. A enneagon can be dominated by two diagonal guards, with one of their ends at
node 1.

Case la (T = (1, 3, 4)). Dominate the septagon (1, 4, 5, 6, 7, 8, 9) with one
guard by Lemma 3.4, and use (1, 3) for the second guard (see Fig. 3.5a).

Case lb (T = (1, 3, 5)). Dominate the septagon (1, 3, 5, 6, 7, 8, 9) with one
guard by Lemma 3.4, and use (1, 3) for the second guard (see Fig. 3.5b).

Case lc ( r = (l, 3, 6)). Dominate the hexagon (1,2,3,4,5,6) with one
guard by Lemma 3.4, and dominate the pentagon (1,6,7,8,9) with one
guard whose endpoint is at 1 by Lemma 3.3 (see Fig. 3.5c).

Case 2 (3 + 6 = 9). Let d = (1, 4). If diagonal (1,3) is present, then we
have exactly Case la above. Otherwise diagonal (2, 4) is present, and one
guard along (1,2) together with a guard for the septagon as in Case la
suffices.

Case 3 (4 + 5 = 9). Let d = (1, 6). This is equivalent to Case lc above. •

Finally we must establish the existence of a special diagonal that will
allow us to take the induction step, just as Lemma 1.1 did for Chvatal's
proof.

LEMMA 3.6. Let P be a polygon of n > 10 vertices, and T a triangulation
graph of P. There exists a diagonal d in T that partitions T into two pieces,
one of which contains k = 5, 6, 7, or 8 arcs corresponding to edges of P.

Proof. Choose d to be a diagonal of T that separates off a minimum
number of polygon edges that is at least 5. Let k>5 be this minimum
number, and label the vertices 0 ,1 , . . . , n — 1 such that d is (0,k). See Fig.
3.6. The diagonal d supports a triangle T whose apex is at t, 0 < t ̂  k. Since
k is minimal, t < 4 and k — t < 4. Adding these two inequalities yields
A:<8. •

With the preceding lemmas available, the induction proof is a nearly
straightforward enumeration of cases.

THEOREM 3.1 [O'Rourke 1983]. Every triangulation graph T of a polygon
of n >4 vertices can be dominated by [n/4\ combinatorial diagonal guards.

Proof. Lemmas 3.3, 3.4, and 3.5 establish the truth of the theorem for
5 < n ^ 9, so assume that n ̂  10, and that the theorem holds for all n' < n.
Lemma 3.6 guarantees the existence of a diagonal d that partitions T into
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Fig. 3.6. The diagonal d separates G into two pieces, one of which (Gj) shares 5<A:<8
edges with G.

two graphs Tx and T2 where 7i contains k boundary edges of T with
4 < k <: 8. Each value of k will be considered in turn.

Case 1 {k = 5 or 6). 71 has A: + 1 < 7 boundary edges including d. By
Lemma 3.4, 7i can be dominated with a single diagonal guard. T2 has
n-k + l<n-5 + l = n-4 boundary edges including d, and by the
induction hypothesis, it can be dominated with |_("~4)/4j = \n/4\ — 1
diagonal guards. Thus Tx and T2 together can be dominated by [n/4\
diagonal guards.

Case 2 (k = 7). The presence of any of the diagonals (0, 6), (0, 5), (1,7),
or (2, 7) would violate the minimality of k. Consequently, the triangle T in
7i that is bounded by d is either (0,3,7) or (0,4,7); since these are
equivalent cases, suppose that T is (0, 3, 7). The quadrilateral (0 ,1 , 2, 3) has
two distinct triangulations. Each will be considered separately.

Case 2a ((1,3) is included.). Dominate the pentagon (3 ,4 ,5 ,6 ,7) with
one diagonal guard with one end at node 3. This is possible by Lemma 3.3.
This guard dominates all of 7i. Since T2 has n — 7 + l=n — 6 boundary
edges, it can be dominated by [(n - 6)/4j < [n/4\ - 1 diagonal guards by
the induction hypothesis. This yields a domination of T by [n/4j diagonal
guards.

Case 2b ((0, 2) is included.). Form graph To by adjoining the two triangles
T = (0, 3, 7) and T = (0, 2, 3) to T2 (see Fig. 3.7). To has n -1 + 3 = n - 4
edges, and so can be dominated by [(n - 4)/4j = [n/4\ - 1 diagonal guards
by the induction hypothesis. In such a domination, at least one of the
vertices ofT' = (0, 2, 3) must be a diagonal guard endpoint. There are three
possibilities:

(0) If node 0 is a guard end, then To can be extended to include (0 ,1 , 2)
without need of further guards.

(2) If node 2 is a guard end, then To can again be extended to include
(0,1,2).
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2" 4"

Fig. 3.7. Go is formed by adding T and T' to G2.

(3) If node 3 is a guard end, then there are three possible locations for
the other end of the guard. If the other end is at either node 0 or 2,
then we fall into the two cases above. If the other end is at node 7,
then replace the diagonal guard (3, 7) with (0, 7). Every triangle that
was previously dominated is still dominated, and again To can be
extended to included (0,1, 2).

Thus all but the pentagon (3,4,5,6,7) can be dominated with [n/4\ - 1
diagonal guards, and the pentagon only requires a single diagonal guard by
Lemma 3.4, resulting in a total of [n/4\ diagonal guards for all of T.

Case 3 (k = 8). 7i has k + 1 = 9 boundary edges, and so by Lemma 3.5, it
can be dominated with two diagonal guards, one of whose endpoints is at
node 0. Now T2 has n — k + l = n -7 boundary edges. By Lemma 3.2, the
one guard at node 0 permits the remainder of T2 to be dominated by
f(n — 7 — 1) =/ (« - 8) diagonal guards, where the function /(«') specifies a
number of diagonal guards that are always sufficient to dominate a
triangulation graph of n' nodes. By the induction hypothesis, /(«') =
L«'/4j. Therefore, [(n — 8)/4j = [n/4j - 2 diagonal guards suffice to domi-
nate T2. Together with the two allocated to Tly all of T is dominated by
[n/4j diagonal guards. D

COROLLARY. Any polygon P of n >4 edges can be covered by [n/4j
geometric diagonal or line guards.

Proof. The diagonal guard result follows immediately from the theorem.
Since diagonal guards are special cases of line guards, the same number of
these more powerful guards clearly suffice. •

3.2.2. Edge Guards

The above proof depends on the fortunate identity between the number of
combinatorial and geometric diagonal guards necessary and sufficient to
dominate and cover triangulation graphs and polygons, respectively. This
identity is not known to hold for edge guards, however. No polygons are
known to need more than [(n + l)/4j geometric edge guards (see Fig. 3.8),
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7 I

Fig. 3.8. A polygon of seven edges that requires two edge guards.

but triangulation graphs exist that require [2n/7j = [«/3.5j combinatorial
edge guards (see Fig. 3.9). Thus it appears that a different proof technique
is required in this case.

19

Fig. 3.9. A triangulation graph that requires two edge guards per seven edges. The central
octagon may be triangulated arbitrarily.

3.3. ORTHOGONAL POLYGONS

In this section we present Aggarwal's proof that [(3n + 4)/16j mobile
guards are sufficient for covering an n vertex simple orthogonal polygon
(Aggarwal 1984). The occasional necessity of this number of mobile guards
is established by a connected series of swastika-like polygons, as shown in
Fig. 3.10. The single swasktika shown in Fig. 3.10a with n = 20 requires four
guards, one per arm; note that (3 • 20 +4)/16 = 64/16 = 4. Merging two
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Ln

Fig. 3.10. Polygons that require [(3n + 4)/16j mobile orthogonal guards: (a) n = 20 and
g = 4; (b) n = 36 and g-1.

20-vertex swastika's together removes four vertices at the join, yielding
n = 36, as in Fig. 3.10b. This polygon requires seven guards, one for each of
the six isolated arms, and one at the join; note that (3 • 36 + 4)/16 =
112/16 = 7. Joining k swastikas results in an n = 16k + 4 vertex polygons
that requires 3k + 1 guards; and note that [{3n + 4)/16j = 3k + 1. The
necessity for other values of n is established by attaching a spiral of the
appropriate number of edges to one arm of a swastika. Figure 3.11 shows
that a spiral addition of 6 edges requires one guard more than the swastika;
a spiral addition of 12 edges requires two guards more. These are the critical
additions; spirals with a different number of edges do not require a different
number of guards.

This establishes the necessity of [{3n + 4)/16j guards. We now turn to
sufficiency. Aggarwal's proof is at least superficially similar in structure to
the proof for general polygons in the preceding section. The proof is by
induction. A small number of quadrilaterals are cut off from the given
polygon, these small number covered separately, and the remainder of the
polygon handled recursively. The difficulties arise at the interface between

Fig. 3.11. Addition of a spiral establishes necessity for other values of n.
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the quadrilaterals cut off and the remainder. In the previous section,
interfacing required choosing the diagonal guard with one end at the
interface, and applying the "edge-squashing" lemma (3.2) to reduce the
number required in the remainder; in effect a guard is shared across the
interface. In Aggarwal's proof, the delicacy of the interface requires a
complex strategy to complete the induction proof.

Besides the increased complexity, the proof differs in two additional
aspects from that of Theorem 3.1. First, it uses geometric constructions
throughout, as opposed to reducing the geometric problem to a purely
combinatorial one. It is unclear if this is essential; this point will be revisited
in Section 3.4. Second, the remainder of the polygon is often modified and
needs to be requadrilateralized. The proof of Theorem 3.1 maintained the
same triangulation throughout. The combination of these differences result
in a unique and complicated proof. It remains to be seen if a simpler
approach can establish the same result.

Before commencing with the details, it may be helpful to sketch the main
outline of the proof. It will be shown below in Lemma 3.8 that there is
always a diagonal d in any quadrilateralization of an orthogonal polygon
that cuts off 2, 3, or 4 quadrilaterals. If four quadrilaterals are cut off by d,
then properties of quadrilateralizations of orthogonal polygons permit only
two essentially different cases, and the induction carries through with a bit
of sharing in the vicinity of d. If three quadrilaterals are cut off by d, then
there are five distinct cases to handle, only one of which requires extensive
sharing at the interface. Finally, if two quadrilaterals are cut off by d, then
there are seven cases, most of which require sharing, some rather
complicated. All the sharing is accomplished through one complex lemma
(3.21). In all cases it will be shown that applying the induction hypothesis to
the remainder of the polygon, taking into account any interface sharing,
results in [(3n + 4)/16j guards. We assume throughout that the polygon is
in "general position" in that no two vertices can be connected by a vertical
or horizontal line that does not intersect the boundary of the polygon.

We will first discuss structural properties of orthogonal polygons that will
be used throughout the remainder of the section. Then we will establish the
lemmas used to share at the interface, and finally prove the theorem.

3.3.1. Properties of Orthogonal Polygons

We will conduct the argument in terms of the number of quadrilaterals q in
a quadrilateralization of the polygon rather than in terms of the number of
vertices n. Our first two lemmas relate these quantities.

LEMMA 3.7. For any quadrilateralization of an orthogonal polygon of n
vertices into q quadrilaterals, n = 2q + 2.

Proof. The sum of the interior angles of an orthogonal polygon of n
vertices is 180(n - 2) degrees. But since there are q quadrilaterals, each of
360 degrees, 360$ = 180(n - 2), or n = 2q + 2. •
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Fig. 3.12. Diagonal d cuts off a minimum number of quadrilaterals that is at least 2.

The same lemma holds for any quadrilateralizable polygon, even those that
are not orthogonal.

Since q is fixed for any polygon, we will sometimes say "the number of
quadrilaterals in P" rather than "the number of quadrilaterals in any
quadrilateralization of P."

Applying this lemma to the sufficiency bound of [(3n + 4)/16j shows that
it is equivalent to [(3q + 5)/8j. It is in this form that the bound will appear
throughout the proof.

The following lemma is the equivalent of Lemma 3.6.

LEMMA 3.8. Let P be an orthogonal polygon and Q a quadri-
lateralization of P. There exists a diagonal d in Q that partitions P into two
pieces, one of which contains q = 2,3, or 4 quadrilaterals of Q.

Proof. Choose d to be a diagonal of Q that separates off a minimum
number of quadrilaterals that is at least 2. Let q > 2 be this minimum. Let
ABCD be the quadrilateral supported by d = AB towards the piece with q
quadrilaterals; see Fig. 3.12. The number of quadrilaterals in the BC, CD,
and DA regions illustrated in the figure is each less than 2—that is, less than
or equal to 1—otherwise q would not be minimal. Therefore, q <4. •

It will often be useful to use the dual of a quadrilateralization. Let every
quadrilateral of a quadrilateralization Q be a node of a graph Q, where two
nodes are adjacent in Q iff their corresponding quadrilaterals share a
diagonal.4 The following is immediate (compare Lemma 1.3).

LEMMA 3.9. For any quadrilateralization Q of an orthogonal polygon,
the dual Q is a tree with each node of degree no more than 4.

As an application of this observation, we can obtain an alternate proof of
Lemma 3.8. Choose any root r for Q, and let x be a leaf at maximum

4 As mentioned in Chapter 1, this is the graph theoretic "weak dual," weak because no node
is assigned to the exterior face.
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distance from r, and let y be the parent of x. Then all of the nodes adjacent
to v not on the ry path must be leaf nodes; otherwise there would be a path
longer than rx. Thus the diagonal of y that crosses the ry path cuts of 2, 3,
or 4 quadrilaterals, depending on whether y is of degree 2, 3, or 4,
respectively.

One of the main tools used throughout the proof is a cut, a tool
previously used in Section 2.5. A cut L in an orthogonal polygon P is a
maximal interior line segment in P (maximal in the sense that any line
segment properly containing L contains a point exterior to P) that contains
an edge and a reflex vertex of P. L partitions P into two or three pieces,
depending on whether it contains one or two reflex vertices respectively; see
Fig. 3.13. In either case, the following holds.

LEMMA 3.10. The sum of the number of quadrilaterals in the pieces
defined by a cut L of P is equal to the number of quadrilaterals in P.

Proof. Suppose L partitions P into two pieces P1 and P2 as in Fig. 3.13a.
Let P, Px, and P2 have n, n1, and n2 vertices and q, qlf and q2

quadrilaterals, respectively. Then n1 + n2 = n + 2, as L introduces one new
vertex, counted in each of Px and P2. Lemma 3.7 shows that

n1 — 2 n2 — 2 n—2

If L partitions P into three pieces as in Fig. 3.13b, then L can be considered
as a combination of two "half cuts, each resolving just one reflex vertex.
The first partitions P into two pieces, and the second partitions one of the
pieces into two, resulting in three pieces. Applying the result just
established for two pieces yields the lemma for three pieces. D

We now present a series of lemmas detailing the relationship between a
diagonal of a quadrilateralization and the local structure of the polygon;
henceforth "diagonal" means diagonal of a quadrilateralization. Recall that
the orientation of an edge is horizontal or vertical. We will say that edges a
and b are to the same side of d if they are in the same piece of P partitioned
off by d; note that a and b may be in opposite half-planes defined by d but
still to the same side.

I

i

1

a b

Fig. 3.13. A cut partitions a polygon into two (a) or three (b) pieces.
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d/ b

Fig. 3.14. The five possible arrangements when a and b have opposite orientations. The
dotted lines represent possible orientations of the edges to the other side of d; the dashed lines
indicate an added right angle that forms a subpolygon.

LEMMA 3.11. Let a and b be edges of P adjacent and to the same side of
a diagonal d. Then a and b have the same orientation.

Proof. Without loss of generality orient d with positive slope with the
polygon Px containing a and b below. Assume for contradiction that a and b
have different orientations. Then there are five distinct possible combina-
tions of a and b: hanging up, down, left, or right from the endpoints of d, as
shown in Fig. 3.14. The other three possible combinations force a and b to
not be to the same side of d. We can derive a contradiction in two ways.
First note that in all five cases, addition of a right angle above d produces a
new orthogonal polygon P'; perhaps it will be necessary to put this new
angle on a different "level" as defined in Section 2.2, but this will not affect
the angle sums. Let qx be the number of quadrilaterals in P1. Then the sum
of the internal angles of P' is 360q1 +180. But this implies that P' is not
quadrilaterizable, in contradiction to Theorem 2.1.

For a second proof, recall Lubiw's scheme of assigning "types" to each
vertex of an orthogonal polygon such that they alternate type 1 and type 2
in a traversal of the boundary (Section 2.4.2, especially Fig. 2.36). In all five
cases of Fig. 3.14, d connects two vertices of the same type. Thus the strict
alternation is destroyed, and Px has an odd number of vertices. But this
contradicts the assumption that Px is quadrilateralizable, since any polygon
partitioned into quadrilaterals must have an even number of vertices. •

Because no internal angle of a quadrilateral can be greater than 270°
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: b

Fig. 3.15. The four possible arrangements of a and b when d is in its standard orientation.
The dotted lines indicate the possibilities for the edges adjacent to d and to a and b.

(since all are subangles of either 90° or 270°), only four configurations are
possible for d, a, and b, as illustrated in Fig. 3.15. We will raise this
observation to a lemma for later reference.

LEMMA 3.12. The only configurations possible for a diagonal d and its
two adjacent edges a and b to one side (perhaps after rotation and reflection
to orient d with positive slope) are those shown in Fig. 3.15.

Although not needed for the proof of the art gallery theorem, we now
turn our attention to characterizing the quadrilateral trees of orthogonal
polygons. This is accomplished by showing that Lemma 3.12 restricts the
configuration possible for a quadrilateral of a specific degree to a finite set
of possibilities, and that only certain configurations can "mate" with one
another as adjacent quadrilaterals. We start by showing that a degree 4
quadrilateral can have only one configuration. A configuration is defined by
the orientations of the edges of the polygon adjacent to each vertex of a
quadrilateral, and the type (convex/reflex) of the vertices.

Let a reflex vertex whose exterior angle is in the first quadrant (between
the positive x and positive v axes) be called type 1, in the second quadrant
(between the positive v and the negative x axes), type 2, and similarly for
type 3 and 4.

LEMMA 3.13. Let ABCD be a quadrilateral of degree 4 in Q for any
orthogonal polygon P. Then A, B, C, and D are each reflex vertices of P, of
types 1, 2, 3, and 4 in counterclockwise order.

Proof. Assume to the contrary that at least A is convex. Without loss of
generality let A be a lower left corner as illustrated in Fig. 3.16a. Then Fig.
3.15a shows that edge a' forces b and b' to have the orientations shown at
B; b' forces c and c' as shown at C; and c' forces d and d' at D. But now d'
lies inside ABCD, contradicting the assumption that ABCD is an internal
quadrilateral.
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A Q

Fig. 3.16. If A is convex (a), d' is forced to be internal to ABCD; if A is reflex (b), the degree
4 quadrilateral has a unique configuration.

Now let A be a type 3 reflex vertex. Following the same logic as above
forces the configuration shown in Fig. 3.16b, establishing the lemma. •

The possible configurations proliferate for quadrilaterals of smaller
degree, but the proofs proceed the same way, repeatedly applying the
constraints imposed by Lemma 3.12, and will only be sketched.

LEMMA 3.14. A quadrilateral of degree three can have just one of the
four configurations shown in Fig. 3.17.

;'o
e

- /
\o

e
-/

/+//
e

c d

Fig. 3.17. The four configurations possible for a degree 3 quadrilateral.
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0 / 0 /

d e f

Fig. 3.18. The six configurations possible for a degree 2 quadrilateral.

Proof. Let e be the edge of the quadrilateral shared with the polygon. It is
easily shown using Lemma 3.12 that both endpoints of e cannot be convex.
If one endpoint is convex and the other reflex, Fig. 3.17a is forced. If both
are reflex, three configurations are possible, shown in Figs. 3.17b-
3.17d. •

The + , — , and 0 markings in Figs. 3.16 and 3.17 (and in the figures to
follow) will be explained later.

LEMMA 3.15. A quadrilateral of degree 2 can have just one of the six
configurations shown in Fig. 3.18.

Proof. If the two edges shared with the polygon are non-adjacent, then
the three configurations shown in Figs. 3.18a-3.18c are possible. If the
shared edges are adjacent, then the three configurations shown in Figs.
3.18d-3.18f are possible. •

LEMMA 3.16. A quadrilateral of degree 1 can have just one of the two
configurations shown in Fig. 3.19.

This completes the classification of the possible configurations of the
quadrilaterals in an orthogonal polygon. In order to study which configura-
tions can mate with one another, we introduce the concept of "charge" on a
diagonal. Let a and b be edges to the same side and adjacent to a diagonal d

a b
Fig. 3.19. The two configurations possible for a degree 1 quadrilateral.
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a b c

Fig. 3.20. Definitions of the three diagonal charges.

of a quadrilateral. If a and b lie in the same half-plane determined by d,
then we will say they have the same parity; otherwise they have opposite
parity. Thus in Figs. 3.15a and 3.15c, a and b have the same parity, and in
Figs. 3.15b and 3.15d they have opposite parity. The charge on a diagonal d
of a quadrilateral q, with respect to q, is 0 if the adjacent edges to both
sides of d have the same parity (Fig. 3.20a), + if the adjacent edges to the q
side have the same parity, and the adjacent edges to the opposite side of d
have opposite parity (Fig. 3.20b), and — if the adjacent edges to the q side
have opposite parity, and those to the opposite side of d have the same
parity (Fig. 3.20c). Note that charge is denned with respect to a qua-
drilateral, so that each diagonal has a charge defined on either side.

LEMMA 3.17. The net charge on any diagonal in a quadrilateralization of
an orthogonal polygon must be zero: the charges must be 0/0, 4- / — , or
- / + •

Proof. This is immediate from the definition of charge: a 0 charge on one
side is a 0 from the other side, and a + charge on one side is a — from the
viewpoint of the other side. •

For the purpose of determining which configurations of quadrilaterals can
mate with one another, each configuration can be reduced to a square
symbol labeled with charges. The symbols corresponding to the configura-
tions established in Lemmas 3.13-3.16 are displayed in Fig. 3.21 in the same
order in which they appear in Figs. 3.16-3.19. We will refer to these
symbols as, for example, [3b], meaning the b symbol for a degree 3
quadrilateral as displayed in Fig. 3.21. All quadrilateral trees of orthogonal
polygons can be constructed by gluing these symbols together such that each
diagonal is uncharged.

We may finally state and prove the characterization theorem.

THEOREM 3.2 [O'Rourke 1985]. A tree is a quadrilateral tree for a
simple orthogonal polygon iff no node has degree greater than 4, and the
tree contains no path connecting two degree 4 nodes by a sequence of zero
or more degree 3 nodes—that is, the path degree sequence (4 3* 4) does not
occur.

Proof. It is immediate that two degree 4 nodes cannot be adjacent, since
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0 0

Fig. 3.21. Symbols for all possible quadrilateral configurations. The numbers to the left
indicate the degree of the quadrilaterals, the letters below distinguish different configurations.

the symbol [4] has a negative charge on every diagonal. The degree
sequence ( 4 3 3 3 . . . ) can be achieved by mating [4] with the + charge of
either [3c] or [3d], and then mating - / + again with either [3c] or [3d], and
so on. But it is clear that the last degree 3 quadrilateral in such a sequence
has two - diagonals free, neither of which can mate with [4]. Thus the
degree sequence (4 3 . . . 3 4) cannot occur in the quadrilateral tree of any
orthogonal polygon.

Now we show that any tree that does not contain a (4 3* 4) path can be
realized as the quadrilateral tree of an orthogonal polygon, by assigning
square symbols to each node such that all diagonals are uncharged. Assign
to each degree 4 node the only choice, [4]. For each connected subtree S
composed of degree 3 nodes, distinguish two cases. If S is adjacent to a [4],
assign [3c] to each node in S, aligning the charges to balance. This will leave
only - charges on the unmatched diagonals of S. If S is not adjacent to a
[4], assign one of the leaves [3a], and all the other nodes of S [3c] as in the
first case. Now there is one unmatched 0 diagonal, and the remaining
unmatched diagonals are negatively charged. The important point is that no
unmatched diagonal has a + charge. Next assign each degree 1 node
adjacent to a negative diagonal [lb], and all others [la]. Note that a degree
1 node will not be adjacent to a + charge by construction. Finally assign the
degree 2 nodes one of the symbols to cancel the charges appropriately.
Since the only charge configuration not available with degree 2 nodes is one
with two negative diagonals, this will always be possible as long as a degree
2 node doos not have to mate with two positive diagonals. But by
construction, all free diagonals are either 0 or - . This completes the
construction and the proof. •

The construction procedure is illustrated in Fig. 3.22. Figure 3.22a shows
a tree that does not contain the forbidden degree sequence, and Fig. 3.22b
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Fig. 3.22. A non-forbidden tree (a), a selection of symbols matching the tree degrees (b), and
an orthogonal polygon realizing the symbols (c).

shows the symbols assigned by the construction, glued together appropri-
ately to cancel charges. Finally Fig. 3.22c shows an orthogonal polygon that
results by replacing the symbols by their corresponding configurations. It is
clear that there are many options in the transition from the symbols to the
actual polygon, but the transition is always possible by adjusting the lengths
of the edges to avoid overlap, in a manner similar to the local scale changes
used in Culberson and Rawlins (1985).

3.3.2. Sharing Lemmas

In this section we develop three "sharing lemmas" similar in spirit to
Lemma 3.2 in the proof for general polygons in Section 3.2. They all have
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Fig. 3.23. The partial shadow of a diagonal.

the following flavor: "Suppose the induction hypothesis holds, and we are
given a polygon with one (or more) guards placed in particular locations
'free.' Then an additional X guards suffice for total coverage." Here X will
always be just the right amount to establish the induction hypothesis. I am
calling these "sharing" lemmas because in effect they are sharing "frac-
tional" guards across the induction dividing diagonal.

The induction hypothesis that is the premise of these lemmas is:

Induction Hypothesis (IH). Any orthogonal polygon with q'<q
quadrilaterals may be covered with [(3q' + 5)/8\ mobile orthogonal
guards.

First we present a specialized geometric lemma that will be needed in the
proofs of the sharing lemmas. Let a and b be the two edges adjacent to and
to the same side of a diagonal d, with the same parity. Thus we have either
Fig. 3.15a or 3.15c. These situations are clearly identical after rotation and
reflection, and we will henceforth consider just Fig. 3.15a. In this situation,
define the partial shadow of d to be the closed triangular region defined by
d, a, and a vertical line through either x, the right endpoint of a, or through
the vertex incident to d and b, whichever is leftmost. See Fig. 3.23.

LEMMA 3.18. The partial shadow of a diagonal in a quadrilateralization
of an orthogonal polygon is empty.

Proof. The partial shadow is only defined in the situation illustrated in Fig.
3.23. Let A be the vertex incident to d and a as shown. Assume the shadow
is not empty, and let e be the leftmost vertical edge in the shadow. Then A
and e must be part of a quadrilateral Q. But there is no vertex that can
serve as the fourth for Q: it cannot lie to the right of e, for then Q would be
non-convex; it cannot lie collinear with e, for then our general position
assumption is violated; nor can it lie to the left of e, since e is leftmost. •

The following lemma is almost the direct analog of Lemma 3.2.

LEMMA 3.19. If P is a polygon of q quadrilaterals with one guard
placed along a convex edge e (one whose endpoints A and B are both
convex vertices), then assuming IH, P can be covered with an additional
L[3fal) + 5]/8j guards.

Proof. The proof is by induction on q. The lemma is clearly true when
q = L Assume it is true for q'<q. Let Q=ABCD be the quadrilateral
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A e B A e B

Fig. 3.24. If ABCD has degree 1 and e is guarded, one quadrilateral may be removed.

containing e = AB. The proof proceeds by cases depending on the degree of
Q. If deg(Q) = 1, it follows easily; deg(Q) = 2 requires more work; and
deg(Q) = 3 is not possible.

Case (deg(Q) = 1). Either BC (or symmetrically DA) or CD is the sole
internal diagonal of Q. In either situation, illustrated in Fig. 3.24, a cut
through C partitions P into a covered rectangle and a polygon of q — 1
quadrilaterals by Lemma 3.10. Applying IH establishes the lemma.

Case (deg(Q) = 2). The internal diagonals of Q are either adjacent or not.

Case 2.1 (Non-adjacent Diagonals) The only situation possible is shown in
Fig. 3.25a, corresponding to Fig. 3.18a. The two cuts illustrated partition P
into 3 pieces, a rectangle bound by the cuts, and two orthogonal polygons Px

and P2 of, say, qx and q2 quadrilaterals. By Lemma 3.10, qx + q2+ 1 = q.
Now note that the guard along e is a guard between two convex vertices in

Fig. 3.25. If ABCD has degree 2 and e is guarded, one quadrilateral may be removed, either
by induction (a), or by removal of a rectangle (b and c).
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each of Px and P2. Since q\<q and q2 < q, the induction hypothesis for this
lemma applies. Therefore, P can be covered with

additional guards. Tedious analysis shows that this is less than or equal to
[[3(q - 1) + 5]/8j, establishing the lemma.

Case 2.2 (Adjacent Diagonals). Only Fig. 3.18d is possible, which we will
further partition into the two cases shown in Figs. 3.25b and 3.25c. Let BC
and CD be the diagonals of Q; C must be above D. The two figures are
distinguished by whether x, the upper endpoint of the vertical edge incident
to B, is higher or lower than D. In the former case (Fig. 3.25b), a cut
through D, and in the latter case (Fig. 3.25c), a cut through x, is guaranteed
by the emptiness of the partial shadow of BC (Lemma 3.18) to partition P
into a covered rectangle and a polygon of q — 1 quadrilaterals. Applying IH
establishes the lemma.

That the case deg(Q) = 3 is not possible is immediate from the possible
configurations shown in Fig. 3.17: e is not a convex edge in any of the
possible configurations. •

The next sharing lemma in effect "squashes out" two quadrilaterals.

LEMMA 3.20. If P is a polygon of q quadrilaterals with two guards placed
on consecutive convex edges AB and BC, then assuming IH, P can be
covered with an additional [[3(q — 2) + 5]/8j guards.

Proof. The proof is similar to the preceding one. The structural pos-
sibilities are clearly the same as in that proof, but with BC here playing the
role of AB there. Let Z, A, B, C, D, and E be consecutive vertices on the
boundary of P. Let Q be the quadrilateral including BC; Q is not
necessarily ABCD.

Case 1 (deg(Q) = 1). Either Q = ABCD with AD the internal edge (Fig.
3.26a), or Q = BCDE with BE the internal edge (Fig. 3.26b). In the first
instance D is reflex, and a horizontal cut through it leaves a covered
rectangle and a polygon of q — 1 quadrilaterals that satisfies Lemma 3.19.
Applying that lemma establishes the result. In the second instance, E is
reflex, and a vertical cut leaves a covered rectangle and a polygon of q — 1

Fig. 3.26. If ABCD has degree 1 and AB and BC are guarded, one quadrilateral may be
removed.
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A i—

Fig. 3.27. If ABCD has degree 2 and AB and BC are guarded, either induction applies (a),
the situation is impossible (b), or a quadrilateral may be removed (c).

quadrilaterals that satisfies the induction hypothesis (and Lemma 3.19). In
all cases, then, the result holds.

Case 2 (deg(Q) = 2). The same two cases apply as in Lemma 3.19.

Case 2.1 (Non-adjacent Diagonals.) The situations must be as in Fig.
3.27a. The two cuts Lx and L2 partition P into a covered rectangle, a
polygon Pl with qx quadrilaterals that satisfies the induction hypothesis, and
a polygon P2 of q2 quadrilaterals that satisfies Lemma 3.19, where
qx + q2 + l=q. Applying both results yields coverage with

additional guards. A tedious analysis reveals this to be no larger than
L[3fo-2) + 5]/8j for 4 > 2.

Case 2.2 (Adjacent Diagonals) A cannot be a vertex of Q: Figs. 3.18d,
3.18e, and 3.18f do not permit three consecutive convex vertices. Therefore
Q = BCDX, corresponding to Fig. 3.18d, with D reflex. Now if X is above
A, as in Fig. 3.27b, Z is in the partial shadow of BX, a contradiction. So we
are left with the situation shown in Fig. 3.27c. A cut through D establishes
the result as in Case 1 (compare Fig. 3.26a). •

The last sharing lemma is the most complex. It takes the form: if certain
sharing conditions hold, then the remainder of the polygon needs one full
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guard less than [(3q + 5)/8j. The sharing conditions are rather complicated,
but essentially the idea is to place two guards crossing each other
orthogonally such that the previous two lemmas apply to the pieces of the
resulting partition.

LEMMA 3.21. If P is a polygon of q quadrilaterals with a guard placed
along a maximal segment Lx that contains a polygon edge that is situated in
P such that

(a) there are two cuts orthogonal to Lx that partition off rectangles
touching (and thereby covered by) Lx, and

(b) Lx cuts the remainder (P with the two rectangles removed) into one
or two (i.e., not three) pieces.

then assuming IH, P can be covered with an additional [(3q + 5)/8j — 1
guards.

Proof. Note that Lx is not necessarily a cut, but could be a convex edge.
Let Px and P2 be the two pieces separated by Lx after removal of the two
rectangles; P2 may be empty. The premise of the lemma is a bit ungainly,
but is composed to have two geometric consequences:

(1) If P2 is not empty, there is at least one reflex vertex on Lx in Px U P2.
(2) Lx lies on a convex edge of both P1 and P2.

We first support these claims. If Lx is a cut, it partitions P into two or three
pieces. If Lx cuts P into three pieces, the premise can only be satisfied if the
third piece is composed of one or both of the rectangles cut off, disallowing
Fig. 3.28a for example. If Lx cuts P into two pieces, then if the second piece
is composed of one or both of the cut off rectangles, then P2 is empty, as in

Fig. 3.28. The cut in (a) does not satisfy the conditions of the lemma; in (b), P2 is empty; in
(c) and (d), Lx contains a reflex vertex.
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Fig. 3.28b, for example. Let V be the reflex vertex on Lx (the one in Px U P2

in case there are two reflex vertices on Lx). Then either V is in Px U P2, as in
Fig. 3.28c, or there is at least one other reflex vertex on Lx introduced by
the orthogonal cuts, as in Fig. 3.28d. Finally, since Lx is a supporting line
for both Px and P2, it constitutes a convex edge in each.

Let Px and P2 have qx and q2 quadrilaterals. Then qx + q2 = q -2 by
Lemma 3.10. We now apply the previous two sharing lemmas to establish
the claim.

By property (2), Lemma 3.19 applies to both Px and P2, resulting in
complete coverage with

additional guards. A tedious case analysis shows that this quantity is no
greater than [(3q + 5)/8j - 1 for all possible mod 8 residues of qt and q2

except in the single case when both g1 = 2(mod8) and <72 = 2(mod8). We
now concentrate on this "hard" case. Note that P2 cannot be empty in this
case.

Introduce a cut L2 orthogonal to Lx through the reflex vertex V
guaranteed by property (1), and place a guard along L2. L2 must partition
one of Px or P2, say P2, into two pieces P2 and P2, with q2 and q2

quadrilaterals; it may or may not partition P1} as illustrated in Fig. 3.29. If
L2 partitions Plf call the pieces P[ and P" with q[ and q'{ quadrilaterals.
Now although q[ + q'{ = qx by Lemma 3.10, q2 + q'2' = q2+l, since Lx

already resolved the reflex vertex V.
Note that the conditions for the application of Lemma 3.20 hold for both

P2 and P2; Lx and L2 both lie on convex edges in each. Therefore, all of P2

. P|" J
L, P2 ^ \

1-2

P2 j

Fig. 3.29. The cut L2 may (a) or may not (b) partition Px.
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can be covered with

g2 = [[3(q2 - 2) + 5]/8j + [[3(q'i - 2) + 5]/sJ (1)

guards. If L2 does not partition Px, then we apply Lemma 3.20 to Pi to
cover it with

g1=[[3(q1-2) + 5]/s\ (2)

guards. If L2 does partition P1} then Lemma 3.20 can be applied to P[ above
L2, and Lemma 3.19 to P'[ below L2, resulting in

g[ = [[3(q[ - 2) + 5]/8J + [[3{q'[ - 1) + 5]/8j (3)

guards. Using the special case assumption that qx = 8k\ + 2, (2) yields
g\ = 3k1} and a case analysis and q[ + q'i = qi shows that (3) implies
g[ < 3kx. Therefore, 3kx guards suffice for Px in either case. The assumption
q2 = 8A:2 + 2 and q2 + q2 = qi + 1 leads to (1) to g2 ^ 3k2. Thus a total of
3(k1 + k2) guards suffice. Finally, q = qx + q2 = 8(kx + k2) + 6 implies that
L(3g + 5)/8j - 2 = 3{kx + k2), which together with the 1 guard placed on L2,
establishes the lemma. •

3.3.3. Proof of Orthogonal Polygon Theorem

We have finally assembled enough lemmas to prove the main theorem.

THEOREM 3.3 [Aggarwal 1984]. [{3q + 5)/8j = [(3/i + 4)/16j mobile
guards are sufficient to cover any orthogonal polygon P of q quadrilaterals
and n vertices.

Proof. The proof is by induction on q. If q < 2, then 1 guard clearly
suffices. Assume now the induction hypothesis IH. Fix an arbitrary
quadrilateralization of P. Lemma 3.8 established that there is a diagonal d
that cuts off a minimal number A: of 2, 3, or 4 quadrilaterals. These
constitute the three cases of the proof, which we consider in reverse order.

Case k = 4. Recall from the proof of Lemma 3.8 (see Fig. 3.12) that d
must be a diagonal of a degree 4 quadrilateral Q, say Q = ABCD with
d = DA. Lemma 3.13 shows that A, B, C, and D must all be reflex vertices.
Let A be left of and lower than D, which can be achieved without loss of
generality by rotation and reflection. We can distinguish three cases, only
two of which are real possibilities, depending on the horizontal sorting of B,
C, and D. We will use the notation X < Y to mean that point X is strictly
left of point Y.

Subcase (C<D (Fig. 3.30a)). This case violates Lemma 3.11, as comple-
tion of the polygon between B and C as illustrated demonstrates.

Subcase (C>D and B <D (Fig. 3.30b)). Place a guard on the vertical cut
Lj through D as illustrated. Then this cut satisfies the conditions of Lemma
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Fig. 3.30. If ABCD has degree 4, then either the situation is impossible (a), or Lemma 3.21
applies (b and c).

3.21, with P2 empty. Applying that lemma yields coverage of P1 with
[(3q + 5)/8\—l guards, which, together with the guard along Llt

establishes the theorem.

Subcase (C>D and B>D (Fig. 3.30c)).
Lx the vertical cut through D.

Again Lemma 3.21 applies with

Case k = 3. The proof of Lemma 3.8 shows that d is a diagonal of a degree
3 quadrilateral Q. Let Q = ABCD with d = DA. Orient d as in Fig. 3.31a,
and assume without loss of generality that the edges of P' adjacent to d are
horizontal, with A reflex. (Figure 3.17 shows that at most one of A, B, C, D
is convex, so one end of d is always reflex. If the other end is convex, d
angles away from the reflex vertex as in Fig. 3.31a; if the other end is reflex,
then either d angles away as in Fig. 3.31a, or it will after reflection in the x
axis.) We distinguish five cases, depending mainly on which edge of Q is a
polygon edge. In each case, Lemma 3.21 is invoked.

Subcase (BC is a polygon edge.) BC must be horizontal and below A,
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D

/

B

Fig. 3.31. The configuration when k — 3: the dotted edges in (a) represent the two possible
orientations of the polygon edge at D. If BC is a polygon edge, Lemma 3.21 applies.

otherwise either Q is non-convex or Lemma 3.11 is violated. Consequently
the parity of the horizontal edges adjacent to d in P' is the same, and the
situation is as illustrated in Fig. 3.31b. A horizontal cut through B satisfies
the conditions of Lemma 3.21 (with P2 empty), and the theorem follows by
placing a guard along the cut and applying Lemma 3.21.

Subcase (CD is a polygon edge). CD must be vertical to satisfy Lemma
3.11, and B must be left and below C since Q is convex. Regardless of the
vertical placements of A, B, and C, a vertical cut through B satisfies Lemma
3.21. Figure 3.32 shows that in each of the three possible vertical sortings
(A, C, B), (C, A, B), and (C, B, A), in a, b, c respectively, the theorem
follows by placing a guard along the cut and applying Lemma 3.21.

Subcase (AB is a polygon edge). Distinguish further subcases, depending
on the location of C with respect to B and D.

•

/
B

Fig. 3.32. If CD is a polygon edge, Lemma 3.21 applies.
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Fig. 3.33. If AB is a polygon edge, Lemma 3.21 applies in all cases.

Subsubcase (C is below B and left of D (Fig. 3.33a).). Let Lx be the
maximal vertical segment containing D. This satisfies Lemma 3.21, regard-
less of whether or not D is reflex.

Let Lx be theSubsubcase (C is below B and right of D (Fig. 3.33b).).
vertical edge containing C. This satisfies Lemma 3.21.

Subsubase (C is above B and left of D). This case violates Lemma 3.11
and so is not possible.

Subsubcase (C is above B and right of D (Fig. 3.33c).). Let Lx be the
maximal vertical segment containing D. This satisfies Lemma 3.21.

Case k = 2. Although this case is simplest in some sense, it requires the
most extensive sharing, since so little is cut off by d. Fortunately, all the
sharing is concentrated into Lemma 3.21. We partition the problem into two
subcases, depending on whether the edges adjacent to d in P' have the same
or opposite parity. Let d = DA as usual, and let A be below D so that A is
always reflex.

Subcase (Same Parity). Let d be oriented as in Fig. 3.34a. Place a guard
along the vertical edge through D if D is convex (Figs. 3.34b and 3.34c), or
along the first vertical edge hit by a horizontal cut through A (Fig. 3.34d).
In all cases, Lemma 3.21 applies, with P2 empty.

Subcase (Opposite Parity). Orient d as in Fig. 3.35a. That both A and D



A

D

c d
Fig. 3.34. When the edges adjacent to d have the same parity, Lemma 3.21 applies in all
cases.

Fig. 3.35. When the edges adjacent to d have opposite parity, Lemma 3.21 applies in all
cases.
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are reflex with their adjacent edges oriented as shown can be seen by
examination of Fig. 3.18. Of the four vertices in the chain counterclockwise
between A and D, exactly one is reflex. If the first or second (counterclock-
wise from A) is reflex (Figs. 3.35b and 3.35c), a vertical cut Lx through D
satisfies the conditions of Lemma 3.21. If the third or fourth vertex from A
is reflex (Figs. 3.35d and 3.35e), a vertical cut through A satisfies Lemma
3.21. In all cases, placing a guard along Lx and applying Lemma 3.21 yields
coverage by [(3q + 5)/8j - 1 + 1 guards, establishing the theorem.

D

1
/

y A

C

X

C D

Fig. 3.36. An "execution" of the proof of Theorem 3.3 and the lemmas it invokes. The final
guard placement is shown in (g).
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We have exhausted all possibilities, and therefore the theorem is estab-
lished. •

The proof just presented is constructive, and therefore can be converted
to an algorithm. The algorithm is highly inefficient, however, since
requadrilateralization is implicitly required at almost every step. It will help
understanding the proof if we step through a small example, tracking the
proof through the various lemmas and "executing" them as procedures.

Consider the polygon shown in Fig. 3.36a. It has n = 26 vertices and
q = 12 quadrilaterals. The theorem then says that six guards suffice; actually
four suffice in this case. Using the quadrilateralization in Fig. 3.36a, d is a
diagonal that cuts off a minimum number k of quadrilaterals; in this case,
k = 2. Following the theorem, the k = 2 case (opposite parity: Fig. 3.35b
reflected) invokes Lemma 3.21. In our particular case, the cut Lx and the
abutting rectangles are shown. Lx partitions P into pieces with qx = 2 and
q2 = 10 quadrilaterals. This is the hard case of the lemma, and requires a
second cut L2 shown. Two non-trivial pieces remain, and for both Lemma
3.21 invokes Lemma 3.20, because there are guards on two consecutive
convex edges (Fig. 3.36b). Both pieces fall under the same case of Lemma
3.20 (deg(Q) = 1: Fig. 3.26a reflected), both introducing a cut and invoking
Lemma 3.19 for a guard along a single convex edge. Figure 3.36c shows the
smaller piece. Lemma 3.19 makes a cut (following Fig. 3.24b) and applies
the IH, which in this case is trivial since the remaining piece is a rectangle,
which is assigned its own guard. Figure 3.36d shows the larger piece. Again
Lemma 3.19 cuts and applies IH to the polygon shown in Fig. 3.36e. We are
now back at the "top level" in the main theorem. In the quadrilateralization
shown, d cuts off a minimum k = 2 quadrilaterals. The case here is the same
parity one (Fig. 3.34c), and introduces a guard along the vertical edge
shown. The top remainder is handled by Lemma 3.19, because the guard
forms a convex edge. Lemma 3.19 then (unnecessarily in this case) invokes
IH again, this time at the basis, and a guard is assigned to the rectangle in
Fig. 3.36f. The resulting five guards assigned are shown in Fig. 3.36g.

3.4. Discussion

The guards used for the general polygon theorem (Theorem 3.1) are
combinatorial: visibility is needed only at the two vertices at the endpoints
of diagonals. The guards used for the orthogonal polygon theorem
(Theorem 3.3) are geometric: visibility is required throughout their length.
The guards used in the two theorems differ in other respects. Several
features of the orthogonal guards are:

(1) Visibility is required throughout the length of the guard.
(2) Guards are oriented horizontal or vertical only.
(3) Each guard can be chosen to include an edge of the polygon.
(4) Visibility is only required orthogonal to the guard.
(5) The patrols of two guards may pass through one another.
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These were not conditions imposed on the problem, but rather those that
"fell out" of Aggarwal's proof. It would be interesting to disallow the fifth
condition above: do not permit the lines of two guards to cross. But the
most interesting question concerning these qualifications on guard "power"
is whether (1) is necessary: can the same result be achieved with
combinatorial guards, as in the general polygon case?

Aggarwal has proven several other results on mobile guards (Aggarwal
1984). The most important is that for quadrilaterizable polygons—that is,
those that can be partitioned into convex quadrilaterals, [n/5\ guards are
necessary and sufficient. Since [n/5\ > [(3n +4)/16j for all n>20, this
result does not contradict Theorem 3.3. Despite Theorem 3.2, which
characterizes the quadrilateral trees of orthogonal polygons, it remains an
open problem to characterize those polygons that are quadrilateralizable.
Aggarwal's proof of the [n/5\ result differs in two ways from the proof of
Theorem 3.3: first, it is entirely combinatorial, and second, it is much
longer: at one point 93 separate cases are considered! Several other of his
mobile guard results for specialized polygons will be discussed in the next
chapter.



MISCELLANEOUS SHAPES

4.1. INTRODUCTION

Five generic shapes of polygons have been usefully distinguished in the
literature: convex, orthogonal, star, spiral, and monotone.1 Convex poly-
gons obviously do not lead to interesting art gallery theorems, since the
answer to most questions is 1, and orthogonal polygons were discussed in
Chapter 2. In this chapter we cover the three "miscellaneous" shapes: star,
spiral, and monotone. Other shapes could be considered—for example,
orthogonal spiral—but highly specialized shapes do not lead to interesting
theorems. The three shapes considered here have arisen in "practice," and
each can be recognized in linear time.

We examine vertex guards (as a function of both n, the number of
vertices, and r, the number of reflex vertices), edge, diagonal, and line
guards. The results obtained are summarized in Table 4.1. Most of the
results are easy to obtain (with one exception), and are often established by
a single example.

Table 4.1

Guard Type

vertex

edge
diagonal
line

Star

L»/3J
I//2J + 1
^ Ln/5J

2

1

Spiral

Ln/3J
[r/2\ + 1

L(n+2)/5j

Monotone

Ln/3J
Lr/2J+1

L(n + 2)/5j

1. Orthogonal is often called "rectilinear," and star is usually called "star-shaped" in the
literature.

116
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4.2. STAR POLYGONS

A star polygon P is a polygon that may be covered by a single guard: there
is a point x e P such that every point of P is visible from x. The set of all
points of P that can see every point of P is called the kernel of P. Thus a
star polygon is one with a non-null kernel. It is easy to see that the kernel is
the intersection of all the interior half-planes determined by the edges of P
(interior half-planes are towards the left in a counterclockwise traversal of
the boundary). Thus the kernel is convex. This characterization leads to an
O(n\ogn) algorithm for constructing the kernel by using Shamos's half-
plane intersection algorithm (Shamos 1978). Lee and Preparata showed,
however, that the kernel can be constructed in O(n) time (Lee and
Preparata 1979). Thus the question of whether a given polygon is a star can
be answered in linear time by checking if the kernel is empty. This
linear-time recognition capability increases the usefulness of the star class.

Although every star polygon can be covered by one point guard, more
interesting questions arise if restrictions are placed on the guard. If the
guards are restricted to vertices only, then [n/3\ are sometimes necessary,
as can be seen by warping the "comb" example (Fig. 1.2) to a star "sun
burst" shape shown in Fig. 4.1. Note that, aside from the spike apex, only
the two vertices at the base of each spike can see the spike completely. That
[n/3\ is sufficient of course follows from Chvatal's theorem (Theorem 1.1).

In terms of the number of reflex vertices, a slight modification of Fig. 4.1,
shown in Fig. 4.2, establishes the necessity of |//2j -I-1 vertex guards.
Sufficiency is established as follows. Let x be a point in the kernel. Connect
x to every reflex vertex by a line segment, as illustrated in Fig. 4.3. Let y be
a reflex vertex. Note that xy resolves the reflex vertex at y, leaving convex
angles on either side. Thus the r "spokes" from x partition the polygon into
r pieces, at least r — 1 of which are convex. There may be at most one piece
non-convex at x. Suppose all pieces are convex. Then placing a guard at
every second reflex vertex covers the polygon with \r/2\ guards. If there is
one non-convex piece, then cover it with two guards, one at each (former)
reflex vertex on its boundary, and again place a guard at every second reflex
vertex in the remainder. The result is coverage by 2 + \(r — 3)/2] = \(r +
l)/2] guards. Thus \(r + l)/2] = |r/2j + 1 guards suffice in either case.

Fig. 4.1. A star polygon that requires [n/3j vertex guards.
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i _ i

Fig. 4.2. A star polygon that requires |//2j + 1 vertex guards.

Since r may be as large as n - 3 (see Fig. 1.26), this result may be worse
than Chvatal's [n/3\, but it is better whenever r < 2[n/3j - 2.

For edge guards, the only result known is that at least \n/5\ edge guards
are necessary. This is established by another "sun burst" example due to
Toussaint, shown in Fig. 4.4. In this figure, the endpoints of each edge on
the lower semicircle are diametrically opposed to the vertices separating the
spikes. Thus, if the spikes are long enough, the apex of each spike is visible
from only one edge on the lower semicircle. For example, apex A in Fig. 4.4
is only visible to e. Of course, A is also visible from the edges adjacent to its
two base vertices a and b. But the conclusion remains that each spike
requires its own edge guard. The figure has n = 5s vertices if there are s
spikes, and therefore establishes that s = [n/5j edge guards are necessary.
Whether this many edge guards is always sufficient remains an open
problem.

Mobile guards are more powerful in star polygons. If the patrol is
unrestricted (a line guard in the notation of the previous chapter), then
clearly one guard suffices: just choose a line that intersects the kernel. If the
patrol is restricted to vertex-to-vertex diagonals or edges (diagonal guards),
then it may be that no diagonal intersects the kernel, as in Fig. 4.5. But if
the kernel does not intersect any diagonal, then it must lie inside one
triangle T of any triangulation. Then placing guards along any two sides of
T will cover the entire polygon, since any line through the kernel must
intersect the boundary of T in two locations, and at least one of these must
lie on a side covered by a guard. That two diagonal guards are sometimes
necessary is established by either of the polygons shown in Fig. 4.6, due to

Fig. 4.3. A partition of a star made by connecting a kernel point x to every reflex vertex.
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Fig. 4.4. A star polygon requiring [n/5j edge guards.

Shermer and Suri. In both figures, not all vertices are visible from any single
diagonal. For example, in Fig. 4.6a, diagonal (4, 9) cannot see 2, and in Fig.
4.6b, diagonal (13,14), cannot see 1 or 11.

Fig. 4.5. No diagonal intersects the kernel (shaded).

The following theorem summarizes the results of this section.

THEOREM 4.1 [Toussaint 1982]. For coverage of a star polygon of n
vertices and r reflex vertices, [n/3\ and |//2j +1 vertex guards are
necessary and sufficient, L"/5j edge guards are necessary, and 2 diagonal
guards are necessary and sufficient.

4.3. SPIRAL POLYGONS

A reflex chain of a polygon is a sequence of consecutive reflex vertices. A
spiral polygon is a polygon with at most one reflex chain. Feng and Pavlidis
studied decomposition of polygons into spiral pieces for its application to
character recognition (Feng and Pavlidis 1975; Pavlidis and Feng 1977).
Spiral polygons are easily recognized in linear time with a single boundary
traversal.

Spiral polygons may require [n/3\ vertex or point guards, although here
the example is not a simple distortion of the comb shape. The generic
example consists of 2k equally spaced vertices on the circumference of a
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circle, and k more vertices on a slightly larger concentric circle. See Fig. 4.7
for an instance with k = 6 and n = 3k = 18 vertices. There are k + 2 convex
vertices and r = 2k - 2 reflex vertices. Let the vertices on the inner circle
occur at multiples of a degrees; then the vertices on the outer circle occur at
multiples of 2a. The outer radius is chosen close enough to the inner radius
so that each convex vertex on the outer circle (not near either junction
between the convex and reflex chains) can see just three vertices on the
inner circle, and each reflex vertex on the inner circle can see just two
vertices on the outer circle. Placing guards at each vertex on the outer
circle, or" every other vertex on the inner circle, both result in complete
coverage with k=[n/3\ guards. It is easily seen that no advantage is gained

Fig. 4.6. Two star polygons that each require two diagonal guards, due to Shermer (a) and
Suri (b).
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by mixing guards on the outer and inner circle, or by placing guards on
points other than vertices. This establishes that [n/3j point guards are
necessary, and Chvatal's theorem gives sufficiency.

In terms of the number of reflex vertices r, the same example establishes
I//2J + 1 necessity: r = 2k-2, so [r/2j + 1 = k. Sufficiency is established
with Chazelle's "naive" convex partitioning, obtained by bisecting every
reflex vertex, as shown in Fig. 4.8. The resulting r + 1 convex regions can be
covered by guards placed at every other reflex vertex, and one additional
guard for the last convex region if r is even—that is, |//2j + 1 guards always
suffice.

Although the edge guard problem for spiral polygons has not been
investigated, the diagonal guard problem has been solved: [(« + 2)/5j are
necessary and sufficient. It is somewhat easier to understand the example
that establishes necessity after seeing the sufficiency proof, so we will
proceed with sufficiency first. It depends on two observations: a spiral
polygon may be triangulated so that the dual to the triangulation is a path,
and a five triangle polygon may always be covered by one diagonal guard.
The first observation is proved in the next lemma; the second observation is
Lemma 3.4.

LEMMA 4.1. There exists a triangulation of any spiral polygon whose
dual is a path—that is, a tree with just two leaves.

Proof. Let a spiral polygon have c convex and r reflex vertices. The proof
is by induction on c and r. The induction hypothesis is that every spiral
polygon with c' <c and r' <r, o r c ' ^ c and r' <r, has a path triangulation
dual such that the convex vertices a and b that are adjacent to the ends of
the reflex chain are the apexes of the leaf triangles.

15

17

Fig. 4.7. A spiral polygon that requires [«/3j point guards.
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Fig. 4.8. A partition of a spiral polygon into r + 1 convex pieces.

If r = 0, then P is a convex polygon, every triangulation is possible, and
the additional clause of the hypothesis hold vacuously. If r = 1, or if c = 3
(which is its minimum value), then the basis for the induction is established
by the triangulations shown in Figs. 4.9a and 4.9b, respectively.

Assume now that the induction hypothesis holds. Let x be the reflex and y
the convex vertex adjacent to a, the convex vertex defined in the
hypothesis. Then it is clear that x must be able to see y. Cut off the triangle
xay, forming a new spiral polygon P' with c' convex and r' reflex vertices.
There are two cases to consider, depending on whether the new angle at x is
reflex or convex.

Case 1 (x is reflex in P' (Fig. 4.10a).) Then c'=c — 1 and r'=r; y
becomes a' in P'.

Case 2 (x is convex in P' (Fig. 4.10b).). Then c'=c and r' = r — 1; x
becomes a' in P'.

In either case the induction hypothesis applies, yielding a path with xy an
edge of a leaf triangle. Attaching a node for xay to this yields a path for P
satisfying the induction hypothesis. •

We can now prove the claimed sufficiency theorem easily. Let a spiral
polygon have n vertices, and chose a triangulation whose dual is a path of
t = n — 2 nodes as guaranteed by the above lemma. By Lemma 3.4, a
septagon may always be covered by one diagonal guard. Thus each five
triangles in the path may be covered by one diagonal guard. This yields a
total coverage by |>/5l = \{n - 2)/5] = [(n + 2)/5j guards.

Fig. 4.9. Path triangulations of spiral polygons with one reflex vertex (a) and three convex
vertices (b).
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a b

Fig. 4.10. Cutting off an ear from a spiral.

Necessity of this many guards is established by constructing a spiral
polygon that only has one triangulation, whose dual is a path. This may be
accomplished with n = 10A: + 3 vertices, with 5A; + 2 convex and 5A: + 1
reflex, arranged as illustrated in Fig. 4.11 for k = 1. It should be clear that
the only triangulation of this polygon is the one shown. Coverage of five
triangles by one guard is then the best possible, and since there are
t = n - 2 = 10A: + 1 triangles, |>/5] = [(« + 2)/5j guards are necessary.

These results on spiral polygons are summarized in the following theorem
(Aggarwal 1984).

THEOREM 4.2 [Aggarwal 1984]. For a cover of a spiral polygon of n
vertices, r of which are reflex, [n/3\ and [r/2\ +1 point guards are
necessary and sufficient, and [(n + 2)/5j diagonal guards are necessary and
sufficient.

4.4. MONOTONE POLYGONS

The results known for monotone polygons match those for spiral polygons
exactly, suggesting that they are in some sense equally restrictive classes.
Necessity for point and mobile guards follows by noting that the critical
spiral polygons (Figs. 4.7 and 4.11) are also monotone if the reflex angles
are chosen close to 180°. Also, of course, the comb example is monotone.
The sufficiency proofs, however, are different. That |r/2j + 1 vertex guards

Fig. 4.11. A spiral polygon requiring [(« + 2)/5j diagonal guards.
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suffice is easily established by drawing a horizontal line through every reflex
vertex (assuming the axis of monotonicity is vertical). This partitions the
polygon into r + 1 convex pieces, each with a reflex vertex on its boundary.
Placing guards at every other reflex vertex in a vertical sort establishes that
\{r + l)/2] = |//2j + 1 guards suffice.

The sufficiency proof for [(n + 2)/5j mobile guards is the only one
amongst these specialized results that is difficult. The interested reader is
referred to Aggarwal's thesis (Aggarwal 1984), which contains a 15-page
proof. The guards used in his proof are not always diagonal guards, so the
result is only established for line guards. In summary we have this theorem.

THEOREM 4.3 [Aggarwal 1984]. For a cover of a monotone polygon of n
vertices, r of which are reflex, [n/3\ and |//2j + 1 point guards are
necessary and sufficient, and [(n + 2)/5j line guards are necessary and
sufficient.

Finally we mention again that Preparata and Supowit found a linear-time
algorithm for computing the set of directions with respect to which a
polygon is monotone (Preparata and Supowit 1981).



HOLES

5.1. INTRODUCTION

One of the major open problems in the field of art gallery theorems is to
establish a theorem for polygons with holes. A polygon with holes is a
polygon P enclosing several other polygons Hx, . . . , Hh, the holes. None of
the boundaries of P, Hlf . . . , Hh may intersect, and each of the holes is
empty. P is said to bound a multiply-connected region with h holes: the
region of the plane interior to or on the boundary of P, but exterior to or on
the boundary of Hx, . . . , Hh. (A polygon without holes is said, in contrast,
to be simply-connected.) Similarly we define an orthogonal polygon with
holes to be an orthogonal polygon with orthogonal holes, with all edges
aligned with the same pair of orthogonal axes. For both general polygons
with holes and orthogonal polygons with holes, a gap remains between the
available necessity and sufficiency proofs. In this chapter we discuss these
problems, and present partial results obtained by Aggarwal and Shermer.

Recall that the proof of Theorem 2.1 established that orthogonal
polygons with holes may be convexly quadrilateralized. But we have yet to
prove that arbitrary polygons with holes may be triangulated.

LEMMA 5.1. A polygon P with holes may be triangulated.

Proof. Let P have h holes and n vertices in total. The proof is by induction
on h primarily, and n secondarily. Theorem 1.2 establishes the basis of the
induction for h = 0. For the general case, let d be a completely internal
diagonal, whose existence can be guaranteed by the same argument as used
in Theorem 1.2: choose an arbitrary convex vertex v2, with neighbors vx

and v3, on the outer boundary of P, and let d = vtv3 if this is internal, and
otherwise let d = v2x, where x is the closest vertex to v2 measured
perpendicular to f i^3. If d has one endpoint on a hole, then it increases n
by 2, but decreases h by 1. If d has both endpoints on the outer boundary of
P, then it partitions P into two polygons Pt with nt < n vertices and ht < h
holes, i = 1, 2. In either case, the induction hypothesis applies and estab-
lishes the theorem. •

125
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The number of triangles and quadrilaterals that result from triangulation
and quadrilateralization are dependent on the number of holes:

LEMMA 5.2. Let a polygon P with h holes have n vertices total, counting
vertices on the holes as well as on the outer boundary. Then a triangulation
of P has t = n + 2h - 2 triangles, and a quadrilateralization has q =
n/2 + h — 1 quadrilaterals.

Proof. Let the outer boundary of P have n0 vertices, and let the ith hole
have n, vertices; thus n = n0 + n1 + • • • + nh. The sum of the interior angles
of the outer boundary is (n0 - 2)180 degrees; the sum of the exterior angles
of the ith hole is (n{ + 2)180. Thus

180[(n0 ~ 2) + («i + 2) + • • • + (nh + 2)] = 180r

ort = n+2h-2. Since q = t/2, q=n/2 + h-l.
The same result may be obtained with Euler's Theorem. There are V = n

vertices, F = t + h + 1 faces, one for each triangle and hole, plus the
exterior face, and E = (3t + n)/2 edges, where three per triangle plus the
boundary counts each edge twice. Then V — E + F — 2 yields t = n + 2h—2
as above. •

Throughout the remainder of the chapter, we will use n, h, t, and q to
designate the quantities defined in this lemma and P to represent a polygon
with holes (including the holes).

The best sufficiency result for both the general and the orthogonal
problems is the following theorem.

THEOREM 5.1 [O'Rourke 1982]. For a polygon of n vertices with h
holes, [(« + 2h)/3\ = \t/3] combinatorial guards suffice to dominate any
triangulation, and for an orthogonal polygon, [(n + 2h)/4\ = \q/2]
combinatorial guards suffice to dominate any quadrilateralization.

Proof.1 First we note that the equivalences of \t/3] and [(n + 2h)/3\, and
\q/2\ and [(n +2h)/4\, follow directly from Lemma 5.2 by substitution.
Thus this theorem is a direct extension of the sufficiency halves of Theorems
1.1 and 2.2, which established respectively that [n/3\ = \t/3] and [/i/4j =
\q/2] guards suffice.

Given a polygon P with holes, triangulate it into t triangles; call the
triangulation T. The plan of the proof is to "cut" the polygon along
diagonals of the triangulation in order to remove each hole by connecting it
to the exterior of P. It is clear that every hole must have diagonals in T from
some of its vertices to either other holes or the outer boundary of P. Cutting
along any such diagonal either merges the hole with another, or connects it
to the outside. In either case, each cut reduces the number of holes by one.
We are not quite finished, however, because we need to choose the cuts so
that the result is a single polygon: it may be that a choice of cuts results in
several disconnected pieces.

1. I have incorporated several ideas from Aggarwal (1984).
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Fig. 5.1. A triangulation graph of a polygon with holes (a) and its dual (b): each hole in (a) is
surrounded by a cycle in (b).

Let t be the (non-weak) dual of the triangulation. T is a planar graph of
maximum degree three, which, in its natural embedding, has h bounded
faces Flt . . . , Fh, one per hole of P. Let Fo be the exterior unbounded face.
Choose any face Ft that shares at least one edge e with Fo. There must be
such a face because there must be a diagonal of T from the outer boundary
to some hole, and the dual of this diagonal in t, is e. Removal of e from t
merges Ft with Fo without disconnecting the graph. See Fig. 5.1 for an
example. Note that removal of an edge in f is equivalent to cutting P along
the corresponding diagonal of T. Continuing to remove edges of t shared
with the exterior face in this manner guarantees that a single connected
graph results.

Let P' be the polygon that results after all holes are cut in the above
manner. Then P' has n + 2h vertices, since two vertices are introduced per
cut, but because cuts do not create new triangles, it still has t triangles.
Applying Theorem 1.1 to P' yields coverage by [(n + 2h)/3\ = \t/3]
guards.

The proof for orthogonal polygons is exactly the same, except that
Theorem 2.2 is invoked to obtain the result. •

Although this easily obtained theorem has a pleasing form when
expressed in terms of t and q, it appears to be weak: no one has found
examples of polygons that require this many guards. In fact, it is difficult to
find an example that requires more than [n/3\ guards independent of the
number of holes. But we show in the next section that there are such
polygons.

5.2. GENERAL POLYGONS WITH HOLES

Sidarto discovered the one-hole polygon shown in Fig. 5.2a. It has n = 8
vertices, h = 1 hole, and requires three guards. Note that 3 > [8/3J.
Shermer discovered the polygons in Figs. 5.2b and 5.2c, which also have
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a b c

Fig. 5.2. One-hole polygons of 8 vertices that require 3 guards.

eight vertices and require three guards. These one-hole examples can be
extended to establish [(n + l)/3j necessity for one hole: Figs. 5.3a and 5.3b
show two examples for n = 11, due, respectively, to Shermer and Delcher.2

Finally, the examples can be extended to more than one hole: Fig. 5.4
shows Shermer's method of stitching together copies of the basic one-hole
example. The polygon shown has n = 24 vertices, h = 3 holes, and requires
nine guards. This example establishes [(n + h)/3\ necessity for h holes. We
will not attempt to prove that the claimed number of guards is necessary in
the examples just mentioned, as it should be obvious from the figures. The
following theorem summarizes the implications of these examples.

THEOREM 5.2 [Shermer 1982]. [(n + h)/3\ guards are sometimes neces-
sary for a polygon of n vertices and h holes.

Note that Fig. 5.4 also establishes that [3«/8j guards are sometimes
necessary if we express the result solely as a function of n.

The gap between the necessity of [(n + h)/3\ and the sufficiency of
[(n + 2h)/3\ has proved very difficult to close. Since the gap widens as h
increases, it is not as insignificant as it might first appear. The strongest
result available is that [(n + h)/3\ guards suffice for h = 1, a theorem
proved independently by Aggarwal and Shermer (Shermer 1984). We will
follow Shermer's proof technique here.

a b

Fig. 5.3. One-hole polygons of 11 vertices that require 4 guards.

2. I assigned this as a homework problem in my computational geometry class. Julian Sidarto
and Thomas Shermer, and Arthur Delcher, were students in that class in 1982 and 1985,
respectively.
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Fig. 5.4. A polygon of 24 vertices with 3 holes that requires 9 guards.

5.2.1. Reduced Triangulations

Before outlining the proof, we first perform a reduction that eliminates
irrelevancies. The dual of a triangulation of a polygon with one hole has one
cycle surrounding the hole, with (perhaps) several trees attached to the
cycle. The next lemma shows that we can clip all the trees down to at most
one node. Define a reduced triangulation as one such that every subgraph of
the triangulation dual G that may be disconnected from G by the removal of
a single arc, has exactly one node. Note that this definition is independent
of the number of holes in the polygon from which the triangulation derives.
We restrict the next lemma to one-hole polygons although it does extend to
the general case.

LEMMA 5.3. If [(n + l)/3j combinatorial guards suffice to dominate
every reduced triangulation of a polygon of n vertices and one hole, then
[(n + l)/3j guards suffice to dominate every triangulation of n vertices and
one hole.

Proof. The proof is by induction on the number of trees of more than one
node attached to cycles of the triangulation dual G. The basis is established
by the antecedent of the lemma: [(n + l)/3j guards suffice for a reduced
triangulation, which by definition has no attached trees of more than one
node. For the general step, assume [(n + l)/3j guards suffice for any
triangulation with s'<s trees of at least two nodes, and let G be a
non-reduced triangulation with s such trees. Let T be one of these trees,
detachable from G by the removal of one arc r. The situation is as
illustrated in Fig. 5.5. Let a and b be the endpoints of the diagonal whose
dual is r. Let m be the number of vertices in the polygon Q composed of the
triangles of T, not including a and b. We show that all but at most the root
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Fig. 5.5. A tree T attached at diagonal ab to a cycle, which extends to the left and right.

triangle of T can be covered "efficiently," that is, with one guard per three
vertices. The proof proceeds in three cases, depending on the value of
m mod 3. The easiest cases are considered first.

Case 0 (m = 3k). The polygon Q has m + 2 vertices, and it may therefore
be covered by [{m + 2)/3j = k guards by Theorem 1.1. Let P-Q be the
polygon remaining after removal of Q—that is, the deletion of all vertices in
T except a and b, and all incident edges. Since P — Q has 5 - 1 attached
trees of one node or more, the induction hypothesis guarantees coverage
with [(n — m + l)/3j guards. Thus P may be covered with

[(n - m + 1)/3J + k = [[(n - m + 1) + m]/3j = [(n + l)/3j.

guards.

Case 2 (m = 3k + 2). The strategy used in Case 0 will lead to k + 1 guards
here, which is insufficient for our purposes, so another approach must be
taken. Augment Q to Q' by adding the triangle on the other side of ab,
whose apex is JC. Q' is a polygon of m + 3 = 3k + 5 vertices and may
therefore be covered with [(3& + 5)/3j =k + l guards by Theorem 1.1.
Fisk's proof of that theorem (Section 1.2.1) assigns one vertex of triangle
abx a guard. If JC is assigned a guard, it may be moved to a or b while
maintaining complete coverage of Q'. Thus we may assume that a or b is
assigned a guard. Suppose without loss of generality that a is assigned a
guard. Let P' be the result of removing all of Q', all triangles incident on a,
and splitting vertex x into two vertices. See Figs. 5.6a and 5.6b. P' has
n — m —1 + 1 vertices, since it is missing the m vertices of Q and vertex a,

d _ 0'

a b
Fig. 5.6. When 3k + 2 vertices comprise T (a), the hole is removed by splitting x (b).
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a b

Fig. 5.7. When 3k + 1 vertices comprise T (a), one case is handled by covering R and abc
together, and L separately (b).

but gains a vertex from the split of JC. Splitting x removes the hole, but P' is
not necessarily a polygon, as pieces may be attached at vertices only. But
now connect each vertex of P' that was adjacent to a in P, to x. In Fig.
5.6b, vertex d is so connected. These connections are not always geometri-
cally possible, but for this case we are only concerned with the com-
binatorial structure of the graph. The reconnections do not increase the
number of vertices, but they restore P' to be a triangulation graph of a
polygon without holes. There is now no need to use the induction
hypothesis; rather apply Theorem 1.1 to P', resulting in coverage by

L(n - m)/3j = [[(n - 3(k + 1)) + l]/3j = [(n + l)/3j - (* + 1)

guards. Together with the k + 1 guards used to cover Q', the lemma is
established in this case.

Case 1 (m = 3k + 1). Let the triangle forming the root of T be abc. Let /
be the number of vertices in the left subtree L, not including a and c, and
let r be the number of vertices in the right subtree R, not including b and c.
Thus m = l + r + 1; see Fig. 5.7a. We consider two subcases dependent on
the values of / and r mod 3.

Subcase la (I = 3k1 and r = 3k2; m = 3{kx + k2) + 1). As in Case 0, cover L
and R with kx and k2 guards. By the induction hypothesis, P — L-R can be
covered with

[ j {kx + k2)[[n - (/ + r) + 1]/3J = [[n - 3{kx + k2) + l]/3j = [(n

guards, establishing the theorem. This is the only case in which T cannot be
entirely removed, but is instead reduced to a single triangle abc.

Subcase lb (I = 3 ^ + 1 and r = 3k2 + 2; m = 3{kx + k2 + 1) + 1). Let R' be
the polygon obtained by adding abc to R. R' has 3k2 + 5 vertices. Cover R'
with k2 + l guards by Theorem 1.1. Fisk's coloring procedure guarantees
that one vertex of abc is assigned a guard. If either a or b (say a) is guarded,
then proceed exactly as in Case 2: delete R' and a, and split x. The
calculations are just as in Case 2, establishing the lemma. If on the other
hand c is guarded, then delete R' and all triangles of L incident on c, as in
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Fig. 5.7b. This leaves at most / + l = 3£:1 + 2 vertices either disconnected
from P or attached at a. Addition of graph edges if necessary restores this
piece to a triangulation graph of a polygon L' without increasing the
number of vertices. Cover U with k1 guards by Theorem 1.1. Now the
remainder of P has n — m vertices and 5 — 1 attached trees. By the induction
hypothesis it may be covered with

L(n - m + 1)/3J = [[n - 3(*t + k2 + 1)]/3J = [n/3\ - (k, + k2 + l)

guards. Together with the k2 + 1 guards used to cover R', and the k1 guards
used for L', complete coverage has been achieved with fewer than
L(« + l)/3j guards.

All cases have now been covered, and the lemma established. •

The idea of reconnecting "broken" pieces into a polygon triangulation
graph is from Shermer (1985). Note that this technique was used only when
induction was unnecessary, or was applied only to an attached tree. This is
crucial, as the geometry of the reduced triangulation is important in the
proof of Theorem 5.3 below, and cannot be warped by curved reconnec-
tions that need to be straightened in the manner used in Lemma 3.1.

5.2.2. Tough Triangulations

We may now proceed with Shermer's proof of [(n + l)/3j sufficiency for a
polygon with one hole. The first step of the proof reveals why the problem
is hard: there exist triangulations of polygons with h holes that require
[(n + 2h)/3\ combinatorial guards for domination. Thus the problem
cannot be reduced to pure combinatorics by an arbitrary triangulation.
Before proving this we introduce some notation.3 Lemma 5.3 permits us to
restrict attention to reduced triangulations. Let T be a reduced triangulation
of a polygon with one hole. Then T consists of a single cycle of triangles,
each with perhaps one attached triangle that is not part of the cycle. A cycle
triangle is based on the inner boundary if it has exactly one vertex, its apex,
on the outer boundary of the polygon, and based on the outer boundary if
just its apex is on the inner boundary. Note that the base edge of a cycle
triangle based on the inner boundary may not itself be on the inner
boundary because of a tree attached to the base; this is why the definition is
phrased in terms of the apex. Label a cycle triangle " 1 " if it has no attached
non-cycle triangle, and "2" if it does. Then T is represented as a string of
characters over the alphabet {"1", "2", " / " } , formed by concatenating all
the labels of the cycle triangles, and inserting a "/" between labels Xx and A2

if the kx triangle is based on the inner boundary and the A2 triangle is based
on the outer boundary, or vice versa. Thus each "/" records a switch in
basing. This string of characters will be called the string associated with T.

Figure 5.8 shows an example. Starting at the indicated lowest triangle and

3. The notation is due to Shermer (1984), but slightly modified here.
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t
Fig. 5.8. A triangulation of 10 vertices with string 121/121/1/1/ that requires 4 guards: the 3
shown (dots) do not cover the shaded triangle.

proceeding counterclockwise, we obtain the string 121/121/1/1/. Note that
the sum of the integers in the string is equal to the total number of triangles
in T, and because t = n when h - 1 by Lemma 5.2, this is the same as the
number of vertices of the polygon. We will employ standard regular
expression notation to condense the strings: " + " for "or," sk for k
repetitions of string s, and s* for zero or more repetitions of s. Thus the
above string is equivalent to (121/)2(1/)2 and is an instance of (1(21) */)4.
We consider two strings equivalent if one is a cyclic shift of the other, or a
cyclic shift of the reverse of another. Finally note that the strings make no
distinction between the inner and outer boundaries, and in fact this
distinction is irrelevant for combinatorial guards.

A complete characterization of those triangulations that require
[(« + 2h)/3\ combinatorial guards for h = 1 is provided by the following
theorem (Shermer 1984).

THEOREM 5.3 [Shermer 1984]. A reduced triangulation T of a polygon
with one hole requires [(n + 2)/3j combinatorial guards for complete
domination iff the string for Thas the form (l(21)*/)6*~2.

We will call a string that is an instance of (l(21)*/)6fc~2 tough. Figure 5.8
satisfies the theorem: n = 10 and it requires [12/3J = 4 combinatorial
guards; an attempted cover with three guards is shown in the figure. Figure
5.9 shows a polygon with the string (121/)10; here n = 40 and [42/3J = 14
guards are required. Even triangulations whose strings are tough but do not
correspond to any non-degenerate polygon require [(n + 2)/3j
combinatorial guards. Figure 5.10 shows the smallest possible instance,
(I/)4, where n = 4 and g= [6/2J =2. Figure 5.8 is the smallest instance
realizable as a polygon. All these examples are from Shermer (1984).

Proof of Theorem 5.3. We first prove that a triangulation graph T with a
tough string requires [(n + 2)/3j combinatorial guards. The proof is by
induction, in two parts. First it is shown that the claim holds for strings of
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Fig. 5.9. A triangulation of 40 vertices with string (121/) that requires 14 guards: the 13
shown (dots) do not cover the shaded triangle.

the form (l/)6k~2. Then it is shown that each addition of a (21) section
requires another guard.

Triangulations of the form (l/)6k~2 have a particularly simple structure,
illustrated for k = 2 in Fig. 5.11. Each vertex is adjacent to exactly three
triangles. Thus g = \t/3] guards are necessary. But since t = n — 6k — 2,
g = [(6A; - 2)/3] =2k= [(n + 2)/3j, establishing the first claim.

Now assume that all triangulations T of n vertices with tough strings
require g = [(n + 2)/3j guards, and consider adding three vertices to such a
T by insertion of a (21) section 5 after a " 1 " triangle and before a "/"
switch. Clearly any triangulation of n + 3 vertices that is an instance of the
tough form (1(21)*/)6k~2 can be obtained by such an insertion. Assume, in
contradiction to our goal, that the insertion does not increase the number of
guards required beyond g. We claim then that T could have been covered
by g - 1 guards. S must be covered in one of the three ways illustrated in
Figs. 5.12a, 5.12b, or 5.12c. If S is covered as in Fig. 5.12a, then removal of
the section and the guard results in domination of T by g — 1 guards. If S is
covered as in Fig. 5.12b, then deleting S merges two guards, again resulting
in coverage by g — 1 guards. Finally, if S is covered as in Fig. 5.12c, then
removal of S leaves two guards, one of which (the bottom one in the figure)
is superfluous because every triangle to which it is adjacent is already
covered. So again T can be dominated by g — 1 guards. This contradicts the
assumption that g are necessary, establishing that the form (l(21)*/)6fc~2

always requires [(n + 2)/3j combinatorial guards.

Fig. 5.10. A triangulation of 4 vertices with string (I/)4 that requires 2 guards: the 1 shown
(dot) does not cover the shaded triangle.



5.2. GENERAL POLYGONS WITH HOLES 135

Fig. 5.11. A triangulation of 10 vertices with string (I/)10 that requires 4 guards: the 3 shown
(dots) do not cover the shaded triangle.

Now we prove the theorem in the other direction, in the contrapositive
form: if a triangulation T does not have a tough string, then fewer than
[(n + 2)/3j combinatorial guards suffice for domination. Each 1 in a tough
string must be followed by (2 + 1), and each 2 by 1. Thus, any non-tough
triangulation must contain a fragment of the form 11, 22, or 2/. Each of
these cases is treated separately.

a b c
Fig. 5.12. Three ways to guard a (21) section.

Case 1 (11). Let ab be the diagonal shared between the two " 1 " triangles,
with b an apex of both, as shown in Fig. 5.13a. Place a guard at b, delete all
covered triangles, and add in extra edges as needed to restore to a polygon
with no holes, as shown in Fig. 5.13b. The result is a triangulation of a
polygon of no more than n — 2 vertices, and so T may be dominated with
1 + L(n - 2)/3j = [(n + 1)/3J guards.

Case 2 (22). Again let ab be the shared diagonal, with a incident to all four
triangles, as shown in Fig. 5.14a. Place a guard at a, delete the four adjacent
triangles, and split node b into two nodes, as shown in Fig. 5.14b. The result
is a polygon of n - 2 vertices, so again T can be dominated with
l + [ ( n - 2)/3j = L(» + 1)/3J guards.

a b
Fig. 5.13. Guarding a l l fragment (a) removes the hole (b).
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a b

Fig. 5.14. Guarding a 22 fragment (a) removes the hole after splitting a vertex (b).

Case 3 ill). Here we must consider several subcases, depending on the
triangles adjacent to the 2/ fragment.

Case 3a (2/1). See Fig. 5.15a. Place a guard at a and delete adjacent
triangles. The result is a polygon of n - 2 vertices, and we proceed as in
Case 1.

Case 3b (2/2). Again we consider subcases.

Subcase (2/21). See Fig. 5.15b. Place a guard at a as in Case 3a.

Subcase (2/22). This was already handled in Case 2.

Subcase (2/2/1). This was already handled in Case 3a.

Subcase (2/2/2). See Fig. 5.15c. Place a guard at a, delete all adjacent
triangles, and split vertex b. Now proceed as in Case 2.

a b c
Fig. 5.15. The three cases for the fragment 2/ are all handled by guarding vertex a.

We have thus shown that [(n + l)/3j combinatorial guards suffice whenever
one of the fragments 11, 22, or 2/ are present in T"s string, establishing the
theorem. •

5.2.3. Convex Pairs and Triplets

The second step of Shermer's proof of Theorem 5.3 is to further
characterize those one-hole polygon triangulations that might require
[(« + 2)/3j guards, this time involving the geometry of the triangulation
and using geometric guards. In particular, if a tough triangulation contains
either a "c-pair" or a "c-triplet," then [(n + l)/3j guards suffice. The third
and final step is to show that every tough triangulation must contain one of
these two structures.

A c-pair is a pair of adjacent cycle triangles that together form a convex
quadrilateral.
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a b

Fig. 5.16. Flipping a 1/1 c-pair leads to 11/1 (a) or 2/1/1 (b).

LEMMA 5.4. A polygon with a tough triangulation containing a c-pair
may be covered with [(n + l)/3j vertex guards.

Proof. The strategy is to flip the diagonal of the c-pair, changing the
structure of the triangulation to non-tough. Since the triangulation has the
string (1(21)*l)6k~2, the c-pair has either the form 1/1 or 21 (or equivalently
12). Each case is considered separately.

Case 1 (1/1). Flip the diagonal of the c-pair. Since the quadrilateral is
convex, this is possible. The resulting triangulation is not tough, as can be
seen in Fig. 5.16. If the triangle preceding the c-pair is of type 1, then the
fragment 1/(1/1) is changed to 11/1 (Fig. 5.16a). If the preceding triangle is
of type 2, then the fragment 2(1/1) is changed to 2/1/1. Neither of these
new fragments are substrings of any tough string. By Theorem 5.3, then,
[(« + l)/3j guards suffice.

Case 2 (21). Again flip the diagonal. The resulting triangulation, shown in
Fig. 5.17, is not reduced. But this is just Case 2 of the proof of Lemma 5.3.
Place a guard at a, delete all adjacent triangles, split vertex c in two, and
restore to a polygon triangulation by adding diagonals as necessary. Three
vertices are deleted, and one added. Since the result is a polygon, coverage
by 1 + [(« - 2)/2j = [(« + l)/3j guards has been achieved. •

Fig. 5.17. Flipping a 21 c-pair leads to the case considered in Fig. 5.6.

A c-triplet is a triple {A, B, C) of consecutive cycle triangles such that
first, B is of string type 1, and second, the union of the three triangles may
be partitioned into two convex pieces.

LEMMA 5.5. A polygon with a tough triangulation containing a c-triplet
may be covered with [(« + l)/3j vertex guards.

Proof. Let a be the vertex common to the c-triplet triangles A, B, and C,
as shown in Fig. 5.18a. Delete B and split vertex a. The result is a polygon
of no holes with n + 1 vertices, which may therefore be covered with
[(n + l)/3j vertex guards by Theorem 1.1. In particular, perform the
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a b
Fig. 5.18. A c-triplet is covered if A and C are covered (a), but B is not covered if the
triangles do not form a c-triplet.

coverage with Fisk's coloring procedure; then both A and C must have a
guard in one of their corners. Now put back B. Because the three triangles
form a c-triplet, B is also covered by the guards covering A and C. •

Note that if the triangles did not form a c-triplet, as in Fig. 5.18b, B
would not necessarily be covered. Similarly, if B were of string type 2, the
triangle attached to B would not necessarily be covered.

We finally come to the last step of the proof. For a triangle tt, define the
open cone delimited by the two edges of tt passing through the apex as <x(i),
and define the similar region off the right base vertex as /3(z); see Fig. 5.19.

LEMMA 5.6. Any tough triangulation of a polygon contains either a
c-pair or a c-triplet.

Proof. The proof is by contradiction. Assume a tough triangulation
contains no c-pair or c-triplet. Then we will show that it cannot close into a
cycle, and so is not the triangulation of a polygon with one hole.

Identify two adjacent cycle triangles of the form 1/1; such a fragment
must exist because the general form is (1(21) */)6^"2. We will identify
triangles by subscripts on their type. The selected 1/1 fragment is labeled
lo/li- We expand this string to the right in all possible ways compatible with
the general tough form, and show that a particular geometric structure
always results. Let a string S end at the right with 1,, and let vt be the vertex
at the tip of the ear lt. Then define an embedding of S to be nesting if vt is

Fig. 5.19. The apex cone a and base cone j3 for a triangle.
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Fig. 5.20. lo/li is nesting.

in the base cone /3(i -1) of the triangle adjacent to 1,. We now show that
lo/li is nesting.

The general form of this fragment is as shown in Fig. 5.20a. In order to
avoid a c-pair, either the configuration shown in Fig. 5.20b or 5.20c must
hold. In Fig. 5.20b, vl e /S(0), and so the nesting definition is satisfied.
Figure 5.20c is just Fig. 5.20b reflected in a horizontal line, and we assume
without loss of generality that 5.20b obtains.

The string lo/li may be extended only with /I or 21 while remaining
compatible with the tough form. We consider each case separately.

Case 1 (lo/li/l2)- The general form is shown in Fig. 5.21a. In order to
avoid a c-pair in li / l2 , either v2 e ar(l) or v2 e j3(l). The former choice (Fig.
5.21b) leads to a c-triplet, and the latter choice (Fig. 5.21c) is a nesting
configuration.

Fig. 5.21. lo / l i / l2 is nesting.

Case 2 (lo/li/22l3). As in Case 1, we must have v2e/3(l). To avoid a
c-pair in 2213, we must have v3 e fi(2), as illustrated in Fig. 5.22. Again the
configuration is nesting.

Fig. 5.22. is nesting.
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VVn

iS(i-i)

Fig. 5.23. Repeated nesting prevents vn from coinciding with v0.

Both Case 1 and 2 may be extended only with /I or with 21. Extension of
Case 1 results in the same two cases again, although the possibility that
v3 e ar(2) is blocked by l0, so this choice does not have to be ruled out by
showing that it leads to a c-triple. Similarly extension of Case 2 brings us
back to the same two cases. We conclude that every embedding of the string
compatible with the tough form is nesting.

But now the contradiction is immediate. The repeated nesting forces
vt e fi(i — 1), and since these base cones are clearly nested inside one
another (see Fig. 5.23), the embedding cannot wrap back around to permit
vn = v0. O

THEOREM 5.4 [Aggarwal, Shermer 1984]. [(n + l)/3j vertex guards
suffice to cover any n vertex polygon with one hole.

Proof. Lemma 5.3 established that if the theorem holds for reduced
triangulations, then it holds for all triangulations. So we restrict our
attention to reduced triangulations. Theorem 5.3 shows that if the reduced
triangulation is not tough, then [(n + l)/3j vertex guards suffice. So we
need only consider tough triangulations. Lemmas 5.4 and 5.5 show that if a
tough triangulation contains a c-pair or a c-triplet, then [(n + l)/3j guards
suffice. And Lemma 5.6 shows that every tough triangulation contains one
of these structures, so there are no further possibilities. •

It does not seem easy to extend this proof to more than one hole.
Nevertheless, there is considerable evidence for the following conjecture.

CONJECTURE 5.1 [(n + h)/3\ vertex guards are sufficient to cover any
polygon of n vertices and h holes.

5.3. ORTHOGONAL POLYGONS WITH HOLES

The status of the art gallery problem for orthogonal polygons is similar to
that for general polygons in that it is unsolved in its most general form.
There are, however, four interesting differences: the number of guards does
not seem to be dependent on h, there is a simple proof of the one-hole
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theorem, there is a two-hole theorem, and vertex guards do not suffice for
more than one hole.

Recall that the quadrilateralization theorem (2.1) holds for orthogonal
polygons with holes. However, the coloring argument used to obtain [n/4\
sufficiency does not work if there are cycles in the dual of the quad-
rilateralization. Nevertheless, no examples of orthogonal polygons with
holes are known to require more than [n/4j guards. This leads to the
following conjecture.

CONJECTURE 5.2. [n/4j point guards suffice to cover any orthogonal
polygon of n vertices, independent of the number of holes.

The gap between this conjecture and the best general result, [(n + 2h)/4\
(Theorem 5.1), is substantial.

Aggarwal established the truth of the conjecture for h = 1 and h = 2. His
proof for one hole is long and complicated (Aggarwal 1984). The two-hole
theorem is by no means a simple extension of the one-hole theorem; further
complications arise.4 Recently Shermer found a simple proof of the
one-hole theorem. This is the only proof we will present in this section.

His proof is "simple," however, only if we accept a non-trivial lemma
proved by Aggarwal to the effect that only reduced quadrilateralizations
need be studied. A reduced quadrilateralization is one for whose dual G the
following conditions hold:

(1) Every subgraph that may be disconnected from G by the removal of
a single arc of G has exactly one node, called a leaf;

(2) the quadrilaterals of no two such leaf nodes share a vertex.

For a polygon with one hole, the dual of a reduced quadrilateralization is a
single cycle with attached leaf nodes satisfying condition (2). Note that the
definition of a reduced quadrilateralization parallels that of a reduced
triangulation used in the previous section, with the additional restriction of
discarding neighboring non-cycle quadrilaterals.

Aggarwal established the following analog of Lemma 5.3.

LEMMA 5.7. If [n/4j guards suffice to dominate every reduced quadri-
lateralization of n vertices and one hole, then [n/4j guards suffice to cover
every quadrilateralization of n vertices and one hole.

The proof of this lemma is at least as complex as that of Lemma 5.3, but it
is very similar in spirit, and we will not detail it here (Aggarwal 1984, Prop.
3.10). This lemma permits us to concern ourselves solely with reduced
quadrilateralizations.

We need a simple characterization of the cycle quadrilaterals of one-hole
orthogonal polygons before proceeding. Each cycle quadrilateral has all
four of its vertices on the boundary of the polygon. If a quadrilateral has

4. This proof is only sketched in Aggarwal (1984), but he has rather detailed notes.
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two vertices on the exterior boundary and two on the hole boundary it is
called balanced; otherwise it is called skewed.

LEMMA 5.8 Any quadrilateralization of an orthogonal polygon with one
hole has an even number (at least four) of balanced quadrilaterals.

Proof. We first establish that the number of polygon edges bounding the
cycle quadrilaterals towards the exterior is even. Of course this is trivial if
all the quadrilateral edges are polygon edges, because an orthogonal
polygon has an even number of edges. Let elf . . . , ek be the cycle
quadrilateral edges towards the exterior, and let nt be the number of
polygon edges in the portion of the polygon Pt bound by e, that does not
include the hole. If et is a polygon edge, then n,•. = 1; otherwise nt is odd,
since Pt is quadrilateralizable and therefore has an even number of boundary
edges including et. Since each n, is odd, and £f=i«z, the total number of
polygon edges, is even, the number of terms k must be even. This
establishes the claim.

Since each balanced quadrilateral contributes 1 to k, and each skewed
quadrilateral contributes 0 or 2 to k, the number of balanced quadrilaterals
must be even. To establish that there must be at least four balanced
quadrilaterals, note that the four extreme edges of the hole (top, bottom,
left, right), cannot be part of a skewed quadrilateral. •

We may now proceed with Shermer's proof of the one-hole theorem.

THEOREM 5.5 [Aggarwal 1984]. [n/4j vertex guards suffice to cover any
n vertex orthogonal polygon with one hole.

Proof [Shermer 1985]. Let Q be a reduced quadrilateralization of an
orthogonal polygon with one hole. Associate a graph H with Q as follows.
The nodes of H correspond to the quadrilaterals of Q, and two nodes are
connected by an arc iff their quadrilaterals share a vertex. An example is

Fig. 5.24. Two nodes are adjacent in H if their quadrilaterals share a vertex.
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a— 4A4 >
a b c

Fig. 5.25. Hamiltonian paths through balanced (a and b) and skewed (c) cycle quadrilaterals.

shown in Fig. 5.24. We claim that H is Hamiltonian, that is, it contains a
cycle that touches each node exactly once.

First it is easy to see that the quadrilaterals that form a cycle in the dual
of Q form a cycle in H as well, since quadrilaterals that share a diagonal
share vertices. We now "stitch" the leaf nodes into this cycle. Let A, B, and
C be three consecutive cycle quadrilaterals. If B is balanced it may have
either one or two attached leaf quadrilaterals (Figs. 5.25a and 5.25b); if B is
skewed, it may have one attached leaf quadrilateral (Fig. 5.25c). In all three
cases it is possible to form a Hamiltonian path from A to C including B and
any attached leaf nodes, as illustrated in the figures. Concatenation of these
Hamiltonian paths for all cycle quadrilaterals playing the role of B can be
seen to result in a Hamiltonian cycle y for H by the following argument.

A leaf attached to a skew quadrilateral may be brought into the cycle in
only one way, as shown in Fig. 5.25c. To reduce the graph to situations
where choice remains, contract the edge e shown in Fig. 5.25c for every
such skew quadrilateral, and delete the attached leaf node. Perform this
contraction of e even if the skew quadrilateral has no attached leaf node.
After contraction (or "squashing") of e, every edge of H incident to either
endpoint of e is made incident to one node that "represents" both
endpoints. Applying this transformation to the complicated section of H
shown in Fig. 5.26a, for example, reduces it to the simpler fragment shown
in Fig. 5.26b. After contraction of all such skew quadrilaterals, the resulting
graph H' is a mixture of the two cases in Figs. 5.25a and 5.25b. Because no
two leaf quadrilaterals share a common vertex by definition of a reduced
quadrilateralization, and because the contraction process does not destroy
this property, H' is a simple pasting together of the patterns in Figs. 5.25a
and 5.25b. Note that the Hamiltonian path in those figures always use the
edge(s) between a balanced cycle quadrilateral and its attached leaf node(s)
(the vertical edges in Fig. 5.25). Contracting these edges produces a further
reduced graph H" which is always a simple cycle; see Fig. 5.26c. Now start
with the obvious Hamiltonian cycle for H", and "reverse" the transforma-
tions above. From H" to H' there are choices available, but it is clear that a
Hamiltonian cycle can always be achieved: because every leaf node is
adjacent to three consecutive cycle nodes, an exit in the required direction
is always available to a path traveling the vertical edge from cycle node to
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B X c D

Fig. 5.26. A section of H with a Hamiltonian path (a), after contraction of skewed
quadrilaterals (b), and after contraction of vertical edges (c).

leaf node. Reversal from H' to H is straightforward, as there is no choice.
The result is the claimed Hamiltonian cycle y of H.

Let q be the number of quadrilaterals in Q. Recall that by Lemma 5.2,
q=n/2. liq is even, then every other edge of y forms a perfect matching in
H: a set of edges that is incident on each node exactly once. Each edge of
the matching corresponds to a vertex of the polygon. Placing guards at the
vertices associated with the edges of the matching covers the two quadri-
laterals whose nodes are endpoints of the edge. Thus this guard placement
covers the entire polygon with q/2 = n/4 = [n/4\ guards.

Now suppose that q is odd. If the number of cycle quadrilaterals is even,
then there must be at least one leaf quadrilateral. If the number of cycle
quadrilaterals is odd, then by Lemma 5.8 there must be at least one skewed
cycle quadrilateral. Both of these cases guarantee the existence of three
quadrilaterals consecutive in y that can be covered by one vertex guard.
Place a guard at this vertex and delete the three nodes from y, forming y'.
y' has an even number of nodes and forms a Hamiltonian path. Again every
other edge of y' represents a perfect matching, and placing guards at the
corresponding vertices results in complete coverage. The number of guards
used is 1 + far - 3)/2 = (q - l)/2 = (n - 2)/4 = jn/4]. •

As mentioned earlier, Aggarwal has also proven that [n/4j guards suffice
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Fig. 5.27. A four-hole polygon of 44 vertices that requires 12 vertex guards.

to cover any orthogonal polygon with two holes. The most interesting aspect
of the two-hole theorem is that [n/4\ vertex guards do not suffice for
polygons of two or more holes: Fig. 5.27 shows a four-hole polygon with
n=44 that require 12 vertex guards, 3 surrounding each hole.5 However,
10 < [44/4J guards suffice if they are not restricted to vertices: movement of
guards 2 and 8 horizontally to the right to the polygon boundary permits the
elimination of guards 3 and 9. Extension of this example to multiple holes
has led Aggarwal and Shermer to make the following conjectures
(respectively).

CONJECTURE 5.3. [3n/llJ vertex guards are sufficient to cover any
orthogonal polygon with any number of holes.

CONJECTURE 5.4. [(n +h)/4\ vertex guards are sufficient to cover any
orthogonal polygon with any number of holes.

5. Aggarwal (1984, p. 137), as modified by Shermer.
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6.1. INTRODUCTION

Derick Wood and Joseph Malkelvitch independently posed two interesting
variants of the original Art Gallery Problem, which Wood dubbed The
Fortress Problem and The Prison Yard Problem. The first asks for the
number of guards needed to see the exterior of a polygon, and the second
asks for the number needed to see both the exterior and the interior. The
first has been satisfactorily solved, but the second remains tantalizingly
open.

6.2. FORTRESS PROBLEM

How many vertex guards are needed to see the exterior of a polygon of n
vertices? An exterior point v is seen by a guard at vertex z iff the segment
zy does not intersect the interior of the polygon.

6.2.1. General Polygons

A convex n-gon establishes that \n/2] guards are occasionally necessary: a
guard is needed on every other vertex. See Fig. 6.1. One might conjecture
that in fact placing guards on every other vertex is always sufficient, even for
non-convex polygons, but Fig. 6.2 (an example due to Shermer) demon-
strates that this simple strategy will not work: placing guards on either the
odd or the even indexed vertices leaves a portion of the exterior uncovered.
It is, however, not difficult to establish the sufficiency of \n/2] using a
3-coloring of an exterior triangulation.

THEOREM 6.1 [O'Rourke and Wood 1983]. \n/2] vertex guards are
necessary and sufficient to see the exterior of a polygon of n vertices.

Proof. Triangulate the portion of the plane that is inside of the convex hull
but exterior to the polygon. Call the resulting graph of n nodes G"; see Fig.

146
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n = 7

g = 4

Fig. 6.1. A convex polygon requires \n/2] vertex guards (solid dots) to cover the exterior.

6.3a. Add an additional node foe to G" outside the hull and make it adjacent
to every node on the hull; call this graph of n + 1 nodes G' (Fig. 6.3b).
Finally, choose some hull vertex x and split it into two vertices x' and x",
apportioning the previous connections from x between x' and x" so that the
graph remains planar, and adding a new arc so that v^ is adjacent to both x'
and x". Call the resulting graph of n + 2 nodes G (Fig. 6.3c).

We claim that this graph is a triangulation graph of a polygon. This can be
seen by "opening up" the convex hull at x' —x" and moving v^ far enough
away to permit all its connections to be straight lines. Since G is a
triangulation graph, it can be 3-colored. The least frequently used color, say
red, occurs no more than [(n 4- 2)/3j times. If vx is not colored red, then

Fig. 6.2. Guards on the even vertices leave E uncovered, and guards on the odd vertices leave
O uncovered.
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G"

Fig. 6.3. The graph G in (c) is produced from a triangulation of the hull pockets (a) by
connecting all hull vertices to vx (b) and splitting some hull vertex x.

placing guards at the red nodes covers the exterior of the original polygon
with [(n + 2)/3j ^ \n/2] vertex guards.

If, however, v^ is colored red, this strategy will not work, since no guard
may be placed at v^, as it is not a vertex of the polygon. In this case, place
guards with the second least frequently used color. Suppose the number of
occurrences of the three colors are a < b < c, with a + b + c = n + 2. Since
a>\, b+c<n+L Thus b < [(n + l)/2j = \n/2].

Finally, in either case, every triangle incident to v^ is dominated, and
since v^ is not guarded, every other hull vertex must be guarded. These
guards clearly cover the exterior outside the hull. The exterior inside the
hull is covered by the usual 3-coloring argument. •

6.2.2. Orthogonal Polygons

Although more guards are needed to cover the exterior than the interior of
an arbitrary polygon (\n/2] versus L«/3])> with orthogonal polygons the
numbers required differ only slightly: \n/4] + 1 for the exterior versus
[n/A\ for the interior.
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Q

g 6

Fig. 6.4. An orthogonal spiral requires \n/4] + 1 vertex guards (solid) to cover the exterior.

THEOREM 6.2 [Aggarwal 1983]. \n/4] + 1 vertex guards are necessary
and sufficient to see the exterior of an orthogonal polygon of n vertices.

Proof. Necessity follows from the spiral of n = Am vertices shown in Fig.
6.4. Starting from the interior of the spiral, it is clear that the vertices labeled
1, 4, 8, 12, 16 , . . . ,4(m - 3 ) are an optimal choice for guard locations;
a second optimal choice is 7, 11, 1 5 , . . . , 4m - 1. At the outside arm there is
some choice where to place the last few guards. The first sequence can
continue in one of two ways: either . . . , 4(ra - 2), 4(ra - l),4m (the solid
circles in Fig. 6.4), or . . . , 4(m - 2),4(m - 2) + 2, 4(m - 1) + 2,4m - 1 (the
empty circles in the figure). In either case m + 1 guards are used. Similar
reasoning shows that m + 1 guards are required for other choices of guard
locations. If the spiral is extended by two more vertices, n = Am + 2, then
m + 2 guards are required. In all cases, \n/A] + 1 guards are required.

The sufficiency proof follows almost directly from the L-shaped partition
discussed in Sections 2.5 and 2.6. Given an n vertex orthogonal polygon P,
remove the horizontal edge e with largest v-coordinate (or any one with
maximum height if there are several), extend the two adjacent vertical
edges upward and enclose the entire polygon with a bounding rectangle as
illustrated in Fig. 6.5. The interior of this new n + A vertex polygon P'

Fig. 6.5. The exterior of an orthogonal polygon may be converted into the interior of another
by deleting the highest edge e and enclosing within a rectangle.
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n —i

e

Fig. 6.6. An alternative enclosing strategy, used when n is divisible by 4.

coincides with the immediately surrounding exterior of P, except for the
rectangle Q shaded in the figure, which is exterior to both.

The crucial observation is that the guard placement procedure described
in Section 2.6 locates guards only on reflex vertices. Since the six new
vertices of P' are all convex, guards covering the interior of P' will all be
located on vertices of P. It should be clear that coverage of the immediate
exterior of F by vertex guards implies coverage of the entire exterior: each
side of the smallest rectangle enclosing P must have a guard on it, and these
guards cover the infinite plane outside the rectangle. By Theorem 2.5, the
interior of P' can be covered with [(n + 4)/4j such guards. The region Q
will need its own guard, yielding a total of [n/4j+2 guards. When
nSE2(mod4), this formula is identical to \n/4] +1 . Note that the guard
placement must cover the entire infinite plane, as the bounding rectangle
can be chosen to be arbitrarily large.

If n = 0(mod4), we have the freedom to augment P' by two vertices
without increasing the number of guards, because of the presence of the
floor function in Theorem 2.5. Therefore, modify P' to have n + 6 vertices
as shown in Fig. 6.6. Note that now the interior of P' and the immediate
exterior of P exactly coincide: Q has been removed. P' can be covered
with [(n + 6)/4j = [n/4\ + 1, which coincides with \n/4] + 1 since
«=0(mod4). •

6.2.3. Guards in the Plane

The surprising asymmetry between Theorems 1.1 and 6.1, which respec-
tively state that [n/3\ guards suffice to cover the interior of a polygon but
\n/2] may be needed to cover the exterior, can be removed by a loosening
of restrictions on the guard placements. We will show in this section that



6.2. FORTRESS PROBLEM 151

Fig. 6.7. \n/3] point guards are necessary to cover the exterior of a polygon.

\n/3] guards are necessary and sufficient to cover the exterior of a polygon
if the guards are not restricted to vertices of the polygon, but may be
located anywhere in the plane exterior to the polygon or on the polygon
boundary. Such guards are called point guards to contrast with the vertex
guards used in the previous section. This theorem restores a pleasing
symmetry between interior and exterior coverage: [n/3\ versus \n/3]; even
the floor and ceiling operators interchange naturally.

Necessity of \n/3] guards is established by turning the comb example of
Fig. 1.2 "inside-out." Figure 6.7 shows a 13-vertex example that requires
5 = [13/3] guards. The general construction with k comb prongs has
n = 3k + 4 vertices are requires k + 2 = \n/3] guards. Necessity for the
other two possible values of n mod 3 are obtained by adding one or two
extraneous vertices to this example.

Sufficiency of \(n + l)/3] guards is easily established.

LEMMA 6.1. \(n + l)/3] point guards suffice to cover the exterior of an n
vertex polygon P.

Proof. Rotate P so that vertex a is uniquely highest and b uniquely lowest,
and add two vertices A and p below the lowest vertex of P, and far enough
away to both see a. See Fig. 6.8. Triangulate the interior of the convex hull
exterior to the polygon, and add diagonals from A and p to every hull vertex
visible to them. Finally split vertex a in two. The result is a triangulated

Fig. 6.8. Domination of this graph implies coverage of the exterior of the polygon.
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polygon of n + 3 vertices. Cover this polygon with [(n + 3)/3j = \{n + l)/3]
guards by Theorem 1.1. We now argue that these guards cover the entire
exterior.

Clearly the portion interior to the hull is covered. Now consider the left
half-plane H determined by a line through a and b. If a guard is assigned to
A, then it covers all of H exterior to the hull. If A has no guard, then since
every hull edge in the left chain between a and b forms a triangle with A, at
least one endpoint of each hull edge must have a guard. But then these
guards cover the exterior in H. Applying the same argument to the right
half-plane establishes the lemma. •

One of the longest proofs in the first draft of this book was devoted to
removing "a third of a guard" from this lemma. The proof followed the
same general approach as that used in Lemma 6.1, but difficulties arise
because combinatorial dominance of arbitrary exterior triangulations of the
type just considered cannot suffice to establish the theorem, as shown in
Fig. 6.9. Here n = 6, so \n/3] = 2, but \{n + l)/3] = 3. The triangle abc
requires one guard in any combinatorial domination. But then two further
guards will be required regardless of how the exterior is triangulated. The
figure shows that indeed only two point guards are necessary, one at each of
A and p, but these guards represent a combinatorial dominance only if the
exterior is retriangulated. Our proof involved a long cascade of cases, and
an abandonment of combinatorics for geometry at a critical junction
(Aggarwal 1984). Fortunately, this theorem has gone the way of Chvatal's
theorem and the Kahn, Klawe, Kleitman theorem in that a proof far simpler
than the original has been found. Recently Shermer discovered a concise
coloring argument, which we present below.

THEOREM 6.3 [Aggarwal and O'Rourke 1984]. \n/3] point guards are
sometimes necessary and always sufficient to cover the exterior of a polygon
P of n >3 vertices.

Proof [Shermer 1986]. Necessity has already been established. If P is
convex, then two guards placed sufficiently far away on opposite sides of P
suffice to cover the exterior. Since n >3, 2< [n/3].

Suppose then that P has at least one pocket—that is, an exterior polygon
interior to the hull and bound by a hull edge. Rotate P so that a and b are
uniquely the highest and lowest vertices, respectively, and add two new

Fig. 6.9. A graph that requires 3 combinatorial guards for dominance, but only 2 point guards
are needed for coverage of the exterior.
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b

Fig. 6.10. If the number of hull vertices is even, this graph is 3-colorable.

vertices A and p on opposite sides of P and sufficiently distant so that they
both can see both a and b. Triangulate the pockets of the hull, and connect
A and p to all visible hull vertices, as shown in Fig. 6.10. The strategy is as
follows. Since \n/3] = [(n + 2)/3j, if we could show that the constructed
triangulation graph G were 3-colorable, placing guards with the least
frequently used color would establish the theorem via the same argument
for exterior coverage used in Lemma 6.1. But G is not always 3-colorable:
the graph in Fig. 6.9 requires four colors. Shermer's idea is to modify the
graph so that it is always 3-colorable.

Let h be the number of hull vertices. Two cases will be considered: h even
and h odd.

Case (h even). G is always 3-colorable in this case, regardless of the choice
of A and p. To see this, color the hull vertices alternately with colors 1 and
2. Then A and p may be colored 3. Each pocket lid (shown dotted in Fig.
6.10) is an edge of the polygon forming the pocket. With the constraint that
the lid is colored (1,2), a pocket polygon may be 3-colored as in Section
1.3.1. The result is a 3-coloring of G, implying domination with [(n + 2)/3j
guards. By the argument in the proof of Lemma 6.1, these guards cover the
entire exterior.

Case (h odd). The above approach will not work, as the hull cannot be
2-colored. Let yz be a pocket lid, and let x be the apex of the triangle in the
pocket supported by yx. Now orient P and choose p so that

(1) p can see x,
(2) xp is not parallel to any polygon edge, and
(3) p is distant enough to see an "antipodal" pair of vertices a and b,

vertices that admit parallel lines of support.

Condition (2) is imposed so that a and b are ensured to become uniquely
highest and lowest as before. Clearly it is always possible to choose such a
p. Place A on the opposite side of P as in the previous case. See Fig. 6.11.
The quadrilateral pyxz is convex by construction. Delete diagonal yz from
G, and add diagonal px. (This is the necessary retriangulation mentioned
earlier.) If we now consider x part of the hull, we have increased the
number of hull vertices to be even. Now proceed as in the previous case.
Color the cycle of hull vertices and x colors 1 and 2 in alternation, color A
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Fig. 6.11. If the number of hull vertices is odd, one vertex x within the hull is connected to p
to make a 3-colorable graph.

and p color 3, and 3-color all pocket polygons. Dominate G with [(n + 2)/3j
guards. The argument for exterior coverage used in the proof of Lemma 6.1
must be modified slightly, since it may be that neither endpoint of the hull
edge yz is assigned a guard. But in that case, x will be assigned a guard, and
the complete exterior is still covered. •

Note that the proof uses at most two guards in the plane strictly exterior
to the polygon; the remainder are located at vertices.

6.3. PRISON YARD PROBLEM

How many vertex guards are needed to simultaneously see the exterior and
interior of a polygon P of n vertices? An interior point x is seen by a guard
at vertex z if the segment zx does not intersect the exterior of P, and an
exterior point y is seen by z if zv does not intersect the interior of P. It
should be emphasized that the guards are restricted to vertices; the problem
is quite a bit different (and easier) if the guards are permitted to be located
arbitrarily far away from the polygon. Permitting the guards to be anywhere
on the boundary of the polygon does not seem to affect the problem's
complexity, so we will only consider vertex guards.

6.3.1. General Polygons

The worst case known is the same as that for the fortress problem: a convex
n-gon (Fig. 6.1). This establishes that \n/2] guards are occasionally
necessary. The only sufficiency result so far obtained is rather weak and
inelegant:

THEOREM 6.4 [O'Rourke 1983]. For a multiply-connected polygon of n
vertices, r of which are reflex, and h of which are on the convex hull of the
polygon,

min(r#i/2l +r, [(n + \h/2])/2\, [2n/3\)

vertex guards are sufficient to see both the interior and exterior. Note that,
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= l3

Fig. 6.12. Addition of \h/2] nodes exterior to the hull leads to n/2 + h/4 guards (modulo
floors and ceilings).

ignoring ceilings and floors, the above formula may be written in the more
revealing form

n/2 + min (r, hi A, n/6)

Proof. Each of the three formulas is derived by a separate method.

(1) \n/2]+r

Use Theorem 6.1 to cover the exterior with \n/2] guards, and Theorem
1.5 to cover the interior when r > l . If r = 0, the polygon is convex and
[n/2] clearly suffice.

(2) [(n+\h/2])/2\

Triangulate the interior of the convex hull, including both the interior of
the polygon and the exterior within the hull. Add \h/2] new vertices
outside the hull, each (except for perhaps one) adjacent to three hull
vertices, as shown in Fig. 6.12. The resulting graph is planar and so may be
4-colored. Place guards at nodes colored with the two least frequently used
colors. Together these colors cannot be used more than half of the total
number of vertices—that is, not more than [(n+ \h/2\)/2\. Since every
triangle has three differently colored vertices, at least one guard is in the
corner of each triangle. If any of the outside-hull vertices are assigned
guards, place the guard on the middle of its three adjacent hull vertices, or
either one if only adjacent to two. The inside of the hull is covered because
it is partitioned into triangles; the exterior of the hull is covered because
every hull edge has a guard on at least one endpoint.

(3) [2n/3\

Triangulate the interior of the hull as above. Add a single new vertex v*,
outside the hull, and connect it to every hull vertex (Fig. 6.13). The
resulting graph is planar and can be 4-colored. Place guards on the two least
frequently used colors not matching the color assigned to vx. Suppose the
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Fig. 6.13. Connecting every hull vertex to vx leads to [2n/3j guards.

number of nodes colored i is ci} so that

Cl < c2 < c3 < c4> (1)

C\ + c2 + c3 + c4 = n + 1. (2)

If Uoc is colored 1, 2, 3, or 4, the two colors used for guards occur (c2 + c3),
(ci + C3)> (ci + C2)> and (c1 + c2) times, respectively. Clearly the first case is
the worst because of the inequality (1). In this case, since c1 > 1, Equation
(2) becomes

Cl + C3 + C4 — n

and Equation (1) implies that c2 + c3< [2n/3\.
Now the argument is the same as above: every triangle has at least one

guard at a vertex, and the exterior triangles are likewise covered without
using a guard at v^. •

If the guards are not restricted to lie on the boundary of the polygon,
then it is easy to establish \nl2\ +1 sufficiency: triangulate the interior of
the hull, and add two vertices sufficiently far outside the hull to connect
every hull vertex by a straight line (as in Fig. 6.10, but with interior
triangulation as well); 4-color the resulting graph and place guards on the
two least frequently used colors.

It seems, however, that this freedom to place guards outside of the
polygon is not needed:

CONJECTURE 6.1. \n/2] vertex guards are sufficient to see the interior
and exterior of a polygon of n vertices.

Proving or disproving this conjecture is one of the most interesting open
problems in this field.

Before proceeding to orthogonal polygons, it will be instructive to prove
[2n/3j sufficiency by a different method. Cover the exterior with \n/2]
guards according to Theorem 6.1. Now triangulate the interior of the
polygon, and remove all vertices assigned a guard and their incident edges.
The resulting graph may be disconnected (as in Fig. 6.14), but it will have a
total of no more than n — \n/2] = [n/2j nodes. Further delete any vertices
or edges of this graph that are not part of any triangle; these clearly are
covered from all sides by guards. Now apply the interior visibility argument:
3-color and place guards at the least frequently used color. Note that
although the components are not necessarily triangulation graphs of simple
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r-

Fig. 6.14. The dashed edges are incident on a guarded vertex (solid dots).

polygons, they are nevertheless 3-colorable, as each is a subgraph of such a
graph. This requires at most an additional [n(/3\ guards for each connected
component of n( nodes; note that n,>3. Thus the total number of guards
required is \n/2\ + [[n/2\/3\. This formula equals [2n/3\, except when
n = l(mod 6), in which case it equals [2n/3\ + 1. A similar argument will be
used in the next section.

6.3.2. Orthogonal Polygons

Clearly the separate interior and exterior visibility results for orthogonal
polygons (Theorems 2.2 and 6.2) may be combined to yield [n/4j +
[n/4] + 1 < \n/2\ + 1 sufficiency for vertex guards. This straightforward
combination of interior and exterior results may be improved slightly by
following the above sketch of the alternate [2n/3j proof. Interestingly, the
proof employs both methods known for achieving the interior orthogonal
result.

THEOREM 6.5 [O'Rourke 1983]. |7«/16j + 5 vertex guards are sufficient
to see both the interior and exterior of a simple orthogonal polygon.

Proof. Cover the exterior with [n/4] + 1 guards according to Theorem
6.2. Now partition the interior into convex quadrilaterals as guaranteed by
Theorem 2.1. Discard every edge that has a guard at one of its endpoints.
This may disconnect the graph, but the total number of vertices is no more
than n — ([n/4] +1); see Fig. 6.15. Further delete all vertices and edges
that are not part of any quadrilateral; this is justified since guards cover all
sides of such edges and around all such vertices. Four-color the pieces (as
was done in the proof of Theorem 2.2) and place guards on the least
frequently used color. Each piece of nt nodes will need no more than |/*;/4j
guards; note that «, ^ 4. The total number of guards used is
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Fig. 6.15. The dashed edges are adjacent to a guard as in Fig. 6.14.

This expression is no larger than [7«/16j + 5; the constant 5 can be reduced
for certain values of n mod 16. •

This result appears to be nearly as weak as the |_2«/3j result for arbitrary
polygons.

6.4. ALGORITHMS

Because the partitioning theorems in this chapter employ techniques from
previous chapters, such as triangulation, 3-coloring, and L-shape partition-
ing, few new algorithmic questions are raised. The only new technique used
is 4-coloring of a planar graph. Unfortunately, Appel and Haken's proof
leads to a rather complex O(n2) algorithm (Appel and Haken 1977;
Frederickson 1984). Using this algorithm with algorithms discussed in
previous chapters, we arrive at the worst-case time complexities shown in
Table 6.1. Here O(T) is the time complexity for triangulation; the current
best result is T = n log log n.

Table 6.1

Problem Techniques Guards Time

Fortress
general
orthogonal

Prison Yard
general

orthogonal

triangulation, 3-coloring
L-shaped partition

exterior
triangulation, 4-coloring
triangulation, 4-coloring
exterior, triang., 3-coloring
exterior, quadrilateralization
4-coloring

\n/4]
0{T)

O(T)

\n/2]+r O(T)
[(n+\h/2})/2\ O(n2)
[2n/3\ O(n2)

|2n/3j + 1 O(T)

+ 5 O(T)
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Although 4-coloring is a time consuming process, several linear algo-
rithms are known for 5-coloring (Chiba et al 1981; Frederickson 1984).
Using one of these algorithms improves the speed from O(n2) to O(T) in
two instances in the table, but increased the number of guards: since guards
must be placed with three out of the five colors to guarantee that every
triangle receives a guard, the number of guards becomes [3(n + \h/2])/5\
and [3n/4j, respectively.

6.5. NEGATIVE RESULTS

Two natural approaches to solving the prison yard problem lead to
conjectures which, if true, would either settle the problem or represent a
significant advance. This section formulates these conjectures and presents
counterexamples.

6.5.1. Triangulation

Triangulate the interior of an n -vertex polygon (including the interior of any
holes) and the exterior inside the hull. Now extend rays to infinity from
each hull vertex.

* Conjecture. Each triangle and each unbounded region of the above
described figure can be dominated by \n/2] combinatorial vertex guards.

If this conjecture were true, then the prison yard problem would be solved
for polygons with holes. Figure 6.16 is, however, a counterexample. There
is just one Hamiltonian cycle of the triangulation: the convex hull. Thus this
figure can only arise from a convex decagon, which can be easily covered

Fig. 6.16. A 10-node graph that requires 6 combinatorial guards (solid dots) for domination.
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with five guards. But since there exists a triangulation of this decagon (as
shown) that cannot be dominated by five guards, one cannot hope to prove
[n/2] sufficiency starting with an arbitrary triangulation.

6.5.2. Convex Partitioning

Another method of reducing the problem to combinatorics is to form a
convex partitioning of the plane from the n-vertex polygon. Such partitions
of the interior of the polygon were considered by Chazelle (Chazelle 1980)
and discussed in Section 1.4. At each vertex of the polygon, extend a ray
that bisects the angle at the vertex outward if the vertex is convex and
inward if it is reflex. The ray is extended to its first intersection with a
polygon edge on another ray. The bisection procedure may be applied to
the vertices in any order. Chazelle proved (for interior partitionings) that
the resulting graph can be made cubic (each node has degree 3) by slightly
varying the ray angles to avoid "coincidences." The same result holds for
the interior and exterior partitioning. An example is shown in Fig. 6.17.

LEMMA 6.5. Each n -vertex polygon (with or without holes) induces a
cubic convex partitioning of the plane into n + 1 regions.

Proof. That the partition can be chosen so that its graph is cubic follows
from Chazelle's method (Chazelle 1980). That the number of regions is
n + 1 is established by the following argument. Initially there are h + 2
regions: the exterior of the polygon, its interior, and the interior of each of
the h holes. The first ray towards the exterior of the polygon does not
increase the number of regions; similarly the first ray from each of the h
holes towards the exterior of the holes cannot increase the number of

Fig. 6.17. A convex partitioning of the plane induced by a polygon; here n = 14 and 15
regions result.
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Fig. 6.18. A convex partitioning of 6 vertices that requires 4 combinatorial guards (solid dots)
for domination.

regions. Each of these h + 1 cuts can be thought of as reducing the
multiply-connectedness by 1 without increasing the number of regions. Each
of the remaining n — (h + 1) cuts increments the number of regions by 1. So
the total number of regions is (h + 2) + [n - (h + 1)] = n + 1. •

Now each vertex of the original polygon sits at the junction of precisely
three convex regions. A guard placed at a vertex covers all three regions
entirely, since they are convex. So the task is to select \n/2] vertices, each
covering three regions, such that all n + 1 convex regions are covered by at
least one vertex. This scheme leads to the following conjecture.

* Conjecture. Any convex partitioning of the plane into n' = n + 1 regions
can be dominated with [n'/2\ = \n/2] vertex guards.

This conjecture is both stronger and weaker than what is needed to prove
\n/2] sufficiency for the prison yard problem. It is stronger in that its claim
is for all convex partitions, but those arising from the angle bisection
technique represent only a subclass (for instance, an n-vertex polygon will
generate a partition with no more than 2« edges). It is weaker in that only
the polygon vertices are candidates for guard location: ray-ray intersections
may lay arbitrarily far outside of the polygon. Nevertheless, the conjecture
would represent an advance if true, and would be interesting in its own
right. Figure 6.18 shows a simple counterexample, however. There are n = 6
vertices and In = 12 edges, but g = 4 > \n/2] = 3 guards are necessary. This
figure was derived from its non-Hamiltonian dual graph, which can be seen
to have no perfect matching after three regions are covered by one guard,
by Tutte's theorem (Tutte 1947; Harary 1969).1 The partitioning in the

1. A matching is a collection of edges that share no nodes. A perfect matching is one that
matches every node. Tutte's theorem states that a graph G has a perfect matching iff it has an
even number of nodes and there is no set S of nodes such that the number of odd components
of G - 5 exceeds \S\. If there is an 5 such that the number of components (even or odd) of
G - S exceeds \S\, then G is non-Hamiltonian.
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Fig. 6.19. A convex partitioning of 12 vertices that requires 7 combinatorial guards (solid
dots) for domination.

figure could never arise from the bisection process, however, as that process
always produces regions with at least three bounding edges each. This
suggests tightening the conjecture to convex partitions whose dual graphs
have degree at least 3. Again, however, a counterexample can be derived
from a non-Hamiltonian dual that has no perfect matching after deletion of
three nodes with one guard, as shown in Fig. 6.19. This figure has n = 12
vertices, n ' = n + l = 13 regions, and 2\<2n total edges. It requires
g = l> \n/2] =6 guards. In addition, this partitioning can arise from the
bisection process: from a polygon with one hole, as shown in the figure.

This last figure definitely establishes that this attempted reduction to
combinatorics cannot prove \n/2] sufficiency for multiply-connected poly-
gons; it remains possible that the conjecture holds for convex partitions
arising from polygons with no holes.

6.5.3. Monotone Polygons

We will end this pessimistic section on a positive note by showing that
convex partitions lead to a proof of the prison yard conjecture for the
special case of monotone polygons.

THEOREM 6.6 [O'Rourke 1984]. \n/2] guards are occasionally necessary
and always sufficient to see the interior and exterior of a monotone polygon
of n vertices.

Proof. Assume that the polygon is monotone with respect to the y axis. It
will be no loss of generality to assume that the vertices extreme in the y
direction are unique; call the highest a and the lowest b. Partition the plane
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Fig. 6.20. A convex partitioning of the plane induced by a monotone polygon with 12 convex
and 7 reflex vertices.

into convex regions as follows. Draw vertical rays from b and a towards the
exterior of the polygon, and draw horizontal rays from each convex vertex,
again towards the exterior. Finally, draw horizontal segments from each
reflex vertex towards the interior of the polygon to the polygon's opposite
chain. See Fig. 6.20.

Note that the exterior regions form a ring around the polygon, with each
pair of adjacent exterior regions sharing a convex vertex. Thus, if there are
c convex vertices, the exterior regions can be covered with [c/2] guards,
one on every other convex vertex. We will use the convention that a is
assigned a guard; clearly we have that flexibility. The interior regions form a
vertical stack, with each pair of adjacent regions sharing a reflex vertex. If
there are r reflex vertices, then there are at most r + 1 interior regions; this
maximum is achieved when no two reflex vertices have the same v-
coordinate. Because a guard is placed at a, the top interior region is already
covered, leaving r to be covered. These can be covered with |Y/2] guards,
one on every other reflex vertex (sorted by their v-coordinate, not their
position in the polygon's boundary).

Now n = c + r, and we have just established that all regions can be
covered with [c/2] + \r/2\ guards. If at least one of c or r is even, then this
formula accords with \n/2], and we are finished. If both are odd, however,
the two ceilings yield one more guard than \n/2\. But, since c is odd, b
must be assigned a guard either clockwise from a or counterclockwise from
a, choosing every other one. Therefore, we can assume that b is assigned a
guard when c is odd. Now the bottom interior region is covered, and only
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r — 1 contiguous interior regions need to be covered. Since [c/2] +
[(r - l)/2] = \n/2\ when both c and r are odd, we have established the
lemma. •

Several miscellaneous problems involving exterior visibility will be
considered in Chapter 10.
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VISIBILITY GRAPHS

7.1. INTRODUCTION

It is my belief that some of the fundamental unsolved problems involving
visibility in computational geometry will not be solved until the com-
binatorial structure of visibility is more fully understood. Perhaps the purest
condensation of this structure is a visibility graph. The nodes of a visibility
graph correspond to geometric components, such as vertices or edges, and
two nodes are connected by an arc of the graph if the components can "see"
one another, perhaps under some restricted form of visibility. The canonical
example is the vertex visibility graph of a polygon: its nodes correspond to
the vertices of a polygon, and its arcs to lines of visibility between vertices in
the interior or along the boundary of the polygon. No characterization of
these graphs is available, and in fact almost no general properties are
known. ElGindy has pioneered their investigation in his thesis (ElGindy
1985). He obtained a specialized result by restricting the class of graphs to
maximal outerplanar graphs. This result is presented in Section 7.2.
Although this result is very restricted, it is the most general obtained to
date.

Section 7.3 explores a different type of visibility graph: the nodes
correspond to edges of an orthogonal polygon, and two nodes are connected
by an arc if their edges can see one another along a line orthogonal to the
edges. These graphs are especially simple for polygons in "general
position": then there are always precisely two components, both of which
are trees. A partial characterization of tree pairs is presented in Section 7.3.

Finally, in Section 7.4, visibility graphs for a set of disconnected vertical
line segments are studied. Here a node is associated with each segment, and
arcs correspond to horizontal visibility. In this case a very pleasing
characterization theorem has been obtained by Wismath (1985), and
independently by Tamassia and Tollis (1985). We present Wismath's proof.

The investigation of visibility graphs is in its infancy, and new results can
be expected not only for the graphs discussed in this chapter, but also for
other types of visibility graphs.

165
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7.2. VERTEX VISIBILITY GRAPHS

As just mentioned, two nodes are adjacent in the vertex visibility graph (or
just "visibility graph" when no confusion is possible) of a polygon if and
only if the line segment determined by the associated vertices is at no point
exterior to the polygon. Thus the connections represent lines of sight
between vertices. For a polygon of n vertices, the vertex visibility graph can

have as many as ( ) arcs, when the polygon is convex and the graph is the

complete graph Kn (Fig. 7.1a), or as few as In - 3 arcs, when the polygon
has n-3 reflex vertices (Fig. 7.1b). Although visibility graphs seem
"abundant,"1 not every graph of e edges with 2« — 3 < e < n(n — l)/2 is a
visibility graph. Consider the n = 5 node graph G shown in Fig. 7.2a with
e = 8 > In — 3 edges. We present now an ad hoc argument showing that it is
not the visibility graph of any polygon.

The vertex vx is adjacent to all other vertices. This implies that the
polygon is a fan: a star polygon with v1 in the kernel. It is clear that the arcs
corresponding to the boundary edges of the polygon form a Hamiltonian
cycle of the graph, since the definition of visibility permits the endpoints of
each polygon boundary edge to see one another. There are four distinct
Hamiltonian cycles in G, as illustrated in Fig. 7.2b; but due to the symmetry
of G, all four lead to the same structure of internal visibility lines. So we can
restrict our attention to Fig. 7.2a. Because v2 can see v5, vt cannot be
reflex. Thus (v1) v2> v5) forms an ear of the polygon. Because v3 and v4 can
see vlt v2 and v5 must be convex, as illustrated in Fig. 7.2c. Vertex v4 must
be reflex to block v3's line of sight to v5. But this implies that v2 can see u4,
an arc not in G. This establishes that G is not a visibility graph of a polygon.

One of the few general properties of visibility graphs that can be stated is
the obvious one used in the preceding paragraph: a visibility graph must
contain at least one Hamiltonian cycle, corresponding to the boundary of
the polygon. Unfortunately, the problem of deciding whether an arbitrary
graph contains a Hamiltonian cycle is NP-complete (Garey and Johnson

a b

Fig. 7.1. Visibility graphs can have as many as n(n - l)/2 edges (a) or as few as In - 3 (b).

1. How abundant is not known. It is not even known if the number of visibility graphs is
Q(n2).



7.2. VERTEX VISIBILITY GRAPHS 167

Fig. 7.2. A graph that is not a visibility graph (a), its Hamiltonian cycles (b), and an
attempted embedding (c).

1979). It is an interesting open question to see if the problem of finding a
Hamiltonian cycle in a visibility graph remains intractable.

Given this uncertainty surrounding the complexity of finding a Hamil-
tonian cycle, ElGindy and Avis posed the problem of determining whether
a given graph can be embedded in the plane as a visibility graph with a
given Hamiltonian cycle forming the boundary of the polygon. Equiva-
lently, we can assume the vertices of the given graph are labeled 1,. . . , n
such that the path (1 , . . . ,n) forms a Hamiltonian cycle. We call the
problem of determining (if possible) an embedding for such a labeled graph
the visibility graph reconstruction problem. Even in this (apparently) easier
form, the problem remains unsolved. However, ElGindy obtained an
interesting result by further specialization.

7.2.1. Maximal Outerplanar Graphs

Maximal outerplanar graphs are an important subclass of planar graphs with
many applications. A graph is outerplanar if it can be embedded in the
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plane so that all of its nodes lie on the exterior face. In our setting this
exterior face is the boundary of the polygon. A maximal outerplanar graph
(or mop) is an outerplanar graph such that the addition of a single arc
results in a graph that is not outerplanar. ElGindy showed that every mop is
a visibility graph, and provided an algorithm for constructing a repre-
sentative embedding (ElGindy 1985).

We will only consider mops of at least three nodes. The arcs on the
exterior face will be called exterior arcs; all others are interior arcs. We will
first state a few properties of mops.

LEMMA 7.1. A graph is a mop if it is a triangulation graph of a polygon.

Proof. Let G be a triangulation graph of a polygon. G is clearly
outerplanar. No internal diagonals may be added without crossing other
diagonals, and any external diagonal necessarily hides a vertex from the
exterior face. Thus G is maximal, and a mop. This establishes the lemma in
one direction.

Let G be a mop. We establish that:

(1) There is exactly one vertex adjacent to both endpoints of each
exterior edge.

(2) There are exactly two vertices adjacent to both endpoints of each
interior edge.

(3) G has no cutpoints.

Together these three conditions imply that G is a triangulation graph of a
polygon.

Let e be an exterior edge of G, and suppose in contradiction to (1),
vertices x and v are both adjacent to both endpoints of e. In an embedding
of G, x and y must lie in the same half-plane determined by e, otherwise e
would not be exterior. But then either G is non-planar (Fig. 7.3a), or one of
x or y is interior (Fig. 7.3b) so G is not outerplanar. In either case, we reach
a contradiction, establishing (1).

Let e be an interior edge of G. By the same argument as above, there can
be at most one vertex in each of the two half-planes determined by e

a b

Fig. 7.3. The endpoints of an exterior edge e can both be adjacent to only one vertex.
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G i

Fig. 7.4. If x is a cutpoint, then arcs (dashed) may be added to G.

adjacent to both endpoints, and there must be one in each since e is
interior. This establishes (2).

Let x b e a cutpoint2 of G, and let G1) . . . , Gk, k > 2, be the components
of G — x. Then if G is embedded with G, angularly adjacent to Gi+1 about x,
an arc may be added between G, and Gi+1 for i = 1, . . . , k - 1 without
making JC internal; see Fig. 7.4. Thus G is not maximally outerplanar,
establishing (3) by contradiction.

Finally, (1) and (2) show that G is composed entirely of triangles, and (3)
shows that the boundary is a polygon. D

Now that the class of mops has been revealed to be the familiar class of
polygon triangulation graphs, the next property we need is obvious.

LEMMA 7.2. A mop G has a unique Hamiltonian cycle.

Proof. The exterior edges of G correspond to the boundary of the
polygon, and clearly form a Hamiltonian cycle. Since each interior edge cuts
the polygon in two pieces, the inclusion of an interior edge in a Hamiltonian
cycle would force the path into one piece or the other without possibility of
return. Thus the exterior edge Hamiltonian cycle is unique. •

It is easy to find the unique Hamiltonian cycle in linear time from any
standard representation of G (Beyer et al. 1979). Thus for mops the usually
difficult problem of identifying a Hamiltonian cycle becomes easy.

We may now state ElGindy's result.

THEOREM 7.1 [ElGindy 1985]. Every mop G is a vertex visibility graph
of a monotone polygon.

Following ElGindy, we will establish this theorem by presenting an
embedding algorithm and proving its correctness. First we will present a
small example to illustrate the main ideas.

Consider the mop G of seven nodes shown in Fig. 7.5a. We first embed
the triangle (1,2,6) with (1,2) horizontal. We then embed 7 horizontally
between 1 and 6 and above the (2, 6) line, and embed 4 between 6 and 2

2. A cutpoint x of a graph G is a node whose removal (deletion of x and all incident edges)
disconnects the graph. The remainder of G is denoted by G - x.
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b

Fig. 7.5. A mop (a) and an embedding as a visibility graph (b).

and above the (1, 6) line; see Fig. 7.5b. Finally, 5 is embedded between 6
and 4 and above the (2, 4) line, and 3 is embedded between 4 and 2 and
above the (6, 4) line. The result is a polygon monotone with respect to the
horizontal with G as its visibility graph.

The algorithm can be phrased as a recursive procedure for embedding a
triangle. Its three inputs are B, a bottom bounding line segment, and / and
r, the left and right embedded vertices forming the base of the triangle. The
procedure marks each vertex it embeds; initially all vertices are unmarked.

procedure triangle (B, I, r)
ra <— a point e above the midpoint of B.
if there exists an unmarked vertex v adjacent to both / and r then

Erase (/, r) [unless (/, r) = (1, 2)].
Embed v at m and mark v.
Draw (/, v) and (v, r).
Update adjacency lists.
B <— (v, r) extended between / and v.
triangle(B, I, v).
B <—(/, v) extended between v and r.
triangle (B, v, r).

The procedure is called initially with / = 1, r = 2, and B = (1, 2). We now
argue for its correctness.
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Fig. 7.6. The trapezoid abrl must be empty of vertices.

Consider a particular invocation of triangle{B, I, r). Assume as an
induction hypothesis that the algorithm has performed correctly so far.
Then (/, r) represents an exterior edge of the polygon embedded so far, and
so both are adjacent to exactly one vertex x. B is determined by xr. Let a
and b be the intersection points of (m, /) and (m, r) with the polygon
boundary when extended, as illustrated in Fig. 7.6. Then the trapezoid
{a, b, r,l) must be empty of embedded vertices: x is outside since m is
above B, and any other veretx inside would see both / and r, contradicting
the uniqueness of x. Thus m is only visible to / and r, correctly embedding
the visibility edges of the given graph.

Although we have not detailed the data structure manipulations in the
algorithm, it is not difficult to implement the algorithm to achieve O(n) time
complexity.

7.2.2. Convex Fans

ElGindy also studied a special class of polygons he called "convex fans." A
fan is a star polygon whose kernal includes a vertex of the polygon. A
convex fan is a fan whose kernel includes a convex vertex. An example is
shown in Fig. 7.7. The problem of reconstructing a representative polygon
that achieves a given vertex visibility graph of a convex fan seems far easier
than the general problem. ElGindy conjectured a characterization (ElGindy
1985), but reconstruction remains elusive. In fact, it is not even clear how to
reconstruct an orthogonal convex fan from its visiblity graph, despite the
highly constrained staircase structure of such polygons (see Fig. 7.8). At this
writing I only can see how to reconstruct orthogonal convex fans of uniform
step height, a very special case.

Finally, it should be mentioned that Ghosh has recently established
necessary conditions for a graph to be a vertex visibility graph, and
conjectures that his conditions are also sufficient (Ghosh 1986). One of his
conditions is that every "ordered" cycle (one whose labels are in sorted
order) in the graph of at least four nodes, must have a chord. This explains
why the graph of Fig. 7.2a is not a visibility graph: the 4-cycle (2, 3, 4, 5) has
no chord. A proof of his conjecture (his other conditions are not easy to
state succinctly) seems difficult.
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Fig. 7.7. A convex fan.

Fig. 7.8. An orthogonal convex fan.

7.3. EDGE VISIBILITY TREES IN ORTHOGONAL POLYGONS3

Considerable simplification of the visibility graph problem results by
restricting the polygon and the visibility relation to the orthogonal world.
Define an orthogonal edge visibility graph (or just a visibility graph) G for
an orthogonal polygon P as follows. G contains a node for each edge of P,
and two nodes associated with horizontal [vertical] edges e, and e, are

3. The research reported in this section is the result of collaboration with Heather Booth.
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connected by an undirected arc in G iff they can see one another along a
vertical [horizontal] line—that is, iff there exists a vertical [horizontal] line
segment interior to P with endpoints on et and e; and which does not
otherwise intersect the boundary of P. We will restrict our attention to
polygons in general position: those such that no two vertices can be
connected by an internal horizontal or vertical line segment that does not
intersect P's boundary. Throughout this section we will use "polygon" to
mean "orthogonal polygon in general position."

We will show in the next subsection that the visibility graph of an
orthogonal polygon consists of two disjoint trees. Together these trees
always have exactly n — 2 edges for a polygon of n vertices; this is in marked
contrast with the wide variability possible with vertex visibility graphs. We
will say that a tree is realizable if there is a polygon that has the tree as one
of the two components of its visibility graph. A labeling of a tree of n nodes
is a bijection between the nodes and the set of integers {0, 1, . . . , « — 1}. A
labeling of a tree is realizable if there is a polygon that realizes the tree, and
such that the polygon edges may be numbered 0 , 1 , . . . , « - 1 in a
counterclockwise traversal of the boundary to agree with the labeling.
Finally, we say that two trees can mesh if they are jointly realizable by the
same polygon.

In this section we characterize which single trees are realizable and which
of their labelings are realizable. Meshable labelings of tree pairs are also
characterized, and two algorithms for constructing a realization of two
labeled trees are provided. Finally, we provide a partial characterization of
when two (unlabeled) trees can mesh. Extending this to a complete
characterization is the major open question raised by this investigation.

The next subsection establishes the basic properties of visibility trees, and
presents an algorithm for constructing a realization. Section 7.3.2 proves the
characterization theorems for labeled trees. Section 7.3.3 studies unlabeled
trees, and concludes with a characterization of "universal" trees.

7.3.1. Realization of Visibility Trees

Without the general position assumption, the visibility graph could have
many disconnected components, as shown in Fig. 7.9. For polygons in
general position, however, the visibility graph has just two components, the
horizontal and vertical trees:

LEMMA 7.3. The orthogonal edge visibility graph G of a polygon P of n
edges in general position consists of two disconnected trees, TH and Tv,
each of n/2 nodes.

Proof. By our definition of visibility, horizontal edges cannot see vertical
edges. Thus there must be at least two components. We now show that the
horizontal edges form a single tree, which we call the vertical tree Tv for the
polygon; note that "vertical" here refers to the direction of visibility, not to
the orientation of the edges.
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Fig. 7.9. A disconnected edge visibility graph for a polygon not in general position.

We first show that the nodes corresponding to any two horizontal edges et

and e7 of P are connected by a path in G. Let xt and x}- be points in the
interior of P vertically visible to et and ejy respectively. Because the interior
of P is connected, there is a simple path n within P connecting x}- to Xj. Let
ax and bx be the horizontal edges above and below a point x of n. There is
an arc between the nodes in G corresponding to ax and bx. Now imagine x
moving from xt to Xj along n. Because of the general position assumption, at
most one of ax or bx changes at any point x. Thus for any transition point x,
there are arcs in G between the nodes corresponding to the edges just
before x to those corresponding to the edges at x. Thus the collection of
nodes associated with ax and bx for all x o n i forms a connected graph. See
Fig. 7.10. Thus the vertical visibility component of G is connected.

It only remains to show that this component of G has no cycles. But it is
clear that if it did, then P would have a hole, contradicting the assumption
that P is a polygon without holes. •

We now make a brief exploration of realizability, a concept which will be
studied further in the following subsections.

LEMMA 7.4. Every tree is realizable.

Proof. Given a tree T, choose any node as root, and assign it level 0.
Assign to each other node a a level equal to the number of arcs in T from
the root to a. First construct a "staircase" polygon as shown in Fig. 7.11a
that realizes T as its vertical visibility tree to level 1. Then add staircases to

Fig. 7.10. The vertical visibility component of a polygon in general position is connected.
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a b c

Fig. 7.11. The refinement process generates a polygon to realize any tree.

the steps to include level 2 nodes (Fig. 7.11b). This process can clearly be
extended indefinitely, at each stage capturing the nodes at one level lower
(Fig. 7.11c). The resulting polygon realizes T as its vertical visibility
tree. •

This simple result naturally leads to the next question:

LEMMA 7.5. Not every pair of trees are jointly realizable.

Proof. The tree shown in Fig. 7.12 cannot mesh with itself, providing the
smallest example of a pair of trees that can not be simultaneously realized
by one polygon. We defer a proof of this to Lemma 7.14 in Section
7.3.3. •

Before investigating the properties of visibility trees further, we describe
algorithms to compute the visibility trees for a given polygon, and to
construct a realization for a labeled tree pair.

Computation of, say, the horizontal visibility tree can be accomplished
easily in O(n log n) time with a plane sweep. The vertical edges of the
polygon are sorted by their upper end point. A sweep line H is then passed
over the polygon from top to bottom, stopping at each vertex. A data
structure S holds all the vertical edges pierced by H, organized into a
dictionary. Vertical edges pierced by H alternately bound the interior of P
and the exterior of P. When two vertical edges become newly adjacent in S,
then if they bound the interior of P, an arc is connected between their
corresponding nodes. Insertion and deletion of vertical edges into S can be
performed in 0(log n) time with appropriate implementation. The result is
that the entire visibility tree can be constructed with a single pass in
O(n log n).

However, the Tarjan-Van Wyk triangulation algorithm constructs a
trapezoidization in O{n\o%\ogn) time (Section 1.3.2), and this trapezoid-
ization contains all the information necessary to construct a visibility tree.
This yields the following lemma.

Fig. 7.12. The smallest tree that cannot mesh with itself, 52(3).
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LEMMA 7.6. The visibility trees of a given polygon can be constructed in
O(n log log n) time.

Algorithms for the other direction, constructing a polygon that realizes
two given labeled trees, are more interesting. Here we will briefly sketch
one algorithm, and later (Theorem 7.2) provide another.

It will be convenient to introduce here a concept equivalent to labeling
but which dispenses with the integer labels. Define a circle embedding of a
tree (or just an embedding) as a layout of the tree within a circle in the
plane such that each arc is mapped to a chord of the circle, and all nodes of
the tree are mapped to lie on the circle. The circle corresponds to the
boundary of the polygon "inflated" to a circle, and an embedding is
topologically equivalent to a layout of the visibility trees within the polygon
itself. Figure 7.13 shows an example. Any embedding of a tree of n nodes
corresponds to n counterclockwise labelings of the tree, corresponding to
the n choices for the location of the 0 label. A labeling of a tree maps to a
unique embedding, and often labels will be drawn around the circle.
Embeddings ignore the irrelevant distinction between labelings that result
from the circular shifts around the circle.

Now consider all the arcs incident to some particular node, say node 0 in
Fig. 7.13. The portion of the polygon that realizes the subtree from 0 to its
immediate descendants is a "histogram" (Section 2.3) or "Manhattan
skyline" (Wood and Yap 1985) polygon, consisting of bottom edge 0 and
top edges 12, 14, 18, and 24 in that order counterclockwise. In fact, this
polygon is the orthogonal edge visibility polygon (Avis and Toussaint 1981b)
for edge 0, enclosing all the points visible to edge 0 by an internal vertical
line segment. We would now like to identify which vertical edges of the

14-
13 12

15

17

25 0

Fig. 7.13. A circle embedding of a visibility graph. The solid lines represent vertical visibility
arcs, and the dashed horizontal arcs.
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Fig. 7.14. If e sees a and b and no edge between, then either a + 1 (a) or b - 1 (b) is the
determining vertical edge.

original polygon determine the vertical edges of this edge visibility polygon.
Once these are identified, we know their left-to-right sorting.

Let e be a bottom edge whose node has degree greater than one, and
let a and b be two edges visible from e, with the edges occurring in
counterclockwise order e, a, b, and with no edges between a and b also
visible to e. Then the vertical edge of e's edge visibility polygon between a
and b is either determined by a + l(modn) or b - l(modn), as illustrated
in Figs. 7.14a and 7.14b, respectively. Which case obtains can be decided by
checking whether node a + l(mod n) is connected by an arc to any node in
the range from b counterclockwise to e. Thus in Fig. 7.13, let e = 0, a = 14,
and b = 18. Since a + 1 = 15 connects to 19, a + 1 is the determining vertical
edge; for a = 18 and b =24, b - 1 = 23 is the determining edge. Continuing
in this manner, we can conclude from edge 0's edge visibility polygon that
25 < 23 < 15 < 13 < 1, where i <j means that Jt-coordinate of edge i is less
than that of edge j .

Combining this information for every horizontal edge's edge visibility
polygon, we can construct a partial order for the vertical edges. Similarly, a
partial order for the horizontal edges can be constructed by examining the
edge visibility polygons for the vertical edges. The results for the example of
Fig. 7.13 are:

Vertical edges:
21< 19 < 23 < 15 < 13 < 1< I K 9 < 3 < 5 < 7

25<-l L<1 7

0 1 2 3 4 5 6 7 8 9 10

Horizontal edges:

0 < 24 < 22 < 2 < 10 < 20 < 14 < 16 < 18

L, L
0

6 <4
1 2

<
3 4

< 1 2

7 8

Below each partial order are listed integers that will be used as the
*-coordinate for the odd vertical edges, and the y-coordinate for the even
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24
25

0 1 2 3 4 5 6 7 8 9 10

Fig. 7.15. A reconstructed polygon that realizes the graph in Fig. 7.13.

horizontal edges. The construction of a polygon that realizes these partial
orders is now straightforward: the vertex between an adjacent horizontal
and vertical edge is given an x -coordinate by the vertical edge and a
y-coordinate by the horizontal edge, using the indices listed below the
partial orders shown above. Thus the vertex between edges 0 and 1 lies at
(5,0), between 1 and 2 at (5,3), and so on. The polygon generated from
this process is illustrated in Fig. 7.15, and indeed it realizes the visibility
graph in Fig. 7.13. This polygon may self-overlap (the one in Fig. 7.15 does
at (4,7)), but these overlaps may be removed easily by adjusting edge
lengths.

LEMMA 7.7. A joint realization of two given labeled trees can be
constructed in O(n) time.

Proof Sketch. Each edge visibility polygon produces a chain of orderings.
Each vertical edge may appear in at most four visibility polygons of
horizontal edges, and similarly for each horizontal edge. Thus the total
number of elements of these chains is no more than An. It is easy to merge
these chains in linear time (a claim we will not support here), resulting in
O{n) time to compute the partial orders. The remainder of the construction
also takes just linear time. Details will not be presented. D

7.3.2. Realization of Labeled Trees

In this section we characterize when one tree or a pair of labeled trees are
realizable. Note that Lemmas 7.4 and 7.5 address the equivalent questions
for unlabeled trees. The answers we provide in this section are more
complicated.

We first study embeddings of one tree. Call two nodes of an embedded
tree 2-adjacent if they are adjacent on the circle if the other tree is ignored;
note that 2-adjacent nodes receive labels / and i + 2(modn) in a labeling.
Define the distance between two 2-adjacent nodes as the number of arcs in
the path in the tree between them. Let dt be the distance between node i
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2d;=l4=2(n-l)

Fig. 7.16. The sum of the distances between adjacent nodes is equivalent to a double traversal
of the tree.

and its counterclockwise neighbor. Our first characterization theorem is that
an embedding of a tree is realizable iff (1) the chords are non-crossing, and
(2) for all i, dt < 3. We now present a series of lemmas leading to the proof
of this theorem.

LEMMA 7.8. £ dt = 2{n — 1), for any non-crossing embedding of a tree of
n nodes, where the sum is taken over all nodes i of the tree.

Proof. Figure 7.16 shows that summing up the distances between all
2-adjacent nodes is equivalent to traversing the tree twice. Since a tree of n
nodes has n — \ edges, the sum of the distances is 2{n - 1). •

LEMMA 7.9. Let nk be the number of 2-adjacent node pairs to one side
of a chord of a non-crossing embedding, that are separated by distance k in
the tree (the endpoints of the chord are included). Then ££=1 (2 - k)nk = 1.

Proof. Remove the portion of the tree to the other side of the distin-
guished chord, and let the resulting tree have n nodes. Then £ nk + 1 = n,
since this sum counts the total number of nodes. Also we have £ knk + 1 =
£ dif since both sides of the equation represent the total sum of distances.
Applying Lemma 7.8 yields £ dt = 2{n - 1). Substituting these relationships
into the claimed equation proves the lemma:

2 (2 - k)nk = 2^nk-^knk

= 2(/i - 1) - [2(n - 1) - 1]
= 1 •

Lemmas 7.8 and 7.9 both hold for arbitrary circular embeddings. We now
focus on realizable embeddings.

LEMMA 7.10. In a realizable embedding, the distance dt between each
pair of 2-adjacent nodes satisfies d,<3. Moreover, the two angles in a
realizing polygon between two 2-adjacent nodes are determined by dt as
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\
' 2

Fig. 7.17. Four possible angle sequences at two vertices: cc, cr, re, and rr.

follows, where c and r mean convex and reflex angles, respectively:

di = 1: cc

dt = 2: re or cr

dt = 3: rr

Proof. Let an arbitrary horizontal edge of a polygon, which we take to be
a bottom edge without loss of generality, be labeled 0, and label the
remaining edges with increasing index counterclockwise. The right endpoint
of 0 is either a convex or a reflex vertex. If this endpoint is convex, then
distinguish two further cases, depending on whether the upper endpoint of 1
is convex or reflex. The former case is illustrated in Fig. 7.17a, and justifies
the claimed correspondence between dt = 1 and cc. In the latter case (Fig.
7.17b), there must be an edge a above 1, leading to dt = 2 and angles cr.

If the right endpoint of 0 is reflex, we again have two cases depending on
whether the lower endpoint of 1 is convex or reflex. In the former case (Fig.
7.17c), there is again an edge a above 1, and dt = 2 with angles re. In the
latter case (Fig. 7.17d), there must be an edge a above 1 and an edge b
below, leading to dt = 3 with angles rr.

As there are no further possibilities, the lemma is established. •

Let C and R be the number of convex and reflex angles in a polygon.
Then it follows from Lemma 2.12 that C-R = 4. We can derive this
relationship from Lemmas 7.9 and 7.10 as follows. By Lemma 7.10, d ,<3,
so the equation in Lemma 7.9 becomes nx — n3 = 1. The correspondence
between values of dt and the included convex and reflex angles in Lemma
7.10 shows that the excess of C over R is determined by 2n1 and the excess
of R over C by 2n3. Choosing any arc of an embedded tree and applying
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Lemma 7.9 to each side shows that C exceeds R by 2(nl - n3) = 2 on each
side. Therefore, C - R = 4 for the entire polygon.

This argument shows that if an embedding satisfies dt^3, then a polygon
with the appropriate number of convex and reflex angles exists, since it is
known that all angle sequences that satisfy C-R = 4 are achievable
(Culberson and Rawlins 1985). It is only a short step further to show that a
polygon exists that realizes the embedding:

THEOREM 7.2 [Booth and O'Rourke 1985]. An embedding of a tree is
realizable iff

(1) No two chords cross: the embedding is planar; and
(2) For all nodes i, d, < 3.

Proof. Assume that polygon P realizes an embedding of T as its vertical
visibility tree. Lemma 7.10 establishes that (2) holds for the embedding.
Suppose that (1) does not hold. Let arc ab be crossed by cd. Since ab is an
arc, the corresponding horizontal edges a and b of P may be connected with
a vertical line segment L. Since the edge c is distinct from a and b, it must
be strictly to the right or left of L. If the arcs cross, then edge d must be on
the other side of L. But then edges c and d cannot be connected by a
vertical line, contradicting the inclusion of cd as an arc of the visibility tree.
This establishes the easy direction of the theorem.

Assume that an embedding of T satisfies (1) and (2). We seek to construct
a polygon P that realizes the embedding. The construction starts with a
rectangle, and successively refines it, encompassing more and more of the
given embedding. Choose any arc of the embedding as a starting point. The
vertical visibility tree consisting of this single arc is realized by a rectangle.

For the general refinement step, assume that we have constructed a
polygon P' that realizes an interior subtree T of the embedding. An interior
subtree T' is one such that all arcs not in T' are towards the outer boundary
of the circle, in the sense that each arc of T — T has only arcs ofT — T' to
one side, or equivalently, no arc of T — T has arcs of T to both sides. For
example, the edges (0,12), (0,14), and (2,12) in Fig. 7.13 form an interior
subtree of the vertical visibility tree (solid lines). In the same figure, the
edges (0,12) and (0,18) do not form an interior subtree, because the edge
(0,14) has edges of the subtree to both sides. Choose an arbitrary boundary
arc ab of T'—that is, one that has only arcs of T —T' to one side S, or
equivalently, no arcs of T to one side. We now specify two nodes c and d
within this sector S. All the nodes in S are connected by a path in T to either
a or b without using arc ab. Because no two arcs cross (1), it must be the
case that there are two 2-adjacent nodes c and d such that c is connected to
a and d is connected to b. See Fig. 7.18. (It may be that c = a and/or d = b.)
By (2), the distance dcd between c and d is no more than 3. The refinement
step has three cases depending on the value of 5cd.

Case 6cd = l. Here we must have c = a and d = b, and no refinement is
needed.
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Fig. 7.18. The refinement of ab includes c and d in the next step.

Case 5cd = 2. Either c = a or d = b but not both; assume that a = c without
loss of generality. Then replace polygon P' with P as shown in Fig. 7.19a by
replacing the indicated vertical edge by a step. (This introduces cr angles; re
angles could be introduced instead. Either leads to a realization. This
incidentally shows that the realization need not be unique.) This new
polygon realizes T U bd, which is an internal subtree.

Case 6cd = 3. Both c and d are distinct from a and b. Replace polygon P'
with P as shown in Fig. 7.19b by introducing a tab into the indicated vertical
edge. P now realizes T' U ac U bd, which is an internal subtree.

This completes the description of the refinement step. Starting from an
arbitrary arc and a rectangle, repeating this refinement step until all arcs
have been included results in a polygon that realizes the original
embedding. •
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Fig. 7.19. Refinement when 6cd = 2 (a) and 6cd = 3 (b).
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Note that conditions (1) and (2) of the theorem can both be phrased as
constraints on labelings. For example, (2) can be phrased as: the distance in
the tree between the nodes labeled i and i + 2(mod n) (where n is the total
number of vertices in the polygon) is no more than 3.

We now turn to the problem of characterizing when a pair of labeled or
embedded trees are jointly realizable. We start with some observations on
insufficient characterizations. If both the horizontal and vertical trees in an
embedding individually satisfy the conditions of Theorem 7.2, they are not
necessarily jointly realized by the same polygon. It may be that the two
unlabeled trees cannot mesh (Lemma 7.5), so there is no jointly realizable
embedding. Or it may be that the particular embeddings do not consistently
mesh the c/r patterns implied by Lemma 7.10. More surprisingly, it is
possible for the embeddings to individually satisfy the conditions of
Theorem 7.2, and to consistently mesh their implied c/r patterns, and still
not be jointly realizable. Figure 7.20a shows an example. The next lemma
shows why this embedding is not realizable. Define two nodes as 1-adjacent
if their labels differ by 1 (modn); thus 1-adjacent nodes correspond to
consecutive edges of a polygon, and lie in different trees.

LEMMA 7.11. In a realizable embedding of two trees, all the regions on

r 7 6

13 0

Fig. 7.20. Unrealizable embeddings: in (a), the 12-13 region is bound by 6 chords; in (b) 13
violates the projection constraint.
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a b

Fig. 7.21. Regions between adjacent edge nodes must be bound by 2(a) or 4(b) chords.

the outer boundary between two 1-adjacent nodes of the circle are bound by
either two or four chords. Moreover, if such a region is bound by two
chords, then the included angle in a realization is convex; if by four chords,
the angle is reflex.

Proof. If an angle of a polygon is convex, then the visibility arcs to the two
1-adjacent edges cross, and the closest such arcs to the corner bound the
corner by two chords; see Fig. 7.21a. If an angle is reflex, then the corner is
bound by four alternating horizontal and vertical arcs, as shown in Fig.
7.21b. •

The region between nodes 12 and 13 of Fig. 7.20a is bound by six chords,
and so violates Lemma 7.11. However, it is possible for an embedding to
satisfy the conditions of Lemma 7.11 and still not be realizable. Figure 7.20b
shows an example. The next lemma explains why.

LEMMA 7.12. In a realizable embedding of two trees, each consecutive
triple of nodes a, x, b must satisfy the following projection constraints
(where 6ab is the distance between a and b in their tree):

5ab = 1. [no constraint]

5ab = 2. Let acb be the length 2 path in the tree from a to b. Then every
arc incident to x must cross either ac, or be, but not both. See Fig. 7.22a.

dab = 3. Let aedb be the length 3 path in the tree from a to b. Then every
arc incident to x must cross cd. See Fig. 7.22b.

a b

Fig. 7.22. The two projection constraints.
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d

a b

Fig. 7.23. Embeddings illustrating the two constraints of Fig. 7.22.

Proof. By Lemma 7.10, 6 = 2 corresponds to cr and re angles, and 6 = 3
to rr angles. Figure 7.23a shows that x can only project across be when the
included angles are reflex and convex; if the step is reversed, then x can
only project across ac. Figure 7.23b shows that x can only project across the
middle of the three link path between a and b. D

Node 13 in Fig. 7.20b projects across both (0, 4) and (4, 8), violating the
distance 3 case of the lemma.

Finally we show that these projection constraints are sufficient to
characterize realizable embeddings.

THEOREM 7.3. [Booth and O'Rourke 1985]. An embedding of two trees
Tv and TH is realizable iff

(1) Each tree embedding satisfies the conditions of Theorem 7.2 (which
characterized embeddings of single trees), and

(2) Every node of both trees satisfies the projection constraints of
Lemma 7.12.

Proof. Assume there is a polygon that jointly realizes the embeddings.
Then it individually realizes each embedding, so (1) follows from Theorem
7.2. Lemma 7.12 shows that (2) is satisfied. This completes the proof in the
easy direction.

Assume that an embedding is given that satisfies conditions (1) and (2) of
the theorem. We seek to construct a polygon P that realizes Tv and TH as its
vertical and horizontal visibility trees. The construction is by a refinement
procedure very similar to that used in the proof of Theorem 7.2, although
here we must refine both trees simultaneously. The refinement will be
phrased in terms of TV) with the refinement of TH induced by that of Tv.
Choose any arc of the embedding of Tv as the starting point. The induced
subtree of TH is also a single arc, and these two subtrees are realized by a
rectangle.

For the general refinement step, we need to define refinement induce-
ment. Let T'v be an interior subtree of Tv, as defined in the proof of
Theorem 7.2. The induced subtree T'H is constructed by identifying
("lumping" together) all nodes of TH that lie inside a sector bound by one
boundary arc of T'v. Thus when T'v is a single arc, all nodes on either side of
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the arc are lumped into one, and T'H is also just a single arc; this is the
starting configuration. At any stage of the construction, each boundary arc
of T'v encompasses just a single node of T'H.

We now specify the actions taken during a refinement step. An arbitrary
boundary arc ab of T'v is chosen for refinement. The nodes c and d of Tv are
specified as in Theorem 7.2, and again the action taken depends on the
distance 5cd between c and d.

Case 6cd = 1. No refinement needed.

Case 6cd = 2. As in Theorem 7.2, assume a = c; let x be the node of TH

between a and d, and let y represent all the nodes of TH between d and b.
By (2) of the theorem statement, x must project across either ab or bd. In
the former case, modify P' as shown in Fig. 7.24a, adjusting the relative
lengths of the vertical edges x and v so that they are visible to the
appropriate edges to the left of ab. In the latter case, modify as shown in
Fig. 7.24b. Here the length of x is arbitrary, as it only sees y. In either case,
the new polygon P jointly realizes T'vUbd, which is an internal subtree,
and the subtree of TH induced by T'v U bd.

a x

Fig. 7.24. Refinement when bcd = 2 (a and b) and 6cd = 3 (c).
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Case dcd = 3. Let y be the node of TH between c and d, and let x and z
represent the nodes of TH bound by the arcs ac and db respectively. Replace
polygon P' with P as illustrated in Fig. 7.24c, adjusting the relative lengths
of x, v, and z so that they are opposite the appropriate edges on the
opposite side of ab. P jointly realizes T'vL)acUbd and the induced
subgraph of TH.

This completes the description of the refinement step. Applying this
repeatedly constructs a polygon that jointly realizes the given embeddings of
Tv and TH. •

The technique used in the proof provides an alternative to the algorithm
sketched in Section 7.3.1 for constructing a realization of two labeled trees.
The procedure can be implemented straightforwardly in linear time, as long
as the children of each node are sorted by label. But this can be
accomplished in linear time with a radix sort. Thus the alternative algorithm
also runs in O{n) time. Details would take us too far afield and will not be
presented.

7.3.3. Universal Trees

Although Theorem 7.3 completely answers the question of when two
labeled trees can mesh, it does not help much in deciding whether two
unlabeled trees can mesh. It only says that two trees can mesh if there exists
a labeling that satisfies the conditions of the theorem. As there are an
exponential number of possible tree labelings, it would be useful to
characterize readability directly in terms of structural features of the
unlabeled trees. I have been unable to find such a characterization. I
can, however, give a partial characterization, as follows. Define a universal
(unlabeled) tree as one that can mesh with any other tree of the same
number of nodes. Recall that Lemma 7.5 claimed that not all trees are
universal. In this section we prove that a tree is universal iff it is a
caterpillar, a tree that does not contain the graph shown in Fig. 7.12 as a
subtree. The goal of this section is to prove this theorem.

One of the keys to the theorem is the study of trees similar to that shown
in Fig. 7.12, which we call 2-stars. A 2-star S2(k) is a tree of k length 2 paths
joined at one node, called the root of the 2-star. Thus S2(k) has 2k +1
nodes. The tree in Fig. 7.12 is S2(3).

LEMMA 7.13. Any tree T that meshes with S2{k) must have an
embedding in which at most one pair of 2-adjacent nodes a and b are
separated by a distance of 3. Moreover, if there is such a pair, then a jointly
realizable embedding must locate the root of S2{k) between a and b.

Proof. The constraints of Theorem 7.2 imply that there are only two
essentially different realizable embeddings of S2{k): one in which all the
level 2 nodes (where the root is level 0) are immediately counterclockwise
of their level 1 parents (Fig. 7.25a), and one in which a portion of the level
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a b

Fig. 7.25. Embeddings of S2(k).

2 nodes are clockwise and the remaining counterclockwise of their level 1
parents (Fig. 7.25b). Any other arrangement leads to nodes being separated
by a distance greater than 3, violating (2) of the theorem. Applying Lemma
7.10, we obtain the following sequence of convex and reflex angles for the
two embeddings, where standard regular expression notation is used:

(a) cc (cc rr)k~x cc (cr + re)
(b) (cr + rc)(rr cc)l(cr + rc)(cc rr)1 cc (cr + re), where i +j = k — 2.

Both sequences start at the root and proceed counterclockwise. For
example, in Fig. 7.25b, i = 1, ; = 2, and k = 5.

Now any embedding of T that is jointly realizable with S2(k) must
consistently mesh its angle sequence implied by Lemma 7.10 with either (a)
or (b). It is clear that any sequence that meshes with (a) contains no
instance of rr, and that a sequence that meshes with (b) can contain at most
one instance of rr, obtained by choosing the re alternative counterclockwise
of the root in (b), and choosing the cr alternative at the end of (b), just
clockwise of the root. In this case, the root of S2(k) lies between two reflex
vertices. •

LEMMA 7.14. S2(k) cannot mesh with any tree T that contains S2(3) as a
subtree.

Proof. Figure 7.26 shows three distinct ways that the S2(3) subtree of T
may be embedded. A fourth embedding may be obtained by replacing the
right half of Fig. 7.26c (right of re) with the right half of Fig. 7.26a, but we

a b c

Fig. 7.26. The three ways of embedding 52(3).
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will see that both cases are handled identically. All other possible
embeddings are reflections of these. (Note that since in general 52(3) will be
a proper subtree of T, nodes d and / in Fig. 7.26c may satisfy ddf ^ 3 due to
intervening arcs.) By Lemmas 7.9 and 7.10, we know that n1-n3 = l,
where nk are the number of pairs of nodes to one side of any arc that are
separated by distance k. Recall that by Lemma 7.10, nx counts the number
of included cc angles, and n3 the number of rr angles.

In Fig. 7.26a, there must be two instances of rr angles to the left of arc ra,
since ab, ef, and cd each contribute at least 1 to nx, which forces « 3>2.
Lemma 7.13 now shows that S2(k) cannot mesh with this embedding, since
at most one pair of nodes can be separated by distance 3.

In Fig. 7.26c, there must be at least two instances of rr angles to the left
of arc re, since cd, ef, and re each contribute at least one to nx. This
eliminates this and the fourth embedding not drawn as embeddings that can
mesh with S2(k).

Figure 7.26b represents a potential mesh, since there can be just one
instance of rr angles, to the left of arc re and ra. In fact, it is clear that this
one instance must lie between d and e. By Lemma 7.13, if S2(k) is to mesh
with this embedding, the root must be fall between these two reflex vertices,
and so lies between d and e. In Lemma 7.12 we proved that a node between
two 2-adjacent nodes separated by distance 3 must project through the
middle link. A similar statement may be proved for any node between two
perhaps non-2-adjacent nodes separated by distance 3; the proof is similar
to that of Lemma 7.12 and will not be detailed. In this particular situation,
it says that the root of S2(k) cannot project across re or cd, but may either
stay within ercd or project across re. But this means that it is impossible for
S2(k) both to reach nodes between e and /, and between / and r. This
establishes that S2(k) cannot mesh with T. •

This lemma finally provides the proof for Lemma 7.5. The lemma
establishes that a tree that contains S2(3) as a subtree is not universal,
because there is at least one tree with which it cannot mesh. Trees that do
not contain S2(3) are known as caterpillars, and have the general appearance
shown in Fig. 7.27a. They may be characterized as trees with the property
that removal of all leaf nodes (and their incident arcs) results in a simple
path.

THEOREM 7.4 [O'Rourke 1985]. A tree is universal iff it is a caterpillar.

Proof. Lemma 7.14 establishes that every universal tree is a caterpillar.
We now show that every caterpillar can mesh with every other tree with the
same number of nodes, and so is universal. The proof is constructive: given
an arbitrary caterpillar and any other tree with the same number of nodes,
we construct a polygon that jointly realizes them. The proof is somewhat
complicated, so we will present an overview first.

Define an hourglass polygon that realizes a vertical visibility tree T as
follows. Let e be a distinguished edge of T, and assign a level to all nodes of
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Fig. 7.27. A caterpillar (a) and its arrangement in two vertical columns (b).

T as their minimum distance from an endpoint of e. The polygon is defined
by a series of refinements, as was done in Lemma 7.4. At the level 0 step,
the polygon is a rectangle, and realizes just e. Next inward and outward
staircases replace the vertical sides of the rectangle to include all level 1
nodes of T, as shown in Fig. 7.28, giving the polygon its characteristic
shape. Staircases are added to each step to include level 2 nodes (just as in
Fig. 7.11), and so on. Hourglass polygons have the property that they easily
realize certain caterpillars.

Arrange the nodes of a caterpillar C along two vertical lines, as shown in
Fig. 7.27b. Let / and r with / > r be the number of nodes on the left and
right lines, respectively. Clearly each C has a unique (/, r) pair. We claim
that if T contains an edge e such that the remaining nodes of T can be
embedded to either side of e, with l — l nodes to the left and r — 1 to the
right, then C and T can be jointly realized by an hourglass polygon. To see
this, first construct an hourglass polygon realizing the described embedding
of T. Next, adjust the lengths of the vertical edges to achieve C as the
horizontal tree, as illustrated in Fig. 7.28. Clearly this can always be done if
the hourglass polygon has / vertical edges on the left and r on the right,
which it must by our assumptions. When an hourglass polygon realizes C
and T in this way, we say the two trees can balance.

Fig. 7.28. An hourglass polygon realizes a caterpillar as its horizontal tree; here the vertical
tree is refined only to level 1.
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We can now sketch the proof. Given C and T, if they can balance, then
the balancing hourglass polygon establishes the theorem. If they cannot
balance, then we will show that we can arrange to balance a subtree C of C
and a subtree T" of Twith an hourglass polygon, and gather the remaining
nodes C — C and T — T' in an isolated region. The process is repeated,
with the "leftover" diminishing at each step. The final result is a series of
hourglass polygons, horizontally displaced and connected top to bottom,
which together jointly realizes C and T. We now proceed with the details.

Let the given C have the (/, r) pair lx and rlt with I1 + r1 = n and lx > rlf

and let / 1 - r 1 = 6 > 0 . Choose an arbitrary node b1 of T as the "base."
Choose an arc ex of T incident to bx such that the remaining nodes of T may
be arranged on either side of elt with Lx nodes to the left and Rx to the
right (so Lx + Rx + 2 = n), such that the quantity

is minimal among all arcs ex incident to bx and all arrangements of nodes.
That is, Lx and Rx are as close to lx and rx as is possible for the choice of bx,
j8x is a measure of "imbalance" between C and T. Consider now two cases:
& = 0 and jSj > 0.

Case pi = 0. Then

L1-R1 = d1 = l1- rx.

Substituting R1 = n — 2-Ll, and r1 = n — l1, yields

There are precisely the conditions for exact balance, so the hourglass
polygon jointly realizes C and T, establishing the theorem.

Case /?i > 0. Let tx be the top node at the other end of ex. Call whichever
side (right or left) has an excess (or equal amount) of T nodes over C nodes
the high side. We first prove that tx must have descendants to the high side.
Suppose that left is the high side, and that tx has no descendants to that
side. Then bx must have descendants to the left, otherwise Lx = 0, and since
L ^ / i , /i = 0, which is impossible. Then by choosing any edge e[ incident
to bx and contributing to Lx as a new partition edge as illustrated in Fig.
7.29, Lx can be decremented by 1 and Rx can be incremented by 1. This
decreases Lx — Rx by 2. Since /3X = \{LX — Rx) - 6X\ is minimal, and since

b, b.

Fig. 7.29. Shifting one node from L1 to Rt when tl has no left descendants.
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(Lr — Rx)> 61>0 in the case under consideration (left side high and
h > ri)> it can only be the case that /3X = 1 and the change by 2 changes the
signed term from +1 to —1. But we now show that $x can never equal 1.
Suppose

Substituting 61 = l1 — rlt R1 = n—2 — L1, and r1 = n — l1 yields

Li — l\ = ~2>

which is impossible as the difference must be an integer. The argument is
similar if the right is the high side. Therefore, tx has descendants to the high
side.

Let Ax be the minimal number of nodes in a subtree descendant of tt to
the high side. We prove that A ^ / ? ! . For suppose A1<f31. Assume first
that left is the high side, so that Lt > lx and R1<r1. Then flipping A1 nodes
from Lx to R1 changes them to

These imply a fi[ of

Since {Lx — R^) > dx in this case, we have fix = (Lx — RJ — S1. Substituting
for L[, R[, and d1 yields

which is less than /^ under the assumption A1<j31, contradicting the
assumed minimality of fi1. If on the other hand right is the high side, then
flipping Ax from right to left, and noting that now —f}1 = (L1 — R1) — d1,
leads to

again a contradiction for the same reason.
This establishes that Ax > ^.
Now the plan is to remove Ai nodes from the high side, balance the

remainder with an hourglass polygon, and start another hourglass polygon
off to the side for the Ax nodes. If A1 nodes are removed from the high side,
then calling the new quantities to either side of et L[ and R[, it must be that
both L[ < lx and R[ < rx, since Ax is more than enough to reduce the excess
to a deficit on the high side. (Note that it may be that one of L[ = 0 or
R[ = 0 holds.) Call T minus these Ax nodes Tt.

We now specify an appropriate spot to "slide" the A1 nodes into a second
hourglass. Consider again the layout of C between two vertical lines, as
illustrated in Fig. 7.30. Define a diagonal of C to be either the lowest or the
highest arc in the layout, or one whose endpoints are both of degree more
than 1. Let a diagonal d have dL and dR nodes of C below it on the left and
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Lm

n R i

Fig. 7.30. The diagonal d* is the lowest diagonal that may be used to "slide" nodes into the
next hourglass.

right lines of the layout respectively. Define diagonal d* to be the lowest
diagonal such that either L[<d*L and dR<R[ (Fig. 7.30a), or L[>d*L and
d*R>R[ (Fig. 7.30b); d* always exists.

If dt > L[, then the slide will be to the left; if dR > R[, then the slide will
be to the right. Assume the latter case without loss of generality. Form an
hourglass polygon with L[ + 1 and R[ + 1 nodes on the left and right that
realizes Tx. Let 12 = h- L[-1>0 and r2

 = r1-R'1-l>0. Adjust the
lengths of the vertical edges of the hourglass polygon so that (a) it realizes C
as far up the layout as possible (call this subtree Cx), and (b) the remaining
l2 and r2 nodes can be laid out at the top right. This is illustrated in Fig.
7.31. Nodes above d^ but below L[ + 1 must be realized in the hourglass
polygon Hx\ nodes below dR but above R[ + 1 must be slid to the right.

The hourglass polygon Hx now realizes Tx and Cx. It should be clear that
the remaining Ax nodes of T, and l2 and r2 of C, bring us back to the exact
same situation as we faced at the start. The base node b2 for the vertical
tree is fixed; an edge e2 is chosen to minimize (32. If fi2 is zero, then the
polygon can be completed with an hourglass. If f52 > 0, then the extra nodes
are slid off the top to either the right or left as appropriate, and the process
repeated.

Let A, be the number of nodes slid off from T at the ith step of this
procedure. Clearly A,>A I+1, since A,+1 is chosen from among the A,

Fig. 7.31. A "slide" to the right.
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L,=I2 R,=IO

r -=9

Fig. 7.32. An example of meshing a caterpillar (a) with a tree (b). The first hourglass polygon
is shown in (c), and the final polygon realizing both trees in (d). Only the diagonals of the
caterpillar are shown in (d).
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nodes, and AI+1 cannot include the endpoints of et. Thus the sequence of
A's is strictly decreasing. Also we proved that A, > /3h so the sequence of ft
imbalances are bounded by a strictly decreasing sequence. Thus we must
eventually reach a step /, where /37 = 0, and the polygon can be completed
with a balanced hourglass. This completes the construction. •

Figure 7.32 illustrates the result of the construction procedure of the
theorem in a particular case. C is shown in Fig. 7.32a; it has lx = 14 and
rx = 10, so S1 = l1 — r1 = 4. The tree T to be meshed is shown in Fig. 7.32b,
with ex and bx distinguished. It is easy to check that the minimal f$x is
achieved as illustrated, with 1^ = 12 and Rx = 10. Thus /3l = \(L1 — Rt)-
di\ = 2. Right is the high side, since Rx > rx. There is no choice for Ax: we
must slide off all of R1. Thus Ax = 10. After removal of A1? we have L[ = 12
and R[ = 0. The diagonal d* is the lowest edge in Fig. 7.32a whose
endpoints both have degree greater than 1. The construction of the first
hourglass polygon is shown in Fig. 7.32c; the caterpillar is not drawn in this
figure. For the second polygon, l2 = h - L[ — 1 = 1 and r2

 = rl — R[ — \ = 9
nodes remain. Thus 62 = 8. Now it is easy to arrange the nodes in T such
that balance is achieved: L2 = 0 and R2 = 8. These imply that /32 = 0: exact
balance. The final polygon is shown in Fig. 7.32d.

7.3.4. Discussion

The major question left unresolved is: given two unlabeled trees, determine
whether or not they can mesh, and if so, construct a realization. If either of
the given trees is a caterpillar, Theorem 7.4 provides the answer. But the
ratio of the number of caterpillars on n nodes to the number of free trees on
n nodes goes to zero as n goes to infinity, so caterpillars are relatively
infrequent. If both trees are not caterpillars, we can only answer this
question by trying all possible labelings and applying Theorem 7.3. A
characterization in terms of the structure of the two trees would be
desirable.

7.4. BAR VISIBILITY GRAPHS

Perhaps the most satisfying result obtained to date in the area of visibility
graphs is the characterization theorem of "bar visibility graphs" obtained by
Wismath (1985), and independently by Tamassia and Tollis (1985). In a bar
visibility graph (or just a bar graph), the nodes represent vertical line
segments, and two nodes are connected by an arc iff their two vertical bars
A and B can see each other horizontally and non-degenerately. More
precisely, there must exist a non-zero height rectangle bounded by A and B
to the right and left that does not intersect any other bar. This notion of
visibility is sometimes called e-visibility (Tamassia and Tollis 1986), since
the bars must be able to see one another over a beam of visibility of
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Fig. 7.33. The smallest bar unrepresentable graph (a) and an attempted realization.

thickness e > 0. Note that this non-degenerate visibility was used in the
previous section, but there it was enforced by requiring the polygon to be in
general position.

Bar visibility graphs differ from orthogonal polygon visibihty trees in two
respects: the bars do not have to connect into a polygon, and they have two
"sides." These two changes considerably widen the class of graphs that are
bar representable—that is, those for which there is a collection of bars that
realize the visibility graph. First it is clear that every bar graph is planar.
Embed the nodes of the graph at, say, the lower endpoint of each bar. Since
none of the visibility rectangles intersect, the arcs of the graph may be
embedded along the length of these rectangles and down the sides of the
bars without crossovers. But not every planar graph is bar representable.
Figure 7.33a shows a graph G, and Fig. 7.33b shows an attempted
realization that fails to embed a bar for node 6. After presentation of the
characterization theorem, we will see that this is the smallest bar unrep-
resentable planar graph. We will follow Wismath's presentation throughout
(Wismath 1985).

Our first positive result, halfway to the characterization theorem, is that
every biconnected planar graph (defined below) is bar representable. To
prove this result we must first introduce "sf-numbering." An st-numbering
of a graph G of n nodes is a 1-1 function A that maps each node to a distinct
number in ( 1 , 2 , . . . , n], with k(s) = 1 and k{t) = n, where 5 and t are two
distinguished nodes, such that for every node v different from s and t, there
are nodes x and z adjacent to y such that k(x) < k{y) < A(z). The two
distinguished nodes 5 and t can be thought of as source and termination
points of a "PERT" digraph, where each edge is oriented to point from
lower to higher labels. We now quote two results on st-numbering as
lemmas (Lempel et al. 1967; Even and Tarj an 1970).
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Fig. 7.34. An sr-numbered graph (a), and embedding into strips (b) of nodes (solid dots) and
pseudo-nodes (open circles), and a realization (c).

LEMMA 7.15 [Lempel, Even, and Cederbaum 1966]. For every edge st of
a biconnected graph G, there is an ^-numbering of G.

LEMMA 7.16 [Even and Tarjan 1976]. Given an edge st of a biconnected
graph, an 5f-numbering can be found in O{n) time.

A biconnected graph is one that contains no cut point, no node whose
removal disconnects the graph; in other words, there are at least two
disjoint paths between any two distinct nodes.4 It is easy to construct
connected planar graphs which are not biconnected, and which are not
^-numerable. Therefore, attention will be restricted to biconnected graphs.
Wismath's first result is the following.

LEMMA 7.17. Every planar biconnected graph G is bar representable.

Proof. By Lemma 7.15, G is sf-numerable for any edge st. Fix an edge st
and an st -numeration. The proof is by construction of a layout of bars,
based on this sf-numbering, that realizes G. We will illustrate the proof with
the graph G shown in Fig. 7.34a with the indicated st -numbering.

4. "Nonseparable" is a synonym for "biconnected," and "articulation point" is a synonym for
"cut point."
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Start with a planar embedding of G as in Fig. 7.34a, and deform G,
maintaining planarity, so that the vertices are arranged in vertical strips
Si, S2, . • • , such that

(1) 5 6 ^ .
(2) For all v =£s, v e St iff all lower numbered nodes adjacent to v are in

strips Slt . . . , 5,_!.

This is shown in Fig. 7.34b (solid nodes). No two vertices in the same strip
are adjacent. Thus they can safely be mapped to bars with the same
x-coordinate, since they cannot see one another. All that remains is
adjustment of the lengths and placements of the bars to match the graph
edges. Wismath accomplished this with the following clever scheme.

Introduce a "pseudo-node" on each edge that passes completely through
a strip; see the open nodes in Fig. 7.34b. Let vtj be the ;th node (real or
pseudo) from the bottom in strip i, and let xtj, atj, and btj be the
x-coordinate, top, and bottom v-coordinates, respectively, of the bar
associated with node vtj, and let Lij = aij — bij. For vn = s, let * n = 0,
fln = 1, bn = 0, so L n = 1. Define the length of the bar for v^- to be long
enough to encompass all its incident "beams" from the left, each of which is
a proportional fraction of the lengths of the bars from which they emanate:

T — V ^i-l,k
Lij —

where degf(v) is the forward degree of v—that is, the number of neighbors
to its right. The bars are placed at the same *-coordinate within each
section, stacked end to end vertically:

% = by- + Ly,

Applying this procedure to Fig. 7.34b produces the layout shown in Fig.
7.34c. For example, the length of the only bar for a real node (7) in S5 is
L51 = L4i + (1/2)L31 + L32 + (1/3)L23. Finally, the bars representing the
introduced pseudo-nodes are removed. Clearly the resulting layout realizes
G. U

It is easy to implement the construction in this proof with a linear
algorithm using Lemma 7.16.

The class of bar representable graphs is wider than established by this
lemma. This class can be described by loosening the definition of st-
numerability, as follows. Let A be a 1-1 labeling function from the nodes to
{ 1 , 2 , . . . , A I } . Define a X-max to be a node that has no higher labeled
neighbor, and similarly define a k-min. An sf-numbering has one A-min and
A-max, at s and t, respectively. Define a graph G to be st*-numerable if
there is a A function and a planar embedding of G such that all A-max and
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all A-min nodes are on the exterior face, and they are separable into a
A-max group and a A-min group, separable in the sense that it is possible to
introduce two new vertices u_ and v+ in the exterior face such that f_
connects to each A-min node and v+ to each A-max node, while preserving
planarity. This definition is admittedly ungainly, but it will be rephrased
shortly. First we show that it precisely captures the bar representable
graphs.

THEOREM 7.5. A biconnected graph G is bar representable iff G is
st* -numerable.

Proof. Suppose G is st*-numerable. Then embed G as guaranteed by the
definition of s£*-numerability. If there is more than one A-max node, add a
new vertex v+ in the exterior face and connect it to all A-max nodes.
Similarly add t>_ connected to all A-min nodes if there is more than one.
Call the resulting graph G'. Now assign A(u_) = 0 and A(i/+) = n + 1. Then
it is clear that each node except u_ and v+ has a smaller and larger labeled
neighbor. Thus G' is Enumerable. Since G was assumed to be biconnected,
and since v+ and u_ (if present) have degree at least two, G' is also
biconnected. Lemma 7.17 then guarantees that G' is bar representable.
Removing the bars associated with the t>_ and v+ nodes results in a
realization for G.

Suppose G is bar representable, realized by a particular layout of bars.
Convert the layout into normal form by translating the bars to the vertical
lines x = 1, 2, . . . , and moving each one as far to the left as is possible.
Now number the bars 1 to n, from left to right, top to bottom. We claim
that this is a .stf*-numbering of the associated graph G. Consider any interior
node v of G, one not on the boundary of the exterior face. Then it must
have a neighbor to its left and its right. But since the left neighbors have
lower and the right neighbors higher labels, v is neither a A-min nor a A-max
node. The A-min and A-max nodes are separable, since all the A-max nodes
occur for bars at tops of the columns, and A-min nodes at the bottoms, and
these bars are on the exterior face. •

We now show that this theorem can be reformulated to replace
st*-numbering with more direct graph-theoretic features.

THEOREM 7.6 [Wismath, Tomassia and Tollis 1985]. G is bar repre-
sentable iff there is a planar embedding of G with all cutpoints on the
exterior face.

Proof. Suppose G is bar representable. Then by Theorem 7.5, it is
st*-numberable, which by definition implies there is a planar embedding
realizing the st*-numeration. Suppose, in contradiction to the theorem, that
there is a cutpoint x not on the exterior face of this embedding. Since x is a
cutpoint, its removal disconnects G into two or more components. Because
x is not on the exterior face, one of these components, say B, must be
interior to a circuit C containing JC; see Fig. 7.35. Now let b+ be the node of
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C

Fig. 7.35. The component B must contain a A-min or A-max.

B that has the largest label among all the nodes of B, and let b_ be the node
that achieves the smallest. Then x is the only connection between B and
G — B, and since A(JC) cannot be both larger than k{b+) and smaller than
A(6_), either b+ is a A-max or b_ is a A-min. This violates the definition of
st*-numbering, establishing the " i f direction of the theorem.

Suppose there is a planar embedding of G with all cutpoints on the
exterior face. Then we can construct an st*-numbering by using the
st -numbering algorithm of Even and Tar j an (Lemma 7.16) to number the
"blocks" of G depth-first. A block of a graph is a maximal biconnected
component. Treat their algorithm as a procedure ST(s, t, B, i) that st-
numbers block B starting with X(s) = i, where st is an edge of B. Each call to
ST marks the block that it numbers. Then an algorithm for st*-numbering
from cutpoint s with X(s) = i is ST*{s, i) below.

ST*(s, i)
for all unmarked blocks B{ containing a cutpoint x do

Choose unmarked t adjacent to x on the exterior face of Bt.
ST(x, t, Bh i).
i«-i + \Bi\-l.
for all cutpoints x; in Bt do

ST*(Xj, i).

Note that only the first cutpoint passed to ST* becomes a A-min; all the
other cutpoints become A-maxima. Therefore the A-min and A-max nodes
are trivially separable. They are all on the exterior face because the
cutpoints are. Thus a valid st*-numbering is produced. Theorem 7.5 then
implies that G is bar representable, concluding the proof of the
theorem. •

We obtain the final form of the characterization with a simple
observation.

COROLLARY. Let G+ be the graph obtained from G by connecting
every cut point to a new vertex. Then G is bar representable iff G+ is
planar.

Since cutpoints of a graph can be identified in linear time by a depth-first
search (Aho et al. 1974), and planarity may be tested in linear time with the
Hopcroft-Tarjan algorithm (Hopcroft and Tar j an 1974), this yields a
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0" 3" 4'
Fig. 7.36. The graph in Fig. 7.33a contains K33 when augmented.

linear-time algorithm for recognizing bar representability. A simple modi-
fication of the layout procedure used in the proof of Theorem 7.5
establishes that a realization can be constructed in linear time.

We may finally see why the graph G in Fig. 7.33a is not bar repre-
sentable. Add a node 0 connected to the three cutpoints 2, 5, and 7. Then
the graph may be redrawn as in Fig. 7.36, revealing that K3y3 is a subgraph.
By Kuratowski's theorem, then, G is non-planar. It is also easy to see that
this is the smallest bar unrepresentable graph.
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VISIBILITY ALGORITHMS

8.1. INTRODUCTION

The notion of visibility leads to a number of algorithm questions independ-
ent of those motivated by art gallery problems. Although the structure of
visibility graphs was investigated in the previous chapter, for example, we
have yet to discuss the algorithmic construction of such graphs. Nor have we
shown how to compute the portion of a polygon visible from an internal
point. These and related questions will be addressed in this chapter.

The most fundamental problem is that just mentioned: given a point x in
a polygon P, compute V{x), the portion of P visible from x. V(x) is called
the point visibility polygon for x; it may be imagined as the region
illuminated by a light bulb at x. It will be shown in the next section that
V(x) can be constructed in O(n) time. Permitting holes in the polygon leads
to Q(nlogn) complexity (Section 8.5.1). In three dimensions, computation
of V{x) is the heavily studied "hidden surface removal" problem, which has
recently been shown to have &(n2) complexity (McKenna 1987).

Recall the definition of a kernel from Chapter 4: the kernel of a polygon
P is the set of all points that can see the entire interior of P. Polygons with a
non-null kernel are called stars.l Lee and Preparata showed that the kernel
of a polygon can be computed in O{n) time, which incidentally yields an
algorithm for detecting whether a polygon is a star in linear time (Lee and
Preparata 1979). We will not present their algorithm, but will use the idea
of a kernel to introduce edge visibility.

Avis and Toussaint introduced and studied three different notions of edge
visibility, extending the point visibility concept (Avis and Toussaint 1981b).
Let P be a polygon and e an edge of P.

(1) P is completely visible from e if e is covered by the kernel of P: thus
every point of P is visible to every point of e.

(2) P is strongly visible from e if e intersects the kernel of P: thus there
is at least one point of e that can see all of P.

1. Such polygons are often called "star-shaped."
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(3) P is weakly visible from e if every point of P is visible to some point
of P.

Note that in the case of weak visibility, e does not have to intersect the
kernel, and in fact P does not have to be a star to be weakly visible from an
edge. An equivalent formulation is that a polygon is weakly visible from e if
it would be entirely illuminated by a fluorescent light bulb whose extent
matched e.

Avis and Toussaint addressed the question of detecting whether a
polygon is visible from a given edge. This question is solved by Lee and
Preparata's kernel algorithm for both complete and strong visibility, but not
for weak visibility. They presented an O(n) algorithm for detecting if P is
weakly visible from e in Avis and Toussaint (1981b). We will not present
their algorithm, but will make use of their definitions and theorems. The
concept of weak visibility has proven to be the most fruitful of the three
definitions, and henceforth the unqualified term "edge visibility" will refer
to weak visibility.

A problem raised but not solved in Avis and Toussaint (1981b) is that of
computing the edge visibility polygon V(e) from an edge e of a polygon P:
the portion of P illuminated by a light along e. For six years the fastest
algorithms required O(n log n) time, but no lower bound larger than the
trivial Q(«) was known. Just recently an O(n log log n) algorithm has been
found, based on the Tarjan-Van Wyk triangulation algorithm (Section
1.3.2). We present an O(n log n) algorithm in Section 8.3, and sketch the
new algorithm in Section 8.7. In Section 8.6 we will show that permitting
holes in the polygon leads to a surprising jump in complexity to Q(n4).

A number of related visibility questions are surveyed in Section 8.7.
Finally, a remark on the style of algorithm presentation. Visibility

algorithms tend to be complicated, involving, for example, delicate stack
manipulations. It is not my intent to present these algorithms in the detail
necessary for implementation; for that the reader is referred to the original
papers. Rather I will attempt to convey the main ideas behind each
algorithm while staying one step above the precise data structure
manipulations.

8.2. POINT VISIBILITY POLYGON

The first linear algorithm for constructing the visibility polygon from a point
inside a polygon was obtained by ElGindy and Avis in 1980 (ElGindy and
Avis 1981). Prior to this, several supra-linear linear algorithms were
published, and at least one suggested linear algorithm was shown not to
work. ElGindy and Avis's algorithm requires three stacks, and is quite
complicated. Later Lee proposed another linear algorithm that requires
only one stack (Lee 1983). Most recently, Joe and Simpson have simplified
the organization of Lee's algorithm (Joe and Simpson 1985), and it is their
presentation that we follow here.
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In order to achieve linear time, the vertices of the polygon cannot be
sorted into a convenient organization, but rather must be processed in the
order in which they appear on the boundary of the polygon. This order is
inconvenient in that portions of the boundary not yet visited may obscure
the otherwise visible portions of the boundary already visited. Thus the
algorithm must be prepared to modify or abandon the structures it has
constructed at any time.

Lee's algorithm accomplishes this with a single stack of vertices S =
s0, $ ! , . . . , st, where st is top of the stack. Let x be the point in the polygon
from which visibility is being computed. Then the stack constitutes the
vertices of V(x) encountered so far assuming the remaining portion of the
boundary will not interfere. Of course this assumption is in general not true,
and as interference is detected, the stack is modified appropriately.

Let the vertices of the polygon be v0, vlf . . . , vn = v0 in counterclockwise
order. Place x at the origin and rotate and renumber so that v0 is to the
right of x on the horizontal line through x. For each vertex vt of P, define its
angle about x a(vt) to be the polar angle of vt with respect to x, including
any "winding" about x. This may be defined formally as:

(1) a(
(2) a(vt) = of(u,-_i) + o

where o = + 1 if xvt_xVi is a left turn, o = - 1 if a right turn, and o = 0 if no
turn. Thus if a{vt) > In, the boundary has "wound around" x from v0 to vt.
It is clear that only vertices v with 0 < a(v) < 2TF are candidates for visibility
from x.

The algorithm consists of three procedures: Push, Pop, and Wait. Push
adds a new visible vertex to the top of the stack. Pop deletes one or more
vertices from the stack when interference is detected. And Wait traverses a
portion of the boundary known to be invisible, waiting for it to emerge back
"into the light." With each call to Wait is associated a window W, which is a
subsegment of the ray from x through st, one end of which is always st, and
a direction (clockwise or counterclockwise) of passage. Wait traverses the
boundary until it passes through W in the specified direction.

Each procedure is now described in more detail. Let vtvi+1 be the current
edge being processed, and let the stack be s0, . . . , st.

Push
When this procedure is entered, a(vi+1) > a(st) and a(vi+1) > a{vt). Two
cases are distinguished, depending on the relation of a(vi+1) with In.

Case a (a(vi+1) <2K). This is the "normal" case. vi+1 is pushed onto the
stack, and i is incremented. The next action is determined by the new edge
vtvi+1, as follows (note that now st = vt). If i = n, the algorithm is finished.
If a(v/+1) > a(Vi), then Push is called again. If a(vt) > a(vi+1), then if the
boundary makes a left turn at vh v{vi+l obscures the stack (Fig. 8.1a) and
Pop is called; and if the turn at v{ is a right turn, then the stack obscures
vi+1 (Fig. 8.1b), and Wait is called with W = st«>.
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a b

Fig. 8.1. If vi+l obscures (a), Pop is called; if vi+1 is hidden (b), Wait is called.

Case b (a(vi+l) > lit). Then the intersection of the ray xv0 (which is at
angle 0 = 2;r) with vtvi+1 is pushed on the stack, and Wait is called with
W = vost.

Pop
The vertices of the stack are popped back to s;, where Sj is the first stack
vertex such that either

(a) a(sj+1) > a(vi+1) > a(sj) (Fig. 8.2a), or
(b) <x(Sj+1) = oc{Sj) > a(vi+1), and y (defined in Fig. 8.2b) lies between Sj

and si+1.

Case a. The stack top is set to point v in Fig. 8.2a, and / is incremented.
The next action is determined by the new edge vtvi+1, similar to Case a of
Push. If i = n, halt. If oc{vt) > oc(vi+1), then Pop is called again. If
cx(yi+1) > (x{vt), then if vt is a right turn, call Push, and if a left turn, call
Wait with W = v{st.

Case b. Ignoring the degenerate case when s}, vi+1, and sJ+l are collinear
(see Joe and Simpson (1985)), Wait is called with W=Sjy, where y is as
illustrated in Fig. 8.2b.

Wait
i is incremented until vtvi+1 intersects W at point y from the correct
direction. When that occurs, y is pushed on the stack, and either Push or

o b

Fig. 8.2. Two Pop cases: v(+1 does (a) or does not (b) obscure sj+1.
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12 = 0

Fig. 8.3. A visibility polygon example: V(x) = 0 11' 9 10 11.

Pop is called depending on whether a(vi+1) ^ <x{vt) or vice versa,
respectively.

A simple example is shown in Fig. 8.3. Push advances to 3, when
5 = 0123. Since a(3) > a(4) and 3 is a right turn, Wait is called with W as
illustrated. Wait detects that 8 emerges through W, pushes 7' on the stack,
and calls Push. The stack becomes 012 3 7' 8 after 8 is pushed. Since
ar(8) > ar(9) and 8 is a left turn, Pop is called. All stack vertices down to 1
are deleted, and V and 9 are pushed to make the stack 011'9. Finally,
Push advances until 0 is encountered again, when the stack is 0 11' 9 10 11,
which is indeed V(x). This example does not invoke the more subtle aspects
of the algorithm, but illustrates the main ideas.

A proof of correctness requires more detailed code, and the interested
reader is referred to the original papers (ElGindy and Avis 1981; Lee 1983;
Joe and Simpson 1985). It should be apparent that the algorithm requires
only linear time: each vertex is scanned just once, at most two vertices are
pushed on the stack at each iteration, and popped vertices are never pushed
again. Thus the time complexity is O{n). Finally we note that the same basic
algorithm can be used to construct the portion of the boundary of P seen
from an exterior point x.

8.3. EDGE VISIBILITY POLYGON

In this section we discuss algorithms for computing the visibility polygon
from an edge of a polygon. The generalization to polygons with holes will
be considered in Section 8.6.

Let V(e) be the portion of a polygon P visible from e = (a, b). Of the
three notions of edge visibility introduced in (Avis and Toussaint 1981b),
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only one, weak visibility leads to an interesting algorithm problem for
constructing V(e). It is easy to see that the region completely visible from e
is just the intersection of V(a) and V(b). These point visibility polygons can
be constructed in O(ri) time as showed in the previous section, and their
intersection can be constructed easily in O(n) time.2 There is no unique
region strongly visible from e; rather there are many regions strongly visible
from an edge. But the construction of the region weakly visible from e,
which we henceforth call V(e), is a fascinating algorithm question that does
not seem reducible to or from any other problem.

There have been three remarkably diverse algorithms published to date
for constructing V(e) in O{n log n) worst-case time complexity. And as this
book was under revision, an O(n log log n) algorithm was announced by
Guibas et al. (1986). Their method will be sketched in Section 8.7. Here we
will first outline each of the three published algorithms briefly before
presenting a new fourth algorithm.

Independently and approximately simultaneously, ElGindy (1985), and
Lee and Lin (1986a), proposed O(n\ogn) algorithms for computing V(e).
The two algorithms are completely different, and both are rather compli-
cated. Lee and Lin's algorithm performs two scans of the polygon boundary
in opposite directions, computing for each vertex the extreme points of e
that can see it. The data gathered in the passes are then merged to form
V(e). Their algorithm maintains a separate stack for each vertex of the
polygon. The reason for the O(n log n) complexity is that occasionally a
binary search must be performed on a stack to search for a vertex with a
particular property.

ElGindy's algorithm first decomposes the polygon into monotone pieces,
using the O(n log n) algorithm of Lee and Preparata (see Section 1.3.2),
and applies an edge visibility algorithm to each piece. Curiously he shows
that a natural algorithm that achieves linear time for monotone polygons
leads to a quadratic algorithm if applied to the monotone pieces. He uses an
algorithm that requires O{n log ri) even on monotone polygons, but which is
better suited to merging the individual monotone results: it leads to an
O(n log«) algorithm for computing V(e) in a simple polygon.

A third algorithm was recently presented by Chazelle and Guibas (1985),
and it is as different from the first two as they are from each other. The
main novelty is that the calculations are carried out in a dual space using the
"two-sided plane" introduced in Guibas et al. (1983). A convex partition of
the rays comprising V(e) in the dual space is constructed in O(n log n) time
using a divide-and-conquer algorithm based on Chazelle's polygon cutting
theorem (Chazelle 1982). Once this partition is available, V(e) can be
constructed in linear time. This approach is very general and solves several
other visibility questions, to which we will return in Section 8.7.

Finally we come to the new fourth algorithm. It is a traditional plane
sweep, based on several ideas in Lee and Lin (1986a) and ElGindy (1985).

2. I thank Subhash Suri for discussions on this point.
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Let the edge e from which visibility is being computed be oriented
horizontally. We concentrate initially on computing V(e) above e; the
portion of V(e) below e (if any) is easily found with the point visibility
algorithm applied to the two endpoints of e. The first step of the algorithm
is to sort the vertices of the polygon from lowest y-coordinate to highest.
This immediately pegs the complexity at Q(n log n). A horizontal sweep
line H will be moved from e upwards. Let H intersect edges elf e2, . . . left
to right at a particular height. These edges are maintained in a data
structure E that permits O(logn) queries, insertions, and deletions in the
standard manner (see for example, Section 1.3.2). Assume for simplicity of
exposition that no edge of the polygon aside from e is horizontal, so that the
edges may be unambiguously classified as left or right edges, implying that
the exterior of the polygon is to the left or right respectively. Clearly ex is a
left edge, and they alternate left/right in sequence.

Certain pairs of left and right edges in E will be distinguished as bounding
"visibility windows." A visibility window W is an interval of H bound by the
left edge ea on the left and the right edge eb on the right, such that ea and eb

are adjacent in E, and some portion of the interval between on H,
specifically the interval xaxb, is visible to e. See Fig. 8.4. xa may lay on ea, or
it may be that ea is left of xa (as in Fig. 8.5); and similarly for xb. In general
there will be several visibility windows W1}W2, • • . active on H at any one
time. Each visibility window will have further data structures associated
with it, which we now detail.

With each point x on H visible to e we can associate two line segments
L(x) and R(x) that connect x to the leftmost and rightmost points of e that
can see x. Construction of these lines in O(log ri) time for any x is the key to
the algorithm. Let c[L(;t)] be the point of contact between L{x) and the
polygon; in case there are several, select the one closest to x. Define c[i?(jt)]
similarly. Each window can be partitioned into intervals wherein the points
of contact remain unchanged as x varies over the interval. The locations x
where c[L(x)] changes determine the left critical lines Lo, L1} . . . , Lh and
similarly there are right critical lines Ro, R1} . . . , Rr for each window. For
any window, the contact points for these lines form a convex chain, as
illustrated in Fig. 8.5. As in that figure, the left critical lines intersect H in
the left-to-right order Lh . . . , Lly LQ, and the right lines in the order
Ro, Rlf . . . , Rr, where smaller indicies connect to lower points on the
contact chains. It will always be the case that RQ connects to xa and Lo

connects to xb. Points of H to the left of Ro and to the right of Lo are not
visible to e. For each window, the critical lines and their contact points are
maintained in two data structures L and R that permit L(x) and R(x) to be

e 0 ° ... e b

Fig. 8.4. A window W on the sweep line H; the shading represents the exterior of the
polygon.
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Fig. 8.5. The critical lines L, and Rt, and the points of contact for x.

constructed in O(log ri) time for any x in the window. As illustrated in Fig.
8.5, if x falls between Lt and Li+1, then c[L(x)] = c[Li], and if x falls
between R{ and Ri+l, then c[R(x)\ = c[Ri\. Any standard dictionary data
structure will suffice.

This completes the description of the data structures maintained as the
sweep line advances. We now describe the actions taken as the line
advances one step. Let H be the sweep line as it encounters the next vertex
x. First x is located in the list of edges E in O(log n) time. If x is not interior
to or on the boundary of any visibility window, the edges adjacent to x are
inserted into and deleted from E in the standard manner in O(logn) time,
and no further action is taken. If instead x lies in a window W, then three
actions are taken: (1) visible segments in the window are output, (2)
updates to the window due to the advance are made, and (3) updates to the
window due to x are made. Each of these actions is described in detail
below.

(1) Output of visible segments.
We will only describe the actions taken on the left boundary of the
window; the right boundary is handled in the exact same manner. We first
compute xa, the leftmost visible point in W. The intersection of ea, the
left bounding edge of W, with H, ya, is computed and located in the list of
right critical edges R in O(\ogn) time. If ya is visible, then xa=ya.
Therefore, set xa to be this point ya if ya is to the right or on Ro (see Fig.
8.6); otherwise ya is not visible and xa is set to the intersection of Ro with
H. Let x'a be the leftmost visible point of W when it was last updated, with

RO R l R 2

Fig. 8.6. The visible boundary segments x'a z and zxa are output.
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the sweep line at H'. (This is not the immediately previous position of H
in general, because each window is only updated when a vertex is
encountered within it.) x'a is the intersection of Ro and H'. We now
output the left boundary of the window from x'a to xa as visible. This
boundary may consist of one or two segments:

(a) ya is invisible, and so is strictly left of xa. Then no portion of ea

between H' and H is visible, and both x'a and xa lie on Ro. Output
one segment, x^ca.

(b) ya is visible, and so xa = ya (Fig. 8.6). Then Ro and ea cross at a
point z between H' and H; perhaps z =x'a. Output two segments,
x'az and zxa.

(2) Window updates due to advance.
Again we will only describe the updates related to the left bounding edge.
Suppose ya=xa is found to lie between Rt and Ri+i. The lines
Ro, R1} . . . ,Rt are deleted from the data structure R. In Fig. 8.6, Ro, R1}

and R2 are deleted. If any lines are deleted, then a new Ro is created
connecting xa to c[Rt]. Similarly, xa is located within L; if x lies between
Lj+1 and L;, then Lh . . . , L]+2,Lj+1 are deleted, and a new Lj+1 is created
(if any lines were deleted) connecting xa to c[Lj]. If xa is found to be to
the right of Lo, or Ro = Lo, then the window is closed.

(3) Window updates due to x.
We finally come to the processing that is dependent on the vertex x hit by
H and its local neighborhood. Two cases are distinguished.

Case a (x =ya is the upper endpoint of ea.). The edge distinguished as the
left boundary of W must change. Let e' be the other edge incident to x. If e'
is a left edge, then ea <— e'; if e' is a right edge, then ea is set to the first left
edge to the left of x in E. Similar processing occurs when x is the upper
endpoint of the right boundary.

Case b (The two edges e' and e" adjacent to x to the left and right
respectively both lie above H.). W splits into two windows W bound by ea

and e', and W" bound by e" and eb. Let x be located between Rt and Ri+1,
and between Lj+1 and L}. The data structures R and L are split between the
two windows, with W receiving Ro, . . . , Rt and W" receiving
Ri+1, . . . , Rr, and W receiving Lh . . . , Lj+1 and W" receiving L]} . . . , LQ.
Note that this means that the top of the left convex chain and the bottom of
the right convex chain become associated with W, and vice versa for W".
Finally, L(x) and R(x) are added to both W and W". For example, if x in
Fig. 8.5 falls under Case b, then / = 1 and j = 1, and W receives L3, L2)

and L(x), and Ro, Rlf and R{x), and W" receives L(x), Lx, and L2) and
R(x), R2> and R3.

This completes the description of the processing that occurs during each
advance of H. The data structures are initialized with H collinear with e. E
is initialized to contain every edge intersected by the initial position of H.
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Let a and b be the left and right endpoints of e, and let ea and eb the edges
in E closest to a and b respectively (a may be a lower endpoint of ea, and
similarly for b). Then there is one window initially, bound by ea and eb,
which intersect H at xa and xb. Both L and R consist of two lines each:
Lo = axb, Lx = axa; Ro = bxa, Rx = bxb.

A detailed proof of correctness would not be worthwhile in the absence of
a more detailed description of the algorithm, which we have not provided.
A few remarks about time complexity are in order, however. The sweep
line advances exactly n times, once per vertex. At each advance, at most
one window is updated. This is an important point, as it might seem natural
to update all active windows with each advance. This, however, leads to a
quadratic algorithm, and is not necessary: no visible segments can be lost by
postponing window updating until a vertex is encountered within it. Each
window update requires O(logn) time for data structure searches and
updates, and constant processing to output the visible segments. Thus the
total time complexity is O{n log n).

8.4. VISIBILITY GRAPH ALGORITHM

In this section we describe an O(n2) algorithm for constructing the visibility
graph between the endpoints of a set of line segments. This is a very general
problem, including, for example, construction of the visibility graph
between vertices of a polygon with or without holes as special cases. Since
so little is known about the structure of such graphs, however, the algorithm
for line segments remains the fastest known algorithm for these special
cases.

Perhaps the strongest motivation for the construction of visibility graphs
is its application to the shortest-path problem. Lozano-Perez and Wesley
showed that the shortest-path for a polygon amidst polygonal obstacles can
be solved in O(n2) time using Dijkstra's shortest graph path algorithm
applied to a certain visibility graph (Lozano-Perez and Wesley 1979). For
several years the fastest algorithm known for constructing this visibility
graph was O(n2\ogn); one such algorithm, for example, appeared in Lee's
thesis (Lee 1978). Recently Welzl improved this to O{n2) (which is
worst-case optimal) by exploiting an algorithm developed for constructing
line arrangements.3 This immediately gives an O(n2) algorithm for the
shortest-path problem.

We will describe Welzl's algorithm here, taking time to explain the
rudiments of the now considerable theory on line arrangements, which we
will use again in Section 8.6.

Consider the set of three line segments shown in Fig. 8.7. The edges of
the corresponding visibility graph G are drawn dashed in the figure. The

3. Several others discovered similar algorithms independently and slightly later; for example,
Asano, Asano, Guibas, Hershberger, and Imai (1986).
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Fig. 8.7. A sample set of line segments. The origin is at a, and the unit hash marks on the
(invisible) axes through a indicate the scale.

nodes of G are the endpoints of the line segments, and the arcs correspond
to lines of visibility between endpoints. For the purposes of this section, we
consider two points x and v visible to one another if the open segment (x, v)
does not intersect any segment. This definition could be modified to permit
"grazing contact" without altering the complexity of the algorithm. We first
exhibit Lee's O(n2 log n) algorithm for construction of G.4

The n endpoints determine ( j = O(n2) lines; in Fig. 8.7, ( ) = 15

distinct slopes are determined. We will assume throughout the remainder of
this section that all the slopes are distinct, as they are in this example. Sort
these slopes from — °° to +<*> in O(n2 log n) time, and let at, a2, . . • be the
resulting sequence of sorted slopes. We will now show that G can be
constructed from this list by an "angular sweep" in O{n2) additional time.

Let the line segments be labeled slt s2, • . . in arbitrary order. For any
direction a and any endpoint x, let Sa(x) be the segment first hit by a ray
from x in direction a. If no segment is hit, define Sa{x) = s0> where s0 is the
"segment at infinity." For example, for oc=\ (i.e., 45°), the endpoints in
Fig. 8.7 have these values:

3 0 1 1 0 0

Let Sa be the function defined by Sa(x) for all x, that is, the vector shown in
the previous table. The algorithm constructs Sai,Sa2, . . . using the fact that
each vector of this sequence differs very little from the one that precedes it.

In particular, suppose Sa. has been constructed, and ai+1 is determined by
the vertices a and b, with a of smaller X-coordinate than b. The algorithm
advances to oci+1, updating the vector and perhaps outputing an edge of the
visibility graph. Let the ray from a through b hit Sa.(a) at point c, and let
\xy\ denote the distance between points x and v. Four cases are
distinguished:

(a) a an b are endpoints of the same segment (Fig. 8.8a). Then

4. The presentation follows Welzl (1985).
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Fig. 8.8. Angular sweep transitions: the edge ab is output in (b) and (c) only.

(b) |afc|<|ac| (Fig. 8.8b). Then 5 a + 1 ^the segment containing b.
Output edge ab.

(c) b = c (Fig. 8.8c). Then Stti+1(a) <-Sa,(fc). Output edge ab.
(d) \ab\ > \ac\ (Fig. 8.8d). Then Sai+1 = Sai.

It is clear that updating the vector requires only constant time per direction,
as at most one element is altered, and its location can be accessed by
pointers associated with each at. Thus a complete angular sweep takes
O(n2) time, given an initial vector. This initial vector SL̂ , can be constructed
easily in O{n logrc) time by a traditional plane sweep of a horizontal line.
Thus G can be constructed in O(n2) given a sorting of the O(n2) directions.
It remains an unsolved problem to obtain this sorting in better than
0(«2logn) time, but Welzl showed that an exact sorting is not necessary:
the angular sweep still works if the directions are only "topologically
sorted" from the line arrangement. We now describe this clever idea.

The relevant line arrangement is dual to the set of endpoints. Let
p = (m, b) be a segment endpoint. Then the dual of p, Tp, is the line
y = mx + b. Figure 8.9 shows the lines dual to the six endpoints of Fig. 8.7.
The resulting structure is called an arrangement of lines. The lines dual to
the two points px = (m1, b^) and p2 = (m2, b2), y = mxx + bx and y = m2x +
b2, intersect at •*

x' = •

m1 — m2

and = rn
b2-b1

m1 — m7

The line determined by px and p2 has slope — and intercept
m2~m1 ^
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Fig. 8.9. The arrangement of lines dual to the vertices in Fig. 8.7. The arrow marks the origin
of the coordinate system. The leftmost intersection (ae) has abscissa - 5 , and the rightmost (ef)
has abscissa +8.

—mA — ) + bx. Thus the point of intersection (m, b) between Tn and
\m2-mj Pl

TP2 corresponds to the line y = —mx + b passing through p± and p2. If we
imagine the line arrangement drawn in a space whose axes represent slope
and intercept, then each intersection point in the arrangement corresponds
to a direction determined by two endpoints, and the negative of the abscissa
of an intersection point is the slope of the direction. Thus the ef intersection
in Fig. 8.9 has abscissa 8, and the line determined by e and/ in Fig. 8.7 has
slope - 8 .

It should now be clear that a sorting of the intersection points in the
arrangement from right to left corresponds directly to a sorting of the slopes
determined by the endpoints, from smallest to largest. This is illustrated in
Fig. 8.10, where all the distinct slopes derived from the point set of Fig. 8.7
are shown labeled with the points that determine them. Comparing with
Fig. 8.9, we see that the order is preciely the right-to-left order of the
intersection points in the arrangement.

It has been shown that the complete structure of a line arrangement of n
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Fig. 8.10. The slopes of the intersection points in Fig. 8.9, labeled by the two lines meeting at
that point, and by the slope. The circled numbers represent a topological sort.

lines that is, the incidence relations between all the vertices, edges, and
faces determined by the lines, can be constructed in O(n2) time (Edelsbrun-
ner et al. 1986; Chazelle, Guibas, and Lee 1985). This is a fundamental result
which we will use but not prove. The correspondence between the vertices
of a dual arrangement and the slopes of the directions determined by point
pairs gives a great deal of structure to these slopes, but does not seem to
lead to a sorting of them in O(n2) time. However, because the graph
structure of the arrangement is available in O(n2) time, we can obtain a
"topological sorting" of the intersection points quickly.

Define a directed graph D on the intersection points of the line
arrangement as follows: there is a directed arc from vertex v to vertex u iff v
is to the right of u, and u and v are connected by an edge of the
arrangement. Figure 8.11 shows D for the arrangement in Fig. 8.9. A
topological sort of a directed graph is an assignment of integers to the nodes
such that the number assigned to a node is greater than all the numbers
assigned to the nodes that connect to it with a directed arc. One topological
sort (usually there are several) is indicated in Fig. 8.11. It is easy to perform
a topological sort in time proportional to the size of the graph via a
depth-first search (Aho et al. 1983); in our case the graph is of size O(n2).
The labels assigned in Fig. 8.11 are also shown in Fig. 8.10, making it
evident that a topological sort of the arrangement vertices does not
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Fig. 8.11. The directed graph associated with the arrangement in Fig. 8.9, and a topological
sort.

necessarily correspond to a sorting of the slopes. What Welzl proved,
however, is that if the angular sweep algorithm is executed on the slopes
organized by any topological sort, it will work just as well as it does with the
slopes numerically sorted.

The reason is as follows. Consider all the intersection points on one line
of the arrangement. For example, the line Td dual to point d in Fig. 8.9 is
intersected by the lines dual to points /, a, c, e, and b in that order from
right to left. The sequence of these intersection points represents a sorting
of the directions through d—an angular sweep centered on d. And notice
that these intersection points must be sorted properly by the topological
sort, since they all lie on a common line of the arrangement: the
intersections with Td are assigned the labels 6, 10, 11, 12, and 13 in Fig.
8.11. As long as all the directions through a common point x are processed
in the order of their sorting about x, the angular sweep described previously
will produce the correct result, because all of the relevant transitions in the
Sa(x) function will be encountered in their correct order. Case (c) in Fig.
8.8 is critical: note that for the update from Sa.(a) to Sa.+1(a) to be correct,
the value of Sa.(b) must be known. But since the directions through b will
be processed in the correct order, Sa.(b) must be correct by the time the
direction determined by a and b is considered. Table 8.1 shows the
sequence of Sa vectors for our running example when the directions are
processed in the topological sort order. Note that all the visibility edges are
correctly output in one pass over the directions.

To summarize, Welzl's algorithm consists of the following steps:

(1) Construct the arrangement of lines dual to the endpoints of the line
segments.

(2) Perform a topological sort of the vertices of the arrangement.
(3) Perform an angular sweep over the directions in the order given by

the topological sort, updating the Sa function at each step, and
outputing the edges of the visibility graph.

Each step can be accomplished in O(n2) time, thus yielding an algorithm for
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Table 8.1. Each row shows an endpoint pair determining a direction a, and the Sa vector after
sweeping past a. Sa elements in italics are the ones modified (or not modified) at direction a.
Endpoint pairs shown in italics are output as edges of the visibility graph.

a

be
ef
«/
bf
cf
df
ab
be
ac
ad
cd
de
bd
ce
ae

a

0
0
0
3
3
3
3
3
3
3
3
3
3
3
3
0

b

2
0
0
0
3
3
3
3
0
0
0
0
0
0
0
0

c

0
0
0
0
0
3
3
3
3
1
1
1
1
1
1
1

d

0
0
0
0
0
0
3
3
3
3
1
1
1
0
0
0

e

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

/

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

constructing the visibility graph in O(n2) time and space. That this is
worst-case optimal follows from the fact that the visibility graph may have
Q(«2) edges, for example, when each segment has length zero and no three
endpoints are collinear.

It remains an open problem to construct a visibility graph in time
proportional to its size, which can be O(n) in special cases. The most recent
advance in this direction has been made by Suri, who found an algorithm
for constructing the vertex visibility graph of a polygon in time O{k log n),
where k is the number of edges in the graph, using results from Chazelle
and Guibas (1985).

8.5. POINT VISIBILITY REGION

In this section we extend the problem of computing a point visibility
polygon V(x), considered in Section 8.1, to an environment more general
than the interior of a polygon: one consisting of n (perhaps disconnected)
line segments. This includes polygons with holes as a special case. Because
the resulting object V(x) is not necessarily a polygon (it may be un-
bounded), we call it the point visibility region.

As might be expected, a linear algorithm is no longer possible in this
more general case. We first establish that Q(n log n) is a lower bound, and
then describe an algorithm that achieves this bound.
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8.5.1. Lower Bound

We prove an Q(n log n) lower bound on the computation of point visibility
inside a polygon with holes by reduction from the problem of sorting n
integers, (xlt x2, . . . , xn). Let xmax and xmin be the largest and the smallest
numbers among xlt x2, . . . , xn, and let A = xmax - xmin. Create an instance
of the point visibility problem as follows.

The outermost polygon is a rectangle whose vertices are located at
(x^-U-A/2), (x m a x +l , -A/2) , (xmax + l,A/2) and (xmin-1, A/2).
With each number xif 1 < * < «, associate a rectangular hole with vertices
(Xi-e,-e), (Xi + e,-e), (x,• + e, e), and (xt;- e, e), where £ = 0.1, for
example. Figure 8.12 illustrates the construction for n = 4. The point from
which the visibility polygon is to be computed is set to be the lower left
corner of the outer rectangle: x = (x^- 1, -A/2). It can be easily seen
that the lower left corner of each hole occurs at every fifth vertex of the
boundary of V(x) in order of increasing values of JC/S. It is therefore easy to
extract the sorted order of the JC,-'S from an algorithm that outputs the
boundary of V(x) as a list of vertices. Since sorting n integers is known to
require Q(n log n) time in the general algebraic decision tree model, any
such algorithm must spend Q(n log n) time in the worst-case.

We now exhibit a simple "angular sweep" algorithm that achieves this
lower bound.

8.5.2. Algorithm

Let S be the set of line segments, assumed to intersect only at their
endpoints, and let P = {plt p2> . • • , pn) be the set of endpoints of the
segments of 5. Assume without loss of generality that the given point x is
the origin of our coordinate system and the set of points P U {x} is in
general position. Let D be the sequence of n sorted directions determined
by x and the endpoints in P. We assume that the ray emanating from x
along the X-axis has zero slope and the remaining slopes are measured
counterclockwise about x.

The basic idea behind the algorithm is as follows. Let d be any ray. Let
s1} s2, • • • , sk be the sequence of segments of S that intersect d,

A+ 2-

Fig. 8.12. Construction for the point visibility lower bound.
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respectively, at zx, z2,. . . , zk such that the segments st through sk are
sorted by the rule 0,<s ;) iff (|JCZ,-| < \xzj\), l<i,j<k, where \xzt\ denotes
the distance from JC to zt. Clearly, sx is on the boundary of V(x). The
algorithm rotates the ray around x and outputs the sequence of segments
that intersect d first. The algorithm is, roughly speaking, an angular plane
sweep, and may be described as follows.

Maintain a balanced binary tree T whose leaves are the segments that
intersect the ray in the current direction. These segments are sorted by the
rule described previously. The current direction is set to slope zero at the
start of the algorithm, and then at each step advanced to the head of D,
which is organized as a standard queue. The head of D is deleted at each
step, and correspondingly a segment is either inserted or deleted from T.
An interior node s of T stores the indices of the leftmost and the rightmost
segments in the subtree rooted at s. Since the line segments do not cross,
information stored with a leaf or an interior node does not change as the ray
moves between two consecutive directions in D. For each direction in D, a
segment is either inserted or deleted from T. Using the information stored
with each node this segment can be inserted or deleted in O(log n) standard
dictionary operations. T, therefore, can be arranged as a standard priority
queue that permits the operations insert, delete, and MIN in logarithmic
time per operation.

The correctness of the algorithm is straightforward. The time complexity
can be established as follows. The sorted list of slopes, D, can be obtained
in O(n log ri) time. Initial construction of T can be accomplished in
O(n log n) time since any ray d intersects O(n) segments. At each step
either a segment is added or deleted from T. Since a segment is added and
deleted exactly once, and each deletion or insertion can be accomplished in
0(log n) time, the algorithm runs in O(n log n) time, which is worst-case
optimal.

8.6. EDGE VISIBILITY REGION

We generalize in this section the problem of computing the edge visibility
polygon V(e) to the general environment of a collection of line segment
obstacles. In this environment, V(e) may be unbounded, and it may have
holes, so the term "region" is appropriate. Although it is not surprising that
this problem has greater time complexity than the polygon case considered
in Section 8.3, the magnitude of the complexity is perhaps unexpected:
Q(n4). We first establish this lower bound before presenting an algorithm
that achieves it.

8.6.1. Lower Bound

The bound is achieved by an example in which V(e) has Q(n4) vertices on
its boundary. This yields a lower bound on any algorithm that explicitly
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Fig. 8.13. Five gaps on two parallel lines (y = 1 and y = 2) above e (y = 0) produce 29 distinct
intersections above the top line; in general, n gaps produce Q(«4) intersections.

constructs the boundary. The main idea of the example is as follows. Let the
"luminescent" edge e be horizontal. Place n closely spaced line segments
immediately above and parallel to e. The gaps between these segments
permit Q(n) cones of light to emerge above them. Place a second row of
segments above the first, again parallel to e. ®(n2) beams of light escape
above this second row. These beams intersect 0(«4) times above the second
row, creating a region V(e) with Q(«4) vertices and edges. See Fig. 8.13. A
formal specification of this example follows.

Let the segment e have coordinates {(-« -1 /2 , 0), (2n + 1/2, 0)} for its
two endpoints. The first set of segments H lies on the line v = 1. Each
segment ht is an open segment from at to bi} where at = (i, 1) and
bt = (i + 1, 1) for 0 < i < n - 1. Finally, two more open segments h_x and hn

with the coordinates {(-n, - 1 , 1), (0, 1)} and {(n, 1), (2n + 1, 1)},
respectively, are included. An identical set of segments H' is constructed on
the line y = 2. Finally, enclose this set of segments in a rectangular polygon
P whose corners have the coordinates

- « - 2, -1) , 2, -1) , (2n + 2,n + 2), (-n -2,n + 2)}.

Now let S be the union of H, H', P', and e. Let g, (respectively, g-)
denote the point gap between two consecutive segments ht_x and ht

(respectively, h\_x and hi). Let G and G' denote the set of gaps for H and
H', respectively. It should be clear that every pair of gaps g{ e G and
g] eG'', 0^i, j^n, determines a maximal line segment with one endpoint
on e and the other on a side of P, and which does not intersect any other
segment. We will call such a maximal line segment a "ray" (in slight abuse
of standard terminology). There are Q(n2) rays altogether. Figure 8.13
shows the construction for n = 4; the outer polygon P is not shown. Let P'
be the intersection of the half space y ^ 2 and the region bounded by P. It is
clear that the visibility from e within P' is restricted to rays only. Therefore,
an intersection point of two rays in P' is a vertex on the boundary of V{e).
If we can show that the Q(n2) rays intersect in Q(n4) distinct points in P',
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the bound will follow immediately. This may seem obvious, but in fact the
intersection counting argument is somewhat involved because many rays are
parallel, and many intersection points have more than two rays passing
through them. One can make an irregular arrangement to avoid parallel
beams and multiple intersections, but this also requires considerable care
(Suri and O'Rourke 1985). Here we opt for the regular arrangement and
proceed with the counting argument.

Let p be a point of intersection above y = 2 of at least three rays. Then p
is the apex of at least two triangles based on the bottom row, as illustrated
in Fig. 8.14. Let bx and ax be the widths of the left triangle at the bottom
and top rows, respectively, and let b2 and a2 be the corresponding widths
for the triangle that includes the left triangle; again see Fig. 8.14. Then we

b2 t>i b\Cl2

must have — = — or b2 = . Since ax, a2, b1} b2 are all integers, ax must
a2 ax ax

divide bxa2. Suppose first that ax and bx are relatively prime. Then ax must
divide a2, and the larger triangle's width is an integer multiple of the
smaller's. Suppose second that ax and bx are not relatively prime. Let
ax = ca[ and b1 = cb[, with a[ and b[ relatively prime. Then b2 = - ^ ,

which implies that a[ divides a2. Let a2
 = da[. Substitution yields b2

 = db[.
Thus a2 and b2 are not relatively prime. Thus both triangle widths are
integer multiples of smaller triangles of widths a[ and b[.

The conclusion of this analysis is that all multiple intersections can be
obtained as "scale multiples" of a leftmost, thinnest triangle with relatively
prime a and b widths: leftmost because we are treating the scaling as
expanding towards the right, and thinnest in that a and b are relatively
prime. Thus the number of distinct intersections is equal to the number of
leftmost, thinnest triangles. We now proceed to count these triangles.

Let a triangle be determined by a left line through (b1} 1) and (a1} 2) on
the bottom and top rows, and a right line through (b2, 1) and (a2, 2), and
let b = b2 — b1 and a = a2 — ax (note the notation here is different from
above). Let n be the number of gaps in each row, numbered from 1 to n.

Fig. 8.14. Three lines coincident at one intersection point P determine two triangles, one
included in the other.
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The number of choices for each of these quantities is as follows:

ft: ft may take any value from 2 to n. ft = 1 cannot result in an
intersection above y = 2.

bx: ftx may range from 1 to n - ft. We will partition this range from 1 to
min (b, n — b), and the remainder.

ft2: b2 is fixed at bx + ft once ft is set.
a: If a>b, then the triangle does not result in an intersection point

above y = 2; thus a < ft. Moreover, a must be relatively prime to ft,
otherwise the triangle is not thinnest.

ax\ ax can range from 1 to n - 1 when bt < ft, but only from 1 to a when
b1>b, otherwise the triangle would not be leftmost. When ftx<ft
(and note that min (ft, n — ft)<ft), the situation is simpler; we will
partition this range into two parts, from 1 to n — ft, and the
remainder.

a2. a2 = a1 + a cannot be greater than n, and since a < ft, it must be less
than «! + ft. Within the range ax = 1, . . . , n — ft, the latter limit
applies, and in the remainder the former limit applies.

To simplify the calculations, we will ignore the ranges of bx and ax that
interact with the boundaries of the rows. Thus bx will range from 1 to
min (ft, n — ft) and a1 will range from 1 to n — ft. Therefore, the quantity we
obtain, S(n), is a lower bound on the number of leftmost and thinnest
triangles. Concatenating the four choices above yields the following
formula:

n

S(n)= 2 min (ft, n - ft)0(ft)(n - ft) (1)
b=2

where <f)(b) is the number of numbers less than ft and relatively prime to ft.
We now show that this sum is Q(n4).

It is known that
" 3

2J <p(b) = —2n (1 + o(l)) = Q(n ) (2)
b=2 ft

See Grosswald (1966). The factors other than 0(ft) in Equation (1) may be
moved outside the summation by discarding the first and last quarter of the

3n/4

sum range. Equation (2) easily implies that £ 4>(b) = Q(n2). Using these

summation limits, and replacing min (ft, n - ft) and (n - ft) in Equation (1)
by their lower bounds of n/4 yields

/ x (n\(n\ 3^4

5(n) > ( - ) ( - ) 2 0(ft) = Q(n4).

Therefore, S{n) = Q(n4).
Table 8.2 shows the exact number of distinct intersections I(n) for

n = 2, . . . , 9, where n is the number of gaps in each row. Figure 8.13
corresponds to the n = 5 entry.
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n

I(n)

2

0

3

2

Table 8.2

4

11

5

29

6

69

7

125

8

224

9

361

It is necessary to modify the open segments used in the above construc-
tion to closed segments, to obtain a non-degenerate V(e) with the same
lower bound. This requires computing a sufficiently small rational number e
such that modifying the point gaps of our original constructions into e-gaps,
which enlarges the rays to beams, does not merge distinct intersection
points. The calculation of epsilon is rather tedious (Suri and O'Rourke
1985); here we simply claim that e < II{en6) suffices, where c is a constant.
The important point is that e need not be exponentially small, which could
make the input size larger than n under some models of computation.

8.6.2. Algorithm

We turn now to describing an O(n4) algorithm for constructing V(e). The
algorithm will only be sketched here; details may be found in Suri and
O'Rourke (1985,1986).

First observe that the boundary edges of V(e) are either subsegments of
the input segments S, or subsegments of lines through two endpoints in P
such that the determined line intersects e.5 We define a set E of line
segments from which the boundary of V(e) will be constructed as follows.
First, henceforth consider e, the edge from which visibility is being
computed, as a member of S. E consists of all line segments et such that:

(1) one endpoint p is in P;
(2) the other endpoint lies on a segment s, in S, and the interior of et

intersects no other segments of S;
(3) the line L containing e, passes through another endpoint pt in P,

which may or may not lie on et\ and
(4) the line L intersects e, and no other segments of S intersect L

between e and p.

It should be clear that E may be constructed in O(n2) time by slight
modification of Welzl's algorithm, described in Section 8.4. Whenever that
algorithm outputs a visibility edge between p and ph the first segment s,
intersected by the extension of ppt is available from the data structure.
Supplementing the directions swept over with their negations insures that
the extension in both directions will be considered. E can be easily
constructed from this information.

Let L(p) = (eif e2, . • . , ek) be the list of edges of E with an endpoint at
p, sorted angularly about p, where et terminates on sif and the line

5. Suri and O'Rourke (1985) for a formal proof of this claim.
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containing et is determined by p and piy as in the definition above. It is
somewhat less obvious that L(p) can be obtained in O(n) time for each
p eP from the arrangement of lines used in Welzl's algorithm. Recall that
the order of the intersections with the line dual to p in the arrangement
corresponds to the directions determined by p sorted by slope. This basic
observation can be used to extract L(p) in linear time, as was shown in
Asano et al. (1986). We will not prove this assertion here.

The algorithm performs an angular sweep about each p e P using L(p),
and outputs O(n) triangular regions of visibility. The union of the resulting
O(n2) triangles is then found in O(n4) time, and this constitutes V(e).

Consider the sweep for a particular p eP from et to ei+1. If p remains
visible to e throughout the swept angle, then the triangular region between
et and ei+1 is visible to e. There are four distinct cases, depending on the
orientation of the segments whose endpoints are pt and pi+1. These are
illustrated in Fig. 8.15, where the visible triangle to be output is shaded.
The sweep is made through all of L(p) for each p e P. Note that since e is
itself a member of S, triangles whose base is on e will also be output. The
following lemma shows that the union of all these triangles is precisely V{e).

Fig. 8.15. Counterclockwise rotation about v may be blocked by a vertex at position (1) or
(2). In (a)-(c), the shaded triangle is output; in (c), triangle us,-*/ was output previously; in (d),
no rotation is possible.
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LEMMA 8.1. Let Tt\ = \J A/y, where At. is a triangle rooted at vt e P output

by the just described algorithm. Then, LJ Tt = V(ab).
i

Proof:

L)Ttc:V(ab):
i

Each triangle output by the angular sweep is visible from e by
construction.

We prove the claim by contradiction. Let x e V(ab) be any point such
that x$yjTt. Let y e ab be any point that is visible from x. Imagine

"swinging" the segment xy counterclockwise about x until it hits some
vertex zt e P. Let vx e ab and xx e sx be the two points at which segment zxx
extended in both directions intersects the segments of S, where sx e S. Now,
consider rotating the segment yxxx clockwise about zx such that yxxx

maintains its contact with ab and sx. Let z2 be the first vertex of P contacted
by this rotating segment xiyx. There are two cases to be considered,
depending upon the relative positions of zx and z2 (see Fig. 8.16). Notice

\ /Z2

0 y y, b

Fig. 8.16. x lies in a triangle rooted at zx.
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that the case zx e {a, b) is possible and does not require separate treatment.
It is easily seen that in either case x lies in the triangle rooted at zx with one
side collinear with the segment zxz2. But since this triangle belongs to U Tt

i

the assumption that x $ U Tt is contradicted. •
i

All that remains is the actual formation of the union of the O{n2)
triangles. The problem of forming the union of polygons is very similar to a
special case of hidden surface elimination: if the polygons are considered
parallel to the xy-plane, we want the boundary of the view from z = +00.
McKenna's hidden surface algorithm (McKenna 1987) requires O(N2) time
for a scene with TV vertices. Applying this algorithm with slight modification
(see Suri and O'Rourke (1985)) to our triangles yields an O(n4) algorithm
for construction of V(e), which is worst-case optimal.

8.7. RECENT ALGORITHMS

Significant advances in visibility algorithms have been made as this book
was being written. Here we mention three of the most important.

It was mentioned in Section 8.3 that the Chazelle-Guibas algorithm for
constructing edge visibility polygons creates a data structure that can be
used to solve other problems as well. Using this structure (and much else
besides), they obtained the following strong result (Chazelle and Guibas
1985). There exists an O{n) data structure for a polygon P that can be
computed in time O(n log n), and which can answer queries of the following
form in O(logn) time: given a point p in P and a direction u, find the first
edge of P hit by a ray from p in the direction u. These so-called "bullet
shooting" queries are the basis of Suri's output-size sensitive algorithm for
construction of the vertex visibility graph of a polygon. In Guibas et al.
(1986) the preprocessing time for Chazelle-Guibas algorithm is reduced to
O(n log log n).

Guibas et al. recently exploited the new 0(«loglog«) triangulation
algorithm to improve the asymptotic worst-case bounds for several visibility
problems, most notably the problem of computing the edge visibility
polygon (Guibas et al. 1986). First they showed how to compute the
"shortest-path tree" from a vertex x of a polygon P: the union of all
Euclidean shortest paths from x to every other vertex. This step depends
heavily on the Tarjan-Van Wyk triangulation algorithm. They then prove
that \ie = ab can see a portion of e' = cd, then the shortest paths from a to c
and from b to d are both "outwardly convex," forming an hourglass shape
(similar to that shown in Fig. 8.5). With this observation, they can construct
V(e) in a single boundary traversal of P using the shortest-path trees from a
and from b. The result is an O(n log log n) algorithm for computing V{e).

The final result we will discuss here was invoked at the end of the
previous section: the visibility region from a point in three dimensions can
be computed in O(n2) time in an environment composed of polygons with a
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total of n vertices. This is the hidden surface elimination problem. The
fastest algorithms developed until recently require O(n2 log n) time in the
worst-case (Sutherland et al. 1974), although they run much faster on the
type of inputs encountered in practice. Recently McKenna used the O{n2)
algorithm for constructing line arrangements to obtain an O(n2) worst-case
optimal algorithm (McKenna 1987) for hidden surface removal.6 This
algorithm, however, is likely to be inferior to the standard graphics
algorithms in practice. The major open problem in hidden surface algo-
rithms is to find an output-size sensitive algorithm: one that runs in time
O(fcpolylog«), where k is the number of line segments that are visible in
the final scene. Such algorithms have only been achieved in special cases
(Giiting and Ottmann 1984).

6. This problem differs from that of hidden line elimination, which was solved in Devai (1986).



MINIMAL GUARD
COVERAGE

9.1. INTRODUCTION

In Chapter 1 it was shown that Fisk's proof of the art gallery theorem can be
converted into an algorithm that covers a polygon of n vertices with [n/3\
guards in O{n logn) time. Although [n/3\ is necessary in some cases, often
this is far more guards than are needed to cover a particular polygon. For
example, convex polygons only require one guard, but Avis and Toussaint's
algorithm would still place [n/3j guards. It is natural, then, to seek a
placement of a minimal number of guards that cover a given polygon. We
will show, however, that this problem is fundamentally intractable: it is
NP-complete.

Finding the minimal number of guards to cover a polygon is a specific
instance of a general class of problems on which there is now a considerable
literature: polygon decomposition problems. Guards determine star poly-
gons, so minimal guard coverage corresponds to finding a minimal star cover
of a polygon. Polygon decomposition problems can be classified along four
"dimensions": decomposition type, the shape of the pieces, restrictions on
the boundaries of the pieces, and the shape of the polygon being
decomposed. We will discuss these dimensions briefly before focusing on
our particular case.

(1) Decomposition Type

The term "decomposition" is usually understood to encompass two major
types: partition, in which the pieces are not allowed to overlap, and cover,
where overlap is permitted. In both cases, each piece of the decomposition
must be a subset of the original polygon, and the union of the pieces must
be precisely the polygon. Covers can be significantly more efficient than
partitions: Fig. 9.1 shows an example due to Ntafos (1986) that has a star
cover of size 2 but the minimum star partition is of size O{n). Since guard
lines-of-sight can pass through one another freely, the minimum guard
placement problem is a minimal cover problem.

A third type of decomposition, sum-difference decomposition, that

228
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Fig. 9.1. A polygon that may be covered with 2 stars with kernels at a and b, but that requires
5 stars in a partition, with kernels at the indicated points.

permits both union and difference of pieces, has not been studied yet to the
same extent as covers and partitions (Woo 1982).

(2) Shape of Component Pieces

The major shape types that have been studied are convex (Pavlidis 1968,
1977; Chazelle 1980; O'Rourke 1982a, 1982b), star (Maruyama 1972; Avis
and Toussaint 1981a), spiral (Feng and Pavlidis 1975; Pavlidis and Feng
1977), monotone (Lee and Preparata 1977), and trapezoidal (Asano,
Asano, and Imai 1986). For orthogonal polygons, both rectangle (Pagli et
al. 1979; Chaiken et al. 1981; Franzblau and Kleitman 1984) and square
(Albertson and O'Keefe 1981) pieces have been examined; L-shaped
partitions were discussed in Sections 2.5 and 2.6. We will only discuss star
pieces.

(3) Restrictions on the Boundaries of the Pieces

In addition to the shape restrictions on the pieces, two further restrictions
that cut across shape types are important. A Steiner point is any point in a
polygon that is not a vertex.1 Decompositions are then classified as with
Steiner points permitted, or without Steiner points. The latter are only
permitted to use vertex-to-vertex diagonals to compose the boundaries of
the pieces. In general, decompositions with Steiner points are more
efficient, and harder to find. Figure 9.2 shows a polygon that can be covered
with two convex pieces if Steiner points are permitted, but which requires
three pieces without Steiner points. A minimum convex partition without
Steiner points has no more than four times the number of pieces in a
minimal partition with Steiner points, as is established, for example, by the
Mehlhorn and Hertel triangulation argument mentioned in Section 1.3.2. (It
does not seem to be known if this worst-case bound can be achieved.) The
situation for star pieces is less clear. I know of no results comparing the

1. Steiner used such points to define what is now known as a Steiner tree, a minimal spanning
tree employing points in addition to those being spanned.
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Fig. 9.2. A polygon that may be covered with 2 convex pieces if Steiner points are permitted
(dashed), but requires 3 if not permitted (dotted).

efficiency of partitions or covers of star pieces with and without Steiner
points.

Other restrictions on the boundaries of the component pieces of
decompositions have been considered. The most interesting is to restrict all
edges to be subsets of extensions of the polygon edges through the interior
of the polygon. This was studied by Pavlidis (1968, 1977) and myself
(O'Rourke 1982a,b) for convex partitions, and by Aggarwal et al. (1985) for
star covers. Figure 9.3 shows an example of the latter authors that requires
only two star pieces if diagonals are permitted, but needs three if only edge
extensions are used.

(4) Polygon Restrictions

The two most important classes here are polygons with and without holes.
In at least one case, convex partitions with Steiner points, the polygon
problem can be solved in polynomial time (Section 1.4.2), but permitting
holes changes the complexity to NP-hard (Masek 1979) (O'Rourke and
Supowit 1983). We will discuss both cases for star covers in this chapter.

Of course, many other polygon restrictions can be considered. We will
briefly discuss the restriction to orthogonal polygons.

Our focus in this chapter is minimal star covers with Steiner points. We
show in the next section that this problem is NP-hard for polygons with
holes, and in Section 9.3 it is shown that the problem remains NP-hard for
polygons without holes. Clearly the latter result supersedes the former, but
the proofs are quite different, and we present them in the order in which
they were discovered. Next we look at two restrictions that permit
polynomial-time solutions: guards in "grids," special orthogonal polygons
(Section 9.4), and minimal star partitions without Steiner points (Section

Fig. 9.3. A polygon that can be covered with 2 stars if diagonal cd is used, but that requires 3
if only edge extensions are used.
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9.5). The former problem can be solved with a graph matching algorithm,
and the latter with dynamic programming. Several related algorithms and
problems are discussed in the final section.

9.2. NP-HARD FOR POLYGONS WITH HOLES2

Although it would take us too far afield to explain the extensive theory of
NP-completeness, we will sketch enough of the definitions so that the next
two sections can be followed by the uninitiated.

The theory hinges on a division of problems into two complexity classes:
P and NP. Problems in P can be solved in deterministic Polynomial time,
and problems in NP can be solved in TVon-deterministic Polynomial time.
The addition of the power of non-determinism seems to widen the class of
problems considerably, but although P c NP follows from the definitions,
no one has been able to prove that P^NP. This is, in fact, the major open
problem in computer science today. Despite this uncertainty, the hardest
problems in NP, the NP-complete problems, seem fundamentally intrac-
table: although over 1000 NP-complete problems have been identified, no
polynomial algorithm is known for any of them.

The "hardness" partial order is established by the notion of polynomial
redudbility. If problem A can be transformed in polynomial time to an
instance of problem B such that the solution to B yields a solution to A,
then A is said to be polynomial reducible, or just reducible, to B. If A is
reducible to B, then B is at least as hard as A, for if B can be solved in
polynomial time, so can A. A problem B e NP to which all problems
A e NP can be reduced is called NP-complete: it is at least as hard as any
problem in NP. If an NP-complete problem B is reducible to a problem C,
then C is called TVP-hard: it is at least as hard as an TVP-complete problem.
The distinction between NP-complete and NP-hard problems is that the
former are members of NP but the latter need not be.

As the classes P and NP are defined for decision problems—that is, those
that output only "yes" or "no"—we will phrase the minimum guard cover
problems as decision questions also. Since it is important to identify clearly
the size of the input, we will specify the problems in Garey and Johnson's
instance-question format (Garey and Johnson 1979). Our proofs of NP-
hardness will start from a known NP-complete problem, Boolean 3-
Satisfiability. It may be stated as follows.

Boolean 3-Satisfiability (3SAT)

INSTANCE: A set U = {u1, u2, . . • , un) of Boolean variables and a
collection C = {cx, c2, . . . , cm} of clauses over U such that each c, € C is a
disjunction of precisely three literals.

2. This section is the result of joint work with Ken Supowit; an earlier version appeared in
O'Rourke and Supowit (1983), © 1983 IEEE.
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QUESTION: Is there a satisfying truth assignment for C, that is, is there a
truth assignment to the n variables in U such that the conjunctive normal
form cx • c2 • • • cm is true?

The minimum guard cover problem is formally stated as follows.

Minimum Star (or Guard) Cover of a Polygon with Holes (StarCH)

INSTANCE: A set of lists of integer-coordinate vertices representing a
polygonal region P with holes, and a positive integer bound K.

QUESTION: Is there a cover of P with K or fewer star subsets of P, i.e.,
do there exist star polygons Sx, S2, • • • , Sk with k < K such that Sx U S2 U
• • • U Sk = PI

The goal is now to polynomially transform a given instance of 3SAT into a
polygonal region that has a star cover of K or fewer pieces iff the 3SAT
instance is satisfiable. The proof proceeds along lines similar to proofs of
NP-completeness by Fowler et al. on the "box-cover" problem (Fowler et al.
1981), and by Supowit on point and disk coverage problems (Supowit 1981).

The usual first step in a proof of NP-completeness is to show that the
problem is a member of the class of NP problems, that is, solvable via a
non-deterministic algorithm in polynomial time (Garey and Johnson 1979).
Often this is easy, merely requiring a demonstration that a solution
"guessed" by a non-deterministic program can be checked in polynomial
time. With the integer-lattice geometric objects used in our constructions,
however, it is unclear how to establish this. In the absence of a proof that
StarCH is a member of NP, the argument presented below will establish
that StarCH is NP-hard rather than NP-complete.

We will now show that 3SAT is polynomially transformable to StarCH.
The goal is to accept an instance of 3SAT as input and construct, in
polynomial time, a polygonal region that has a cover with a certain number
K or fewer star polygons iff the given set of clauses is satisfiable. As with
other 3SAT transformations (Garey and Johnson 1979; Fowler et al. 1981;
Supowit 1981), the construction forces a truth assignment with n "truth-
setting components" that simulate the Boolean variables, and ensures
satisfaction with m "clause components" that correspond to the disjunctive
clauses.

Truth-Setting Components

The truth-setting components are polygonal regions of a repetitive staircase
pattern that have just two distinct minimum star covers; see Fig. 9.4. One of
the minimum covers is associated with the truth assignment true and the
other with false. There are certain distinguished points associated with each
pattern, labeled with integers in the figures. These points are not part of the
construction; they are used in the proof that the polygon constructed has the
appropriate cover iff the clause is satisfiable. Note that two of the
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TRUE FALSE
Fig. 9.4. The truth-setting component has two distinct minimum covers corresponding to
assignments true and false.

distinguished points can be covered by one star polygon iff the two points
are consecutive in numerical sequence.

The truth-setting patterns are bent (see Lemma 9.2 below) to form closed
loops, called variable loops. There will be one such loop per Boolean
variable uk in the final construction.

By the above remarks, each minimum star cover for a variable loop
contains exactly rk/2 stars, where rk is the number of distinguished points in
the variable loop corresponding to uk. We call such a cover true if it
contains distinguished points i and i + 1 for all even / (taken modulo rk), and
we call it false if it contains distinguished points / and / + 1 for all odd /.
Define the bound K used in the definition of the StarCH problem as equal
to 2 Lk=i rk-

The main properties of variable loops are stated somewhat informally as
follows (the proofs, being straightforward, are either omitted or sketched):

LEMMA 9.1. Each minimum star cover is either a true cover or a false
cover.

In constructing the polygonal region P, it will be necessary to cross
variable loops over one another, and "bend" them 45°, without these
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Fig. 9.5. Variable loop 45° bend.

modifications affecting the truth of Lemma 9.1 for any variable loop. The
ability to bend a variable loop effectively gives us what is sometimes called
an "inverter" in other NP-completeness constructions (Masek 1979).

LEMMA 9.2.
properties.

The variable loops may bend 45° without affecting their

Proof. See Fig. 9.5. Note that it is not difficult to make all vertices have
integer coordinates. •

LEMMA 9.3. Two variable loops may cross over one another without
affecting their independent coverage properties. More precisely, if two
unconnected variable loops require k1 and k2 stars in a minimum cover,
then one can cross over the other in such a manner that the resulting
(connected) polygonal region requires k1 + k2 star pieces in a minimum
cover, and without altering the type of coverage {true/false) within either
variable loop.

Proof. The construction is shown in Fig. 9.6. It would not be difficult to
show that it preserves the desired properties were it not for the possibility
that distinguished points i and / may be covered by a single star-shaped
polygon Q (shown in shaded in the figure). We can, however, arrange the
crossovers to ensure that at each crossover in the complete construction, i
and ; are both odd. We will argue that this arrangement ensures that each
covering that contains no more than K pieces (if there are any) is a
true I false covering.

Define a cross star to be a star polygon containing at least one
distinguished point of each of two variable loops—for example, the polygon
Q in Fig. 9.6. Since the points i and / are both odd at every crossover, each
cross star contains exactly two distinguished points, both of which are odd.
Since no star-shaped polygon can contain more than one even distinguished
point, and since there are K even distinguished points, every cover must
contain K stars to cover the even distinguished points. Therefore, if a cover
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Fig. 9.6. Variable loop crossover. Star Q contains two odd distinguished points.

also includes one or more cross stars, then it must have more than K
elements. A similar argument was used in (Supowit 1981).3 •

Clause Junctions

In a minimum cover of a particular variable loop, small triangular areas
near the kernels of the star pieces can be added that could be covered
"free" (without increasing the number of pieces) if the coverage is of type
true (say), but that cannot be covered free if the coverage is of type false
(see Fig. 9.7). This is the key idea in the formation of the clause junctions.

The heart of a clause junction is an isosceles triangle whose equal sides
both slope at 45°. (The shape of this triangle is not critical, but it is easier to
keep to integer coordinates if its sides slope at 45°.) Arms of three different
variable loops are brought to the junction, one for each side of thejriangle.
Suppose the clause represented by the junction is c = ut + Uj + uk. Then
variable loop / is arranged so that a setting of true will permit the triangle to
be covered free, and variable loops i and k are placed so that a setting of
false will result in free coverage. The result is that the triangle at the clause
junction will be covered free iff the clause is satisfied by the truth
assignment established by the truth-setting components.

3. Use of "planar 3SAT" (Lichtenstein 1982a) apparently obviates the need for this lemma,
but it introduces other complications.
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Fig. 9.7. The triangular region is covered free when the truth assignment covers the shaded
distinguished points.

The details of clause junction construction are shown in Fig. 9.8. The
three important claims concerning the clause junctions are contained in the
following proposition.

LEMMA 9.4. The clause junction illustrated in Fig. 9.8 possesses the
following properties:

(1) All vertex coordinates are integers.
(2) The central triangle is covered free iff the clause is satisfied.
(3) The junction does not affect the independent coverage properties of

the participating variable loops.

Proof. That all vertex coordinates are integers follows from the method of
constructing the bends and the use of 45° angles in the clause triangles.
Figure 9.7 establishes that the central triangle can be covered free if the
clause is satisfied. On the other hand, if the clause is not satisfied, then the
construction of the clause junction prevents any piece covering a distin-
guished point of one of the variable loops to also completely cover the
central triangle. Finally, no two distinguished points belonging to different
varible loops can be covered by a single piece. Since every piece in a
minimum cover must include two distinguished points, there is no inter-
ference in their independent coverage properties. •
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Fig. 9.8. A clause junction. The central triangle is covered free iff the corresponding clause is
satisfied.

Complete Construction

The overall structure of the polygonal region constructed for a given
instance of 3SAT consists of n variable loops arranged in parallel slanting
columns, one for each Boolean variable in U, with m clause junctions
placed to the right, one for each clause in C. Arms of the three variable
loops corresponding to the three literals that participate in a clause are
brought across the other loops to the right, bent in 45° increments until they
are oriented properly for the chosen triangle side and according to their
complemented/uncomplemented status in the clause, brought to the clause
triangle as illustrated previously, and finally returned to their proper
slanting columns. A schematic example is shown in Fig. 9.9.

Although the details are complicated, the entire construction can clearly
be performed mechanically using the bend, crossover, and clause junction
patterns shown previously. The construction requires no more than O(m)
bends, O{mn) crossovers, and O{m) clause junctions, so the execution time
of the entire procedure is polynomial bounded by O{mri). Note again that
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Clause Junction

Fig. 9.9. Arrangement of variable loops and a clause junction.

since all of the patterns use integer coordinates, the vertices of the final
polygon region will all have integer coordinates. These observations imply
the following proposition.

LEMMA 9.5. The construction of the polygonal region requires only
polynomial time.

Recall that the bound K was defined to be half the total number of
distinguished points. Our argument to this point has shown the following.

LEMMA 9.6. A given set of clauses is satisfiable iff there is a star cover of
the constructed polygonal region into K or fewer pieces. (Actually, there
can never be fewer than K pieces.)

We may finally state the main result of this section.

THEOREM 9.1 [O'Rourke and Supowit 1982]. The problem StarCH is
NP-hard.
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Proof. Lemmas 9.5 and 9.6 establish that 3SAT is polynomial transfor-
mable to StarCH. Since 3SAT is known to be NP-complete, StarCH is
NP-hard. •

COROLLARY. StarCH without Steiner points is NP-hard.

Proof. No Steiner points are needed in any of the constructions. •

9.3. NP-HARD FOR POLYGONS WITHOUT HOLES

The proof in the preceding section constructs a polygonal region with at
least n holes, one per variable loop. To prove NP-hardness for polygons
with no holes requires, then, a different approach. Recall that for minimum
convex covers, the problem is NP-hard with holes but polynomial without,
suggesting the same might be true for star covers. But recently Lee and Lin
found a clever reduction from 3SAT to a polygon of no holes, proving that
finding a minimal star cover (problem StarC) is NP-hard even without holes
(Lee and Lin 1986). We present their proof in this section. The proof is
simpler if guards are restricted to vertices, that is, if the star kernels always
include a vertex; this restriction can be removed later.

The coupling between a variable and its appearance in a clause junction
was rather direct in the proof in the previous section: a variable loop is
connected to the junction almost as if it were a wire carrying "true" or
"false" charge. For a simple polygon construction, the coupling is neces-
sarily more subtle, effected by lines of sight. The truth-setting components
of the previous section becomes two distinct components here: a literal
pattern, and a variable pattern. The literal patterns appear in clause
junctions, and the consistency of the true/false settings of the literals are
enforced by the variable pattern.

Literal Pattern

A literal pattern is shown in Fig. 9.10. The distinguished point p shown is
visible from vertex t or /. The polygon will be arranged so that no other
vertex can see p. As the labels suggest, vertex t will be assigned a guard
when the truth value of the literal is true, and / when false.

Fig. 9.10. A literal pattern. The distinguished point p is visible only to t and /.
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Fig. 9.11. A clause junction. The shaded triangle can be seen only by tt, i = 1, 2, 3.

Clause Junction

A clause junction is shown in Fig. 9.11. Coverage of the three distinguished
points in the three literals requires one of {tit fi} to be assigned a guard for
i = 1, 2, 3. At least one of {t1, t2> t3] must be assigned a guard in order to
cover the shaded triangle. Thus at least one literal must be true for coverage
of the junction, which will force each clause to be satisfied.

Variable Pattern

The purpose of a variable pattern is to force all truth assignments of literals
of a particular variable to be consistent with one another. This is
accomplished with the pattern illustrated in Fig. 9.12. It consists of two
"wells," with a vertex at the top of the left well labeled F, and a vertex at
the corresponding position on the right well labeled T. In addition each well
has s thin spikes, where 5 is the number of clauses in which the variable u
participates, aligned with the F and T vertices and vertices in the clause
junctions. One of the two vertices labeled T and F will require a guard in a
minimum cover in order to see the distinguished point q illustrated. No
other guards will be needed to see the remainder of the variable pattern if
all the literals for this variable are assigned truth values consistently. This
will only become apparent when we examine an example.

Complete Construction

A three variable (n = 3), two clause (m = 2) example_is shown in Fig. 9.13.
Here the two clauses are {ux + u2 + u3) and (ux + u2 + u3). Each variable

Fig. 9.12. A variable pattern. The distinguished point q can be seen only by T and F.
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u2 u3

Fig. 9.13. The complete polygon for (ut + u2 + u3) • (u1 +u2 + u3).

pattern has two spikes, one per well, for each literal in a clause junction that
uses that variable. Let u be a variable with distinguished vertices T and F,
and let / be a literal in {u, u) with distinguished vertices t and/ . A spike in
the left well of the variable pattern for u is collinear with F and t if I = u,
and with F and / if / = u. A spike in the right well is collinear with T and / if
/ = u, and with T and t if / = u. The consequence of these alignments is that
a guard placed at F sees down all the spikes of the left well, and a guard
placed at T sees down all the spikes of the right well. As mentioned
previously, a guard is needed at either T or F to see the distinguished point
associated with the variable pattern. Suppose a guard is placed at T,
covering all spikes in the right well. Because all spikes in the left well are
aligned with F and tik, where th, th, . . . are the f-vertices defined in Fig. 9.11
for all literals using u, and aligned with f]k, where fj,,fj2,... are the
/-vertices for all literals u, all spikes in the left well will be covered if guards
are placed at th, th, . . . and fjx,fh, . . . . This means that if the literals
involving u are assigned truth values consistent with u = true, then a guard
at the F vertex of the u variable pattern is not needed to cover the spikes of
the left well, but a guard will be needed at the T vertex. An opposite
conclusion is reached for u = false. This is the key idea motivating the
construction. Thus in Fig. 9.13, ux is "set" false by the guard at Flt and the
spikes in the right well of the ux variable pattern are covered by a guards at
the /-vertex of the ux literal in the first clause, and the r-vertex of the ux

literal in the second clause.
The total number of distinguished points is 3m + n: 3 in each of m clause

junctions, and 1 in each of n variable patterns.
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LEMMA 9.7. A given set of clauses is satisfiable iff the constructed
polygon may be covered with K = 3m + n + 1 vertex guards.

Proof. If the set of clauses is satisfiable, then there exists a truth
assignment to the variables such that each clause is true. Placing a guard at
the appropraite t or / vertices of the literal patterns in each clause junction
necessarily covers the clause junction, because at least one t vertex will be
assigned a guard. By the argument presented above, placing a guard at the
T vertex of the variable pattern for u if the satisfying truth assignment
assigns u true, and at F if false, covers all the spikes as well as the
distinguished point of the pattern for u. Finally, a guard at the vertex x in
Fig. 9.13 covers all the wells of all the variable patterns. Thus complete
coverage is achieved with K vertex guards.

Suppose there is a cover with K vertex guards. One guard must be at x,
otherwise K would not suffice. The remaining 3m +n guards are needed to
cover the 3m + n distinguished points. Each literal pattern must have a
guard at either its t or/vertex, and each variable pattern must have a guard
at its T or F vertex. Each clause junction will be covered by these guards
only if at least one literal pattern has a guard at its t vertex, which implies
that each clause will be satisfied. Each variable pattern will be covered by
one guard at T or F only if all literals using that variable are assigned
consistently, by our previous remarks. But then the guard placement
determines a consistent truth assignment that satisfies the given instance of
3SAT. •

THEOREM 9.2 [Lee and Lin 1984]. The minimum vertex guard problem
for polygons (StarC) is NP-complete.

Aggarwal extended the argument to obtain the same result for point
guards, guards not restricted to vertices (Aggarwal 1984).

COROLLARY [Aggarwal 1984]. The problem of finding a minimum star
cover, with Steiner points permitted, for a polygon without holes, is
NP-hard.

9.4. GUARDS IN GRIDS

The negative results in the two preceding sections are not the last word on
minimal star covers, as there are many interesting special cases that may be
tractable. We present two such positive results in this and the following
section.

In this section we study a special restricted class of polygons introduced
by Ntafos called "grids" (Ntafos 1986); in fact the restriction is so extreme
that they are not even polygons. A grid P is a connected union of vertical
and horizontal line segments. An example is shown in Fig. 9.14. A grid can
be thought of as an orthogonal polygon with holes, consisting of very thin
corridors. Visibility retains its usual definition: a guard at x can see point y if
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Fig. 9.14. A grid covered by 6 guards (dots).

xy is a subset of P. Of course in a grid all lines of sight are either vertical or
horizontal, so star polygons are crosses. Although grids are an extreme
specialization of polygonal regions with holes, note that a large portion (but
not all) of the constructions used to prove Theorem 9.1 could be
accomplished with a grid.

Ntafos offered the following simple algorithm for finding a minimal cover
by guards in a grid. A guard must be located in each line segment of a grid.
Let G be the intersection graph of the grid: each node of G corresponds to a
line segment, and two nodes are connected by an arc iff their corresponding
segments cross. Figure 9.15 shows the intersection graph for the grid in Fig.
9.14. A matching in a graph is a collection of edges M such that every node
is incident to at most one edge of M. A maximum matching is a matching of
maximum cardinality. Notice that a matching in our intersection graph is a
collection of intersections that cover pairs of vertical and horizontal
segments of the grid. A maximum matching can be found in O(V25) time
for an arbitrary graph of V vertices (Even 1979). The graph G is, however,
not arbitrary: it is bipartite, since only intersections between vertical and
horizontal segments can occur; two vertical or two horizontal segments are
parallel and cannot intersect. The problem of finding a maximum matching
in a bipartite graph is known as the "marriage problem"; one can be found
in O(V1/2E) time, where V is the number of vertices and E the number of
edges of the bipartite graph (Even 1979). For a grid of n segments, V = n

Fig. 9.15. The intersection graph for the grid in Fig. 9.14. The 6 guards are shown as solid
lines.
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and E = O(n2), so both the general algorithm and the bipartite algorithm
lead to O(n25) worst-case complexity.

For complete coverage of a grid, each line segment requires a guard, and
since only two line segments cross at an intersection, a guard can cover at
most two segments. Thus for a grid of n segments, at least \n/2] guards are
necessary. If the intersection graph has a perfect matching, a matching of
size \n/2], then \n/2] guards suffice: place a guard at each intersection of
the grid corresponding to an edge of the matching. If a maximum matching
has size m, then placing guards at the corresponding intersections covers 2m
segments. The remaining n — 2m segments can be covered with one guard
each, resulting in total coverage by m + n — 2m — n — m guards. Indeed this
is a minimal cover: if fewer than n-m guards suffice, more than m guards
must cover two segments each that are not covered by any other guards,
yielding a matching of size larger than m.

This argument establishes the following theorem.

THEOREM 9.3 [Ntafos 1985]. A minimum cover for a grid of n segments
has n — m guards, where m is the size of the maximum matching in the
intersection graph of the segments, and may be found in O(n25) time.

The dividing line between polynomial and NP-hard problems often seems
to fall between problem parameters 2 and 3: 3SAT is NP-complete but
2SAT is polynomial, three-dimensional matching is NP-complete but graph
matching is polynomial, vertex cover in graphs of degree at most 3 is
NP-complete but polynomial if the degrees are at most 2. And Ntafos
showed that minimal coverage of three-dimensional grids is NP-complete in
contrast to the above theorem for two-dimensional grids. We now turn to
this result.

The proof is by reduction from the vertex cover problem in graphs of
degree at most three, a known NP-complete problem (Garey and Johnson
1979).

Vertex Cover

INSTANCE. A graph G = (V, E) with all nodes of degree three or less; a
positive integer K < \V\.

QUESTION. Is there a vertex cover for G of size at most Kl That is, is
there a set of vertices C of size K or less such that each edge of G is incident
on at least one vertex of C?

The goal is to construct a three-dimensional grid P such that there is a
cover by less than or equal to g guards (the value of g will be specified later)
iff there is a vertex cover of G with less than or equal to K vertices. The
basic idea is simple. Label the vertices of G 1, 2, . . . , n = \V\. The vertices
of G are assigned to lattice points along the diagonal line through (0, 0, 0)
and (1,1,1): each vertex labeled i is assigned the lattice point vt =
(3i, 3i, 3i). Edges of G are represented by grid paths between the lattice
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points corresponding to the endpoint vertices of the edges. Because each
vertex of G is of degree 3 or less, each incident edge can be assigned one of
the three orthogonal directions without conflict.

We now describe the construction of the grid P from the given graph G.
Suppose all edges incident to vertices 1, . . . ,i — 1 of G have been assigned
paths in P, and consider an edge (i, j) of G, with i<j. We will use the
convention that paths from vt to Vj with i <j will leave vt along the positive
rays +x, +y, and +z, and approach v} along the negative rays —x, —y, and
—z. Because vertex / has at most degree three, one of the three rays in the
directions +x, +y, or +z emanating from (3/, 3i, 3i) must contain no
segments of P. Assume that the +x ray is unoccupied. Then connect
v{ = (3i, 3i, 3i) to vf = (3/, 3;, 3/) with these three grid segments, as long as
they do not overlap with any previously constructed segments of P:

(3i, 3i, 3/)—»(3;, 3i, 3i),

(3/, 3i, 3i)->{3j, 3j, 3i),

The path moves in the +x, +y, and +z directions in sequence, as illustrated
in Fig. 9.16a. If the +x direction is occupied but +y is free at vi} then the
path moves +y, +z, and +x in sequence. If only the +z ray is unoccupied
at vi} the path follows +z, +x, and +y to reach Vj. These alternative paths
are illustrated in Figs. 9.16b and 9.16c. Note that each of the three
alternative paths lies in a distinct plane containing vt and a distinct plane
containing Vj.

Now assume the attempted connection from vt to Vj overlaps a segment of
P containing vjy due to an earlier connection from vk to vjf k < i <j. Let the
overlap occur on the — z ray from Vj. Then at least one of the rays — x or — y
from Vj must be unoccupied. If the —x ray is unoccupied, modify the (vk, v,)
path as shown in Fig. 9.17a; if the — y ray is unoccupied, modify as shown in
Fig. 9.17b. In both cases the overlap on - z is avoided, and the (vk, vj) path
approaches Vj along the unoccupied ray. Note that the bent path now
consists of nine edges. Similar modifications are made if the path overlaps
along the — x or — y rays at Vj. Because Vj can have at most three incident
paths in P, one of the rays - z , -y, -x is always unoccupied when a
connection is made, so overlap can always be avoided. It may be that a path
that is already bent to avoid overlap, will have to bend again to avoid

o b e

Fig. 9.16. Three paths from u, (the origin) to Vj.
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Fig. 9.17. Bending a path to avoid overlap on the —z ray, to enter along the —x ray (a) or the
-y ray (b).

overlap with the third incident edge, which would change the 9 segment
path into one of 15 segments.4

After complete construction, the e edges of G will be embedded as e3

paths of 3 segments each (when no overlap is encountered), e9 paths of 9
segments each (when overlap forces bending as in Fig. 9.17), and el5 paths
of 15 segments each (when overlap occurs twice), where e = e3 + e9 + e15.

LEMMA 9.8. There is a vertex cover of size K of G iff there is a cover of
the grid P whose construction is described above with g = K + e3 + 4e9 +
7e15 guards.

Proof. Suppose there is a vertex cover C of G of size K. Then assign a
guard to each intersection in the grid P that corresponds to a vertex in C.
Let /?3 be a 3-segment path in P between vt and Vj. Then because C is a
vertex cover, at least one of u, or Vj is assigned a guard; therefore one
additional guard suffices to cover p3. Let p9 be a 9-segment path in P
between vt and i/,. Again one of vt or Vj must be assigned a guard, so thatp9

can be covered with four additional guards, one on every other corner.
Similar reasoning show that a 15 segment path requires seven additional
guards. The result is complete coverage by K + e3 + 4e9 + 7e15 guards.

Suppose P may be covered by K + e3 + 4e9 + 7el5 guards. Each 3-segment
path requires one guard on an internal corner—that is, not at a grid point
corresponding to some vertex of G. Similarly each 9-segment path requires
four guards on internal corners, and each 15-segment path requires seven
such guards. This accounts for e3 + Ae9 + 7e15 guards. Thus at most K guards
may be located at grid points corresponding to vertices of G. Suppose the
guards assigned to these grid points do not correspond to a vertex cover of
G. Then some edge (i, j) of G is not incident to a vertex of the cover, which
means that its associated path in P does not have a guard at vt nor at Vj. But
then, if the path is a 3-segment path, the one guard at an internal corner
does not suffice to cover the path, since this guard can only cover two of the
three segments. Similarly, if the path is a 9-segment or 15-segment path, the
four or seven guards at internal vertices cover at most 8 or 14 of the 9 or 15
segments, respectively. Thus if the K guards do not correspond to a vertex
cover, coverage of the grid P cannot be achieved with K + e3 + 4e9 + 7el5

4. I have modified Ntafos's argument somewhat.
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guards. Thus those K guards must correspond to a vertex cover of at most
size K. •

THEOREM 9.4 [Ntafos 1985]. Minimal guard coverage of a three-
dimensional grid is NP-complete.

Proof. The problem is clearly in NP, as guards need only be located at
corners or junctions, and an optimal placement may be guessed and
checked in polynomial time. The reduction from Vertex Cover establishes
that the problem is NP-complete. •

9.5. PARTITIONS WITHOUT STEINER POINTS

The previous section showed how a version of the minimal guard coverage
problem that is solvable in polynomial time can be obtained by severely
restricting the class of polygons covered. Another problem solvable in
polynomial time can be obtained by restricting the pieces of the decomposi-
tion rather than restricting the shape of the polygon being decomposed. Keil
showed that the problem of finding a minimal partition of an arbitrary
simple polygon into star pieces without Steiner points can be solved in
O(n7 log n) time (Keil 1984, 1985b). We showed in Section 9.1 that the
number of pieces in a minimal partition into stars can be much larger than
the number of guards required for coverage: a partition is quite different
from a cover. But it is precisely the restriction to partitions that permits a
polynomial algorithm to find the minimum. Consider a diagonal d that lies
on the boundary of a star in a minimal star partition of P. P is partitioned
into two polygons by d, P1} and P2. The crucial observation is that the
minimum partition of P is the union of the minimal partitions of Px and P2.
Note that this additive property does not hold for covers as d might be
overlapped by a piece in a cover. But the fact that the pieces of a partition
do not overlap permits a dynamic programming algorithm to build up a
minimal partition for P from minimal partitions of subpolygons in P. We
now proceed with the details, which are a bit complicated.

Let the vertices of the polygon P to be partitioned be labeled from 1 to n
counterclockwise. Let PtJ be the subpolygon composed of the boundary of P
from i to ;, and the diagonal (;, i). Pjy is defined only if / <j - 1 and i can see
;. A minimum partition of PtJ will be constructed from minimal partitions of
Pim and Pmj for i < m <j. The diagonal (i, j) is called the base of Ptj, and for
any minimal partition M of Ptj, Sy(M), the base star of M, is the star
polygon in M that includes (i, j). Finally, Timj is the triangle whose base is
(i,;) and whose apex is m. These definitions are illustrated in Fig. 9.18. The
basic idea of the dynamic programming algorithm is to build a minimal
partition M of Ptj by merging Timj with the minimal partitions A of Pim and B
of Pmj. If Sim(A) U Timj is a star polygon, then Timj is said to single merge with
partition A; if Sim{A)\J Timj\JSmj(B) is a star, then Timj is said to double
merge with partitions A and B.
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j

Fig. 9.18. The subpolygon Ptj and associated regions.

We now concentrate on defining the states of the dynamic programming
algorithm. First observe that a state cannot be represented by just one
minimal partition of a subpolygon. Consider Fig. 9.19. Pim is minimally
partitioned into two pieces with either diagonal a or b (or others). If
diagonal a is used to partition Pim, then Timj can single merge with the base
star of the partition, while if b is used, the merge produces a non-star
polygon. This suggests that each minimal partition of a subpolygon must be
a separate state. There are two difficulties with this approach. The first is
that there can be an exponential number of distinct minimal partitions: the
polygon shown in Fig. 9.20 has 2k~x distinct partitions into k stars, where
k = 0(n) is the number of steps of the staircase, since there are two
independent choices for the diagonal separating adjacent stars. In the
figure, k = 4. The second difficulty is that sometimes a minimal partition of
Pij cannot be constructed from single or double merges. Consider Fig. 9.21.
Here P^ is a star, but since the kernel of Ptj lies inside every Timj for
i<m<j, the subpolygons Pim and Pmj are not both stars. Thus their
minimal partitions will contain more than one piece, and simple merges with
Timj will never result in the true minimal partition of Ptj.

Keil solved these problems by introducing the notion of a pseudo-star. A
pseudo-star polygon PSy based on (i, j) is a polygon such that there exists a
point x in P but not in PS^ such that x can see all of PStj through (i, j). Thus
PStJ is a portion of a star polygon whose kernel lies on the other side of
(i, j). For example, Pim in Fig. 9.21 is a pseudo-star based on (i, m).
Extending minimal partitions to permit a pseudo-star polygon on the base
solves the second difficulty mentioned above.

Fig. 9.19. Timj cannot merge with every minimal partition of Pin
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Fig. 9.20. A polygon with 8 distinct partitions into 4 stars.

We now reconsider the first difficulty, the exponentially many partitions
of a subpolygon. Although it is not possible to save just one minimal
partition for a subpolygon, as Fig. 9.19 showed, only variations in the base
star (or pseudo-star) are relevant for merging, as merging only occurs at the
base. Thus we need to identify all possible base pseudo-stars. This goal
motivates the following definition.

Let L be the set of all maximal line segments internal to P determined by
two vertices of P, at least one of which is reflex. Define K to be the vertices
of P unioned with the set of all intersection points between the lines of L
with each other and with the edges of P. L has size O(rn) for a polygon of n
vertices r of which are reflex, and therefore K has size O(r2n2). This set K
reduces the pseudo-star kernel points to a polynomial-size set of
possibilities.

LEMMA 9.9. The kernel of any base star polygon of a minimal partition
of a subpolygon Ptj contains a point in K.

Proof. Let M be a minimal partition of P(j, and let 5,y(M) be its base star.
If Sij is convex, then vertex i is in its kernel and in K. If S(j is not convex,
then its kernel is a proper subset of 5,7. The kernel is the intersection of all

Fig. 9.21. A simple merge of TimJ and minimal partitions of the remaining subpolygons will
not yield a single star.
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the half planes defined by edges of StJ. At least one of the half-planes that
form part of the boundary of the kernel must be determined by an edge
with a reflex vertex as endpoint; for edges with two convex endpoints
extend exterior rather than interior to the polygon. Thus at least one edge
of the kernel is determined by a line segment / in L, the set of line segments
defined above. If the intersection of / with P lies in the kernel, then the
lemma is established since this point is in K. If not, then another line /'
containing an edge of the kernel must intersect /. Since /' must be defined
by an edge with a reflex endpoint, the intersection of / and /' is in K. •

Since the kernel of any base star must contain a point in K, we only need
consider pseudo-stars visible from the points in K. Let Mx be a minimal
partition of Ptj with a base pseudo-star PStJ visible from x. Although there
may be exponentially many such Mx for a given x, we need only retain one
representative. This representative is a state for the dynamic programming
algorithm. Although we must store Mx for all x e K, K is of polynomial size.
Thus the exponential explosion has been circumvented.

We may finally specify the algorithm.

Preprocessing

(1) Compute the set K. [O(r2n2)]
(2) Compute the visibility graph of P. [O(n2)]
(3) Construct the subpolygons and sort by number of vertices.

[O(n2 log n)]
(4) Form a list of all base triangles Timj. [O(n3)]

Dynamic Programming

for each Ptj (in order of increasing size) do
for each Timj do [O(n3)]

for each x e K do [O(r2n2)]
double merge:

if both Mx of Pim and Mx of Pmj exist
then Timj can merge with both

single merge:
else if Mx of Pim exists and ; sees x
then Timj can merge with Pim

no merge:
else if x e Timj or x sees Timj through (i, j)
then candidate Mx for /^

A smallest partition of Pln) the last subpolygon to be considered, is a
minimal partition for P. A careful accounting shows that the algorithm runs
in 0 ( r V log n) = O(n7 log n) time (Keil 1985b). Because of this high
complexity, it is difficult to illustrate the algorithm by example. We will
settle for showing just the final step on a small example.

Let P be the 11 vertex polygon shown in Fig. 9.22, and consider the status
of the algorithm when i = 1, j = 11, and m = 5. P15 is a star, and so its
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Fig. 9.22.
two stars.

An example of the star partitioning algorithm: the polygon may be partitioned into

minimal partition is A = {(1, 2, 3, 4, 5)}. Several pseudo-star partitions
would have been computed for P15 by the algorithm, including Ax =
{(1, 2, 3, 4, 5)}, since P15 is visible from 1. P5>11 is not a star. Its only
minimal partition has three pieces: B = {(5, 6, 7), (7, 8, 9, 10, 11),
(5, 7, 11)}. However, it has several more efficient pseudo-star partitions,
including Bo = {(5, 6, 7, 8, 9, 10, 11)}, where 0 is the intersection of the line
containing edge (8, 9) with the boundary of P, since all of P511 is visible
from 0 through (5,11). Many other pseudo-star partitions exist for P5>11,
including B1 = {(5, 6, 7, 8, 11), (8, 9, 10, 11)}, where all of (5, 6,7, 8,11) is
visible from 1 through (5,11). Now consider the attempt to merge Tlj5jll

with the partitions of P1>5 and P5tu. First let x = 1 e K. Then since both A1

and Bx exist, a double merge is possible. The result is the partition
Mx = {(1, 2, 3, 4, 5, 6, 7, 8, 11)(8, 9, 10, 11)}. Second, let x = 0 e K.
Although Bo exists, Ao does not, since no pseudo-star based on (1,5) is
visible from 0. Thus no double merge is possible. However, since Bo exists
and 1 can see 0, a single merge is possible, resulting in Mo =
{(1, 5, 6, 7, 8, 9, 10, 11)(1, 2, 3, 4, 5)}. Both Mo and Mx are minimal parti-
tions of P.

Although we have emphasized that the minimum partition problem is
polynomial because it admits a dynamic programming algorithm, whereas
the NP-complete minimum cover problem does not, Lingas showed that the
proof in Section 9.2 can be modified to establish that minimum partition is
NP-complete for polygons with holes (Lingas 1982b). He observed that the
stars in the decomposition need only overlap at the crossovers, and that
Lichtenstein established that planar 3SAT is NP-complete (Lingas 1982a).
Thus Keil's dynamic programming approach cannot work for polygons with
holes. Intuitively this is because a diagonal in a multiply-connected polygon
P does not necessarily cut it into two pieces, and therefore merging is not
confined to one base edge, but must in the worst case be considered along
the entire boundary of a subpolygon.
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9.6. DISCUSSION

The results discussed in this chapter are summarized, together with two
results not yet discussed, in Table 9.1. The results on monotone orthogonal
polygons were obtained by Keil (cover) and Liu and Ntafos (partition) (Keil
1985a; Liu and Ntafos 1985). Several interesting open questions remain:

(1) Can a variant of Keil's dynamic programming approach be used to
find star partitions permitting Steiner points? Chazelle was able to
achieve O(n3) for minimum convex partition with Steiner points via
a very complex dynamic programming algorithm (Chazelle 1980),
but star partitions seem even more complicated.

(2) What are the complexities of the various problems when restricted
to orthogonal polygons? As the table indicates, the first inroads have
already been made for monotone orthogonal polygons. It does not
seem to be straightforward to extend these results to general
orthogonal polygons, however.

(3) Are there other natural restrictions on the pieces that result in
polynomially solvable problems? Aggarwal et al. investigated star
covers where the boundary of the pieces are formed by extensions of
the edges of the polygon (Aggarwal et al. 1985). They claim that Lee
and Lin's algorithm can be modified to establish that this restricted
problem is also NP-complete.

(4) Given that most of the interesting problems seem to be intractable,
it is natural to seek approximation algorithms that achieve decom-
positions with, say, no more than a constant times the optimal
number of pieces. Such approximation algorithms are just beginning
to be explored.

Table 9.1

Decomposition —*•

simple polygons

polygons with holes

w. Steiner

NP-hard

NP-hard

Cover

w/o Steiner

NP-complete

NP-complete

Partition

w. Steiner w/o Steiner

? O(n7 log n)

NP-hard NP-complete

monotone orthogonal
polygons O(n2) O(n)

two-dimensional grids O(n25) ?

three-dimensional grids NP-complete NP-complete
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THREE DIMENSIONS AND
MISCELLANY

10.1. INTRODUCTION

In this final chapter, four miscellaneous topics are discussed: three
dimensions, line segment obstacles, point obstacles, and mirrors.

10.2. THREE DIMENSIONS

Very little is known about art gallery theorems in three dimensions. In this
section we present three negative results that collectively show that there is
a vast difference between the problem in two and three dimensions, and one
positive result concerning convex polyhedra.

10.2.1. Untetrahedralizable Polyhedra

The reason that progress in three dimensions has been difficult is that the
main tool used throughout this book for two-dimensional problems—
triangulation—does not generalize. Lennes proved in 1911 the surprising
theorem that there exist polyhedra (even of genus zero, i.e., without holes)
whose interior cannot be partitioned into tetrahedra whose vertices are
selected from the polyhedra vertices (Lennes 1911). Schonhardt later gave a
simpler example (Schonhardt 1928), which we present here, based on
Bagemihl's exposition (Bagemihl 1948).

Let a, b, and c be the vertices (labeled counterclockwise) of an
equilateral triangle of unit edge length in the xy-plane. Let a', b', and c' be
the vertices of abc when translated up to the plane 2 = 1, as shown in Fig.
10.1a. Define an intermediate polyhedron P' as the hull of the two
triangles, including the diagonal edges ab', be', and ca', as well as the
vertical edges aa', bb', and cc', and the edges in the two triangles abc and
a'b'c'. Now twist the top triangle a'b'c' 30° counterclockwise in the plane
z = l, rotating and stretching the attached edges accordingly. The result is
shown in Fig. 10.1b; a view from z - °° is shown in Fig. 10.1c. Call the
resulting polyhedron P.

253
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(a)

(c)

(b)

(d)

30'

Fig. 10.1. Schonhardt's untetrahedralizable polyhedron, constructed by twisting the top of a
triangular prism (a) by 30°, producing (b), shown in top view (c); a twist of 60° would cause
face intersections (d).

First note that P is indeed a valid polyhedron: it would take a twist of 60°
(shown in an overhead view in Fig. 10.Id) to "pinch off" the interior. Now
we show that any tetrahedron whose vertices are selected from those of P
includes points exterior to P. This is established with the help of two claims:

(1) Every open segment whose endpoints are vertices of P but which is
not an edge of P, is exterior to P.

(2) Every triangle whose sides are edges of P is a face of P.

P has 6 vertices and 12 edges. Since I ) = 15, only three segments need

be checked to verify claim (1): ac', ba', and cb'. All three are clearly seen
to be exterior from Fig. 10.1c. Claim (2) can be checked at a single vertex,
say a, as all have the same local connections. And indeed, it is the case that
for every pair of edges of P incident to a, either a third edge of P forms a
face of P, or there is no third edge of P forming a triangle.

Now, by claim (1), every edge of an interior tetrahedron T must be an
edge of P. By claim (2), this means that every face of T is a face of P. But
since P is a valid polyhedron, this implies that T = P, a contradiction to the
fact that P has 6 vertices.

Schohardt proved that this is the smallest example of an un-
tetrahedralizable polyhedron. Bagemihl extended this example to construct
a polyhedron of n vertices with the same properties for every n > 6. As far
as I am aware there is no characterization of which polyhedra are
tetrahedralizable. It seems likely that there is a nice art gallery theorem for
tetrahedralizable polyhedra; this remains an area for future exploration.
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10.2.2. Q(n32) Guards Necessary

It seems almost obvious that guards posted at every vertex of a polyhedron
cover the entire interior. But this would only be obvious if every polyhedron
were tetrahedralizable. For then every tetrahedron would have a guard in a
corner (in fact in all four corners), and the tetrahedra would cover the
interior. In the absence of tetrahedralization, however, the "obviousness"
of complete coverage is less clear. In fact, we describe in this section a
polyhedron constructed by Seidel that has these two properties:

(1) Guards placed at every vertex do not cover the interior.
(2) Q(n3/2) guards are necessary, where n is the number of vertices.

The polyhedron that realizes these properties is orthogonal and of genus
zero. It may be constructed as follows.

Start with a cube of side length L. On the front face mark squares of side
length 1 in a regular k x k array, with 1 + s separation between each row
and column, where e «1, as illustrated in Fig. 10.2. Thus L should be
chosen to be larger than (2 + e)k. Attach a 1 x 1 x (L - e) rectangular box
behind each square inside the cube, and remove the square on the front
face. The result is a deep dent at each square that does not quite reach the
back face of the cube. Apply the same procedure for the right face, and for
the top face, staggering the k x k arrays so that none of the box dents
intersect. The resulting polyhedron has n = 8(3A:2 + 1) vertices.

Figure 10.3 shows a top-view cross section of the interior. Point x in the
figure is confined inside a (1 + e) x (1 + e) x (1 + e) cube bound by six box
dents, two from each of three directions; x is at the center of this cube. This
cube space is not closed, but has \ e-cracks along all 12 edges. Nevertheless,
it should be clear that x is not visible from any vertex if e is chosen to be
much smaller than 1.

This establishes the first claimed property. The second claim follows by
noting that there are (k -1)3 equivalent points x, no two of which are
visible from the same point. Thus at least g = (k — I)3 guards are necessary,
and

g = «(n/24)3/2 - «3/2/118 = Q(n3/2).

•
•
•

iD
1

•
•
•
•

•
•
•
•

•
•
•
•

Fig. 10.2. Exterior view of Seidel's polyhedron showing array of dents.
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Fig. 10.3. Cross section of Seidel's polyhedron: point x is not visible to any vertex.

Note that the fact that a guard at each vertex does not suffice for coverage
implies that Seidel's example is not tetrahedralizable. Finally, the example
may be "turned inside-out" to establish the same bound for exterior
visibility.

10.2.3. Convex Partitions

In the absence of tetrahedralization, it is natural to attempt to approach
three-dimensional art gallery problems through convex partitions, which
proved useful in two dimensions (Section 1.4). Our final negative result is
that there are polyhedra that require Q(n2) convex pieces in any convex
partition of a polyhedron of n vertices. This result was established by
Chazelle (1984), who also provided an algorithm that finds a partition into
at most \r2 + \r + 1 convex pieces, where r is the number of reflex edges of
the polyhedron, in O(nr3) time. Chazelle's example may be constructed as
follows.

Start with a cube aligned with orthogonal xyz coordinate axes. Cut k thin
notches into the bottom face, parallel to the xz-plane. Similarly cut k
notches into the top face, parallel to the vz-plane. The result is shown in
Fig. 10.4 for k = 2. The two sets of notches do not quite meet. The top
edges of the notches in the bottom face lie on the hyperbolic paraboloid
z = xy, and the bottom edges of the notches in the top face he on
z=xy + e, the same surface shifted up by e, where e « 1 . A hyperbolic
paraboloid can be generated by two sets of orthogonal lines (Thomas 1962),

Fig. 10.4. Any convex partition of Chazelle's polyhedron requires a quadratic number of
pieces.
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so the edges can be chosen to lie on these surfaces. Chazelle proved that the
intersection of the warped shape between the two hyperbolic paraboloids
with any convex subset of the polyhedron can only have such a small
volume that Q(n2) pieces are necessary to make up the volume of the shape.
His proof is long and difficult and will not be presented here. His conclusion
is that at least «2/66 = Q(n2) convex pieces are necessary in any convex
partition of the polyhedron just described.

10.2.4. Satellite Sentries

The only non-trivial art gallery theorem known for three dimensions is for
the very special case of exterior visibility for guards confined to the surface
of a convex polyhedron. The equivalent problem in two dimensions is
trivial: \n/2] boundary guards are always necessary and sufficient to guard
the exterior of a convex polygon. But in three dimensions the situation is
not as straightforward. First, there are several quantities that might serve as
the basis for a theorem: V, E, and F, the number of vertices, edges, and
faces of the polyhedron. It seems that F is the most natural measure, and we
will use it in this section.

The theorem is obtained by using matchings in the graph of the dual of
the polyhedron. We will need the following theorem of Nishizeki on the size
of maximum matchings in planar graphs.

LEMMA 10.1 [Nishizeki 1977]. If G is a connected planar graph of n
nodes, with minimum vertex degree <5 ^ 3, and with connectivity K>2,
then for all n ^ 14, the number of edges in a maximum matching of G is
greater than or equal to \{n + 4)/3], and for n < 14, the number of edges is

Nishizeki obtained many similar results for different values of 5 and K, all
of which are best possible (Nishizeki and Baybars 1977; Nishizeki 1977). We
will have occasion to use this powerful theorem in the next section as well.

We may now prove the art gallery theorem.

THEOREM 10.1 [Grunbaum and O'Rourke 1983]. L(2F - 4)/3j vertex
guards are sometimes necessary and always sufficient to see the exterior of a
convex polyhedron of F faces, for F ^ 10.

Proof.

Necessity. Let Q be any simple polyhedron of /faces, that is, having all
vertices of degree 3. From Euler's formula v — e +f = 2, and 2e = 3v, it
follows that v = 2/ - 4. From Q construct a polyhedron P by "truncating"
all vertices of Q, that is, replace each vertex of Q by a small triangle so that
none of the new triangles share common points. This procedure is
illustrated in Fig. 10.5 when Q is a cube. P has F=f + v = 3f — 4 faces.
Each of the new triangular faces requires its own guard, so the total number
required is at least v = 2/ - 4. But [(2F - 4)/3j = [(6f - 12)/3j = 2/ - 4.
This establishes necessity when F = 2mod3, since 3 / - 4 = 2mod3. The



258 THREE DIMENSIONS AND MISCELLANY

Fig. 10.5. The result of truncating a cube at every vertex.

other two cases (mod 3) can be shown as follows. If one of <2's vertices is not
cut off, then P has F = 3/ - 5 faces, and needs 2/ - 5 = [[2(3/ - 5) - 4]/3j
= [(2F — 4)/3j guards. If two of £>'s vertices are not cut off, then P has
F = 3/ - 6 faces, and needs 2/ - 6 = [[2(3/ - 6) - 4]/3j = [(2F - 4)/3j
guards. Thus for all values of F, polyhedra exist that require [(2F — 4)/3j
guards.

Sufficiency. Let G be the dual graph of the surface of the polyhedron P;
G has F nodes. G is planar and its minimum vertex degree is three because
each face of P must have at least three edges. A polyhedral graph is the
graph determined by the vertices and edges of a convex polyhedron. G has
connectivity of at least three since polyhedral graphs are 3-connected by
Balinski's theorem (Griinbaum 1975), and G is polyhedral because it is the
dual of a polyhedral graph. Therefore, Lemma 10.1 applies and shows that,
for F ^ 14, there is a matching M in G of at least m = \(F + 4)/3] edges.
Now place a guard on one of the endpoints of the edge of P correspond-
ing to each edge in the matching. This covers 2m faces. Assign a separate
guard to each of the F — 2m faces of P. The result is complete coverage
with m + F — 2m = F — \(F + 4)/3] guards. This quantity is identical to
[(2F-4)/3j . For F<14, there is a matching of m = [F/2\ edges, which
by the same argument leads to coverage with \F/2] guards. For F > 10,
\FI2\ < L(2F - 4)/3j. This establishes the theorem, then, for all F > 10. •

The necessity holds for all F > 5, and although I suspect sufficiency also
holds in the range 5 < F < 9, I have not verified this yet.

10.3. LINE SEGMENT OBSTACLES

Throughout this book we have concentrated on polygons, but "art
gallery-like" questions may be posed for other types of obstacles. In this
section we prove an art gallery theorem for n non-intersecting line
segments. Visibility is defined as follows: a guard at point x sees point v if
the line segment xy does not cross the interior of any line segment obstacle;
xy may be collinear with a segment, or touch one of its endpoints.
Sufficiency follows easily using the same technique just employed for convex
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polyhedra. Necessity is less obvious, but fortunately a counterexample to a
hypothesis on the prison yard problem considered in Chapter 6 may be
modified to yield the critical example.

THEOREM 10.2 [O'Rourke 1985]. [2n/3j point guards are sometimes
necessary and always sufficient to cover the plane in the presence of n line
segment obstacles, where the guards may be positioned anywhere in the
plane, under the following assumptions:

(1) No two segments are parallel (and therefore none are collinear).
(2) No three lines determined by segments intersect in a common point.
(3) n > 5 .

Proof.
Sufficiency. Partition the plane into n + 1 regions in a manner similar to

that used in Sections 1.4 and 6.5.2 (see Lemma 6.5): extend each segment in
both directions until it hits either another segment or a previous segment
extension. The induced convex partition is dependent on the order in which
the extensions are made, but it always has n +1 regions by the non-
collinearity assumption (1). Form a graph G from this partition as was done
in Section 6.5.2, as follows. Associate a node of G with each convex region
of the partition, and connect two nodes by an arc of G if their regions share
a common boundary point. An example is shown in Fig. 10.6.

It is easy to see that assumption (2) ensures that G is a planar graph, and
indeed a triangulation, since every face of G (except the exterior face) can
be associated with the intersection of two segment lines, and a neighbor-
hood of this intersection point touches three mutually adjacent regions,
corresponding to a triangle in G. Without the non-degeneracy assumption,
either G would not necessarily be a triangulation, or it would not necessarily

Fig. 10.6. A convex partition of the plane induced by a set of line segments (shown bold) and
its dual graph.
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Fig. 10.7. If three segments (dashed) meet at a point, either dual graph is not a triangulation
(a) or it is not necessarily planar (b).

be planar, depending on whether adjacency in G required a finite length of
common boundary or just a common point, respectively (see Figs. 10.7a and
10.7b). Although these degeneracies are actually "in our favor," the proof
is more straightforward if they are assumed not to occur.

We would like to apply Lemma 10.1 to G, which requires a minimum
vertex degree 6 of 3. However, G may have 6 = 2 as illustrated in Fig. 10.6.
Since G is a triangulation graph, any nodes of degree 2 must be on the
exterior face. Augment G to G' by adding a pseudo-node p adjacent to
every node of G on the exterior face. Since G must have at least three
nodes on its exterior face, p has degree three or more, and since p is
connected to every degree 2 node of G, G' has 5 >3 .

To show that G' is 2-connected, assume to the contrary that removal of
one node disconnects G'. Let x be such an articulation point of G'. Then
the convex region R associated with x must divide the plane into two parts
that share no boundary points. But this is only achievable if R has parallel
edges running to infinity in both directions, which is not possible by the
non-parallel assumption (1).

Now apply Lemma 10.1 to the (n + 2)-node graph G', for n > 12, to
obtain a matching M of m = \(n + 6)/3] = [n/3] + 2 edges. Each edge of M
not incident on p may be associated with a boundary point shared between
two convex regions. Placing a guard at such a point clearly covers the two
incident regions since they are convex. At most one edge of M may be
incident to p. If there is such an edge, a guard may be used to cover the
region associated with the other endpoint. Thus m guards associated with
the matching edges cover at least 2m — 1 regions. Covering the remaining
(n + 1) - (2m - 1 ) regions each with their own guard results in total
coverage with

m + (n + l)-(2m-l) = n-m + 2 = n- \n/3\ = [2n/3\

guards. For n < 12, Lemma 10.1 guarantees a matching of size \{n + 2)/2]
= \n/2] +1 edges, which by the same argument yields coverage with
[n /2 j+ l guards. Since [n/2\ +1 < |_2n/3j for n>5, sufficiency is
established.

Necessity. Although experimentation with small values of n would lead
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Fig. 10.8. A pattern of 12 line segments that require 7 point guards.

one to expect that at most \n/2] guards are necessary, the dependence of
the sufficiency proof on matching suggests examining graphs with no perfect
matching. And indeed, Fig. 6.19, which we used as a counterexample to an
approach to the prison yard problem, can be used to establish necessity.
Consider the 12 segments and induced convex partition shown in Fig. 10.8.
The 13 node dual graph has the property that removal of 6 nodes (solid in
the figure) disconnects the graph into seven odd components. Moreover,
coverage of three nodes with one guard leaves a graph of 10 nodes that has
no perfect matching, because removal of 4 nodes disconnects the remainder
into 6 odd components (Section 6.5.2). It is clear that each of the seven
triangular regions corresponding to the disconnected nodes (open in the
figure) requires their own guard. Since 7 > [12/2], this example shows that
\n/2\ are not sufficient.

In order to show [2«/3j necessity, we nest the pattern inside of itself as
follows. Note that the pattern of segments in Fig. 10.8 has just three edges,
A, B, and C, that extend to infinity. Thus the central triangular region
formed by edges a, b, and c can be replaced by a copy of the pattern, with
A, B, and C replacing the roles of a, b, and c, respectively. If this nesting is
repeated k times, n' = 9 k + 3 segments will be used. Each nesting adds six
triangular region that each requires a guard. Since the innermost central
triangular region also needs its own guard, g' = 6k + 1 guards are necessary.

A final modification yields the critical example. Add three more segments
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Fig. 10.9. Additional segments added to the pattern of Fig. 10.8, which is nested within the
dotted triangle.

A', B', and C" that angle off of A, B, and C to infinity, as shown in Fig.
10.9. The cone bound by A and A' requires its own guard, and similarly
for the B and C cones. Thus the figure has tt=«' + 3 = 9£ + 6 segments and
requires g = g' + 3 = 6k + 4 guards. Since [2n/3\ = [(18k + 12)/3j = 6k + 4,
the formula has been established when « = 0(mod3). This example also
establishes the n = l(mod 3) case, since incrementing n by 1 does not
increase the value of [2n/3\. The n=2(mod 3) case can be settled by
adding two more segments, shown dashed in Fig. 10.9, forcing the need for
another guard. Here n = 9k + 8 and |_2«/3j = 6k + 5. Thus for every n > 15,
there exists an arrangement that requires [2n/3\ guards. Removing edge A'
establishes the same formula for n = 14. •

It remains to be explored whether the theorem also holds for the
degenerate cases or small values of n ruled out by the theorem's
assumptions. Using Lemma 10.1 for n < 14 easily establishes that \nl2\ + 1
guards are sufficient for n < 14, which, for n > 5, is no greater than L2«/3j,
but the necessity of [_2«/3j guards for each n < 14 has not been established.

If the guards are restricted to vertices the situation changes dramatically.

THEOREM 10.3 [Boenke and Shermer 1986]. n vertex guards are
sometimes necessary and always sufficient to cover the plane in the presence
of n line segment obstacles.

Proof. Necessity is established by an arrangement of segments around a
circle, as illustrated in Fig. 10.10. Each of the indicated triangular regions is
visible only to the two segment endpoints at the base of the triangle. Note
the similarity between this example and that used to establish necessity for
the prison yard problem (Fig. 6.1).

For sufficiency, partition the plane into n + 1 convex regions as in
Theorem 10.2. Each region has at least one segment endpoint on its
boundary, and each endpoint borders on two regions. Place a guard at any
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Fig. 10.10. An arrangement of 8 line segments that require 8 vertex guards.

endpoint. This covers two regions. Cover the remaining n — 1 regions with a
guard at an endpoint on their boundaries. •

10.4. POINT OBSTACLES

It may seem that there can be no interesting art gallery questions if the line
segment obstacles considered in the previous section are reduced to points,
but this is only because we have assumed throughout most of this book that
there are no collinear degeneracies. Permitting collinearities and defining
visibility to be blocked by points yields two interesting combinatorial-
geometric problems, both at least partially unsolved since they were posed
in the 1950s and 1960s.

Let P be a set of n points in the plane, not all on a line. Such a point set
will be called non -collinear. Note that any number k < n of points in P may
be collinear. Define points x and y to be visible to one another if the open
line segment xy contains no points of P. Let p * e P be a point that sees at
least as many points of P as any other, and let M(P) be this maximum
number. Note that M{P) = n — 1 if no three points of P are collinear, with
p* any point of P. Finally define m(n) to be the minimum of M(P) over all
point sets of size n. Without the non-collinearity stipulation, m{n) would be
2 for all n > 2, since M(P) would be 2 for all sets of collinear points, with p*
any non-extreme point. But if not all points are on a line, it seems a very
difficult problem to find m(n). Dirac posed the problem in 1951 (Dirac
1951) and conjectured that m(n) = [n/2).1

1. His original problem was somewhat different: he sought the minimum over all configura-
tions of the maximum number of lines determined by two points that pass through a third. This
is not exactly the same problem, because if the two determining points of a line are on opposite
sides of the third, the third sees both, but if they are on the same side, the third only sees the
closest.
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12

Fig. 10.11. A configuration in which no point can see more than 8 = 12/2 + 2 other points.

Figure 10.11 shows a configuration that achieves M(P) = \n + 2 for even
n, so ra(n) :£ \nl2\ + 2. Dirac offered this simple proof that m{n)> Vn.

Let p* be a point that sees a maximum number k of other points. Let L
be a line determined by p* and one of these k points. We claim that L
cannot contain more than k points. For suppose it did contain k' > k points.
Then because not all points of P are collinear, there is a point p e P not on
L. For each point pt on L, either p sees pt, or p sees a point p\ such that p,
p't, and Pi are collinear in that order. Clearly if pt and pj are two distinct
points on L, then p[ and p- (if they exist) are distinct also. Thus p sees
k' > k points, contradicting the assumption that k is the maximum.

Now count the number of points P in the following way. Each of the k
lines through p * and the k points it sees contains at most k — 1 points
distinct from p*. Thus n < k(k — 1) + 1. Therefore, k > Vn.

Very recently Szemeredi and Trotter proved that m(n)>cn (Moser
1985), but the precise value of c is yet to be determined.

A second art gallery question for point obstacles was posed by Moser in
1966 (Moser 1985). Let P be a set of n non-collinear points. How many
guards located at points of P are needed to see the unguarded points of P?
Again the problem is trivial if no three points are collinear: one guard
suffices. And again the other extreme, all points on one line, is uninterest-
ing: \{n + l)/2] are necessary. Moser conjectured that O(log n) guards
suffice for points arranged in an n x n rectangular lattice. More precisely, let
G(P) be the minimum number of points of P that collectively see the other
points, and let g(n) be the maximum of G(P) over all sets of n non-collinear
points P. We may extend Moser's conjecture to the statement that
g(n) = O(\ogn).

It seems that progress has only been made in the special case of lattice
points. Let Ln be an n x n square array of integer lattice points. Then, for
example, G(L5) = 2, as shown in Fig. 10.12. Abbott (1974) proved that

" " <G(Ln)<4\nn.
21nlnn '
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Fig. 10.12. A 5 x 5 lattice in which two points can see all the other points.

His proofs are number-theoretic; the natural logs in the lower bound come
from the prime number theorem. His lower bound establishes that
7 (n)> (Inn2)/ (2 In Inn2); that is, this many guards are sometimes neces-
sary, but the sufficiency of O(log n) guards has only been established for Ln,
and even here Abbott's proof is non-constructive, and does not yield an
explicit placement of guards.

10.5. MIRRORS

Having opened this book with a problem posed by Klee, it seems
appropriate to close with another Klee problem.2 Let P be a polygon, and
imagine that all of its edges are perfect mirrors. Is there always at least one
interior point from which P is completely illuminable by a point light bulb?
Is P always illuminable from each of its points? Assume that the light bulb
sends out rays in all directions, and that the standard "angle of reflection =
angle of incidence" law of reflection holds. Further assume that a light ray is
absorbed if it hits a vertex. Surprisingly, these problems are unsolved for
polygons. However, Klee showed the answers to be "no" if curved
(differentiable) arcs are permitted. Figure 10.13 shows a region that is not
illuminable from the point x, which is the center of both the upper and
lower circular arcs. This shows that not every region is illuminable from
each of its points. However, the region is easily seen to be illuminable from,
for example, point y. Figure 10.14 shows a region that is not illuminable
from any of its points. In the figure, a and b, and a' and b', are foci of
ellipses forming the upper and lower arcs, respectively. An ellipse with foci

Fig. 10.13. A region not illuminable from x, but illuminable from y.

2. The original poser of the problem is unknown; Klee popularized the problem in two articles
(Klee 1969, 1979).
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Fig. 10.14. A region not illuminable from any one point.

a and b has the following properties:

(1) A ray through a immediately reflects through b, and vice versa.
(2) A ray that intersects the open segment {a, b) immediately reflects

and intersects {a, b) again.
(3) A ray that crosses the major axis but does not intersect the closed

segment [a, b] immediately reflects to cross the axis without hitting
[a, b] again.

Thus any light source above the a'b' major axis will not illuminate regions
A' or B', and similarly for below the ab axis, by property (2). And a light
source in A will bounce into B and back again by property (3), never
illuminating A' or B'.

Although the problem remains unsolved for polygonal regions, some
progress has been made in understanding the behavior of single light rays in
a rational polygon, one whose angles are all rational multiples of jr.
(Orthogonal polygons are a very special case of rational polygons.) A single
light ray is more usually called a "billiard ball" in the now rather substantial
literature on the subject. One of the more accessible results is the following.

THEOREM 10.4 [Boldrighini et al. 1978; Kerckhoff et al. 1985]. Let x be
a point in a rational polygon P, and 6 a direction. Then, except for a
countable number of "exceptional" directions 6, the path of a billiard ball
issuing from x in the direction 6 is spatially dense in P, that is, passes
arbitrarily close to every point of P.

One implication of this result is that every rational polygon is illuminable
from each of its points in the sense that no finite area region will be left
unilluminated; whether an isolated point could remain in the dark is
unclear.

For irrational polygons, almost nothing is known. It is not even known if
every triangle admits a dense billiard path.

10.6. TABLE OF THEOREMS

We conclude with a table of the major art gallery theorems discussed in this
book.



Table 10.1. Art gallery theorems

Visibility

interior

exterior

interior+

exterior

Polygon
Shape

arbitrary

star

orthogonal

arbitrary

orthogonal

arbitrary

orthogonal

segments

Holes

0

1

h

0

0

1

2

h

0

Guard
Type

vertex

diag epts

edge

edge epts

vertex

line

diagonal

edge

vertex

point

vertex

diagonal

vertex

point

vertex

vertex

point

vertex

Lower Bound Upper Bound
(necessary) (sufficient)

L«/3J

r

[(n + 1)/3J

l(n + h)/3\ [(n + 2h)/3\

L«/4J

[(n + 1)/4J [n/3\

[2n/l\ [n/3\

[n/3\

[r/2\ + 1
1

2

L«/5J [n/3j

[r/2\ + 1

[n/4\ = [r/2j + 1

Ln/4J
Ln/4J

[n/4\ [(n + 2h)/4\

[(3n + 4)/16j

\n/2]

[n/31

L«/4J + 1

r«/2l [2n/3\

\n/2] +r

[n/4]+l |7n/16j+5

L2n/3J
n

Section
Discussed

1.2.1

1.4.1

5.2

5.1

3.2.1

3.2.2

4.2

2.2.2

5.3

3.3

6.2.1

6.2.3

6.2.2

6.3.1

6.3.2

10.3
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2.2: Monotone quadrilateralization, 50
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Angles, interior, 12
Angular sweep, 212-13, 216, 218-19, 223-24
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Antispiraling, 26
Appel, K., 5, 158
Approximation algorithms, 252
Architecture, 31
Arrangement of lines, 211, 213-15
Articulation point, 197, 260

Artificial vertex, 75-76
Asano, T., 211, 224, 229
Avis, D., 10, 81, 167, 176, 202-3, 206, 228-

29

Bad tab, 38, 43
Bagemihl, F., 253-54
Balance, of two trees, 190
Balanced quadrilateral, 142
Balinski's theorem, 258
Bar graph, 795-201
Bar representable, 196, 199-201
Bar unrepresentable, 196, 201
Bar visibility graphs, 795-201
Base star, 247-49
Base, of polygon, 247
Basing of cycle triangle, 132
Baybars, I., 257
Bend in variable loop, 234, 237
Beyer, T., 169
Biconnected graph, 196-97, 199
Billiard ball, 266
Bipartite graph, 243-44
Block of graph, 200
Boenke, M., 262
Boldrighini, C , 266
Boolean 3-satisfiability, 231-32, 244
Booth, H., 172, 181, 185
Bottom edge, 32
Boundary arc of tree, 181
Boundary of polygon, 2
Box-cover problem, 232
Branch node, 70-71
Brown, M. R., 27
Bullet-shooting query, 226

C-pair, 136-40
C-triplet, 136,137-40
Castells, C , 80
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Ccw, 26
Cederbaum, I., 196-97
Chaiken, S., 229
Chain

left and right, 14
monotone, 14
polygonal, 14, 24
reflex, 119

Character recognition, 119
Characterization

of bar representable graphs, 196
of meshable trees, 187
of quadrilateral trees, 96
of tree pairs, 165

Charge on diagonal, 98, 99-101
Chazelle's naive convex partitioning algo-

rithm, 28-30, 121
Chazelle's polygon cutting theorem, 23, 24,

207
Chazelle, B., 24, 27-30, 160, 207, 215, 217,

226, 229, 252, 256-57
Chiba, N., 159
Chip, in polygon, 79
Chord, of cycle, 171
Chvatal's Theorem, 1, 9, 117, 121, 152
Chvatal's proof, 4, 6, 9-10, 31, 81, 83, 87
Chvatal, V., 1-2, 6-7, 118
Circle embedding of a tree, 176, 179
Classification of configurations, 98
Clause component, 232
Clause junction, 235-38, 240-41
Clause, 231
Clockwise, 26
Collinear degeneracies, 263
Coloring argument, 147-48
Coloring of a graph, 5

2-coloring, 152
3-coloring, 5, 10, 13, 146-48, 152, 157-58
4-coloring, 5, 46, 155-56, 158-59
5-coloring, 159
A>coloring, 5

Comb polygon. See Polygon, comb
Complete visibility, 202, 207
Cone of triangle, 138
Configuration, 96-98, 100
Conjecture

5.1, 170
5.2, 141
5.3, 145
5.4, 145
6.1, 156

Connectivity, of graph, 257
Contraction of edge, 83
Convex edge, 102

Convex pair, 136-40
Convex partitioning, 27-30

algorithms for, 29
naive, 28-30, 121
optimal, 29-30, 252

Convex quadrilateralization. See Quadrilater-
alization

Convex triplet, 136,137-40
Convex, horizontally, 47
Corollary

to Theorem 1.2, 12
to Theorem 3.1, 89
to Theorem 7.6, 200
to Theorem 9.1, 239
to Theorem 9.2, 242

Counterclockwise, 26
Cover, 2, 82

minimum convex, 239
of a polygon, 228

Coverage problem
box, 232
disk, 232
point, 232

Coverage, efficient, 130
Cross star, 234-35
Crossover, 234, 237
Cubic graph, 160
Culberson, J., 101, 181
Curved edge, 83, 85
Cusp

exterior, 18
interior or internal, 74-15, 18, 53, 65

Cut, 67, 94
odd, 67, 68-74, 76-79
parity, 74, 76-77

Cutpoint, of graph, 169,197, 199-201
Cuts, orthogonal, 106-7
Cw, 26
Cycle quadrilateral, 141
Cycle triangle, 132
Cycle, ordered, 171
Cycles in dual, 141
Cyclic shift, 132

Decagon, 159
Decision problem, 231
Decomposition of polygon, 228-30

cover, 228
partition, 228
sum-difference, 228-29

Deformation, topological, 85
Degeneracy, 79-80
Degree of vertex, 257
Delcher, A., 128
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Deletion from a tree, 18
Dense billiard path, 266
Dense, 266
Dent, in polygon, 74
Depth-first search, 200, 215
Devai, F., 227
Diagonal guard. See Guard, diagonal
Diagonal

essential, 29
of caterpillar, 192

Dictionary data structure, 18, 209, 219
Dijkstra's shortest path algorithm, 211
Dirac, G. A., 263
Distance between nodes in visibility tree, 178
Distinguished point, 232, 239
Divide-and-conquer, 10, 24-25, 27, 207
Dobkin, D., 29
Domination, 82, 85, 132, 151-52
Double merge, 247-48, 250-51
Down tab, 38
Dual arrangement, 215-16
Dual transformation, 213, 215
Dual

graph of polyhedron, 257-58
non-weak, 127
of quadrilateralization, 46, 56, 61, 93, 141
of triangulation, 12, 127
weak, 13, 93

Dynamic programming state, 248, 250
Dynamic programming, 30, 231, 247-48, 251

Ear, 13
non-overlapping, 13
orthogonal, 31, 47

Edelsbrunner, H., 47, 73, 215
Edge contraction, 83
Edge guard. See Guard, edge
Edge visibility trees, 172-95
Edge visibility, 202-3
Edge

bottom, 32
contraction, 143
convex, 102
curved, 83, 85
facing, 38, 53
left, 32
neighboring, 52-37
right, 32
slanted, 52, 55, 56, 58-59, 61-62, 64
squashing, 143
top, 32

Edge visibility polygon. See Polygon, edge
visibility

Efficient coverage, 130

ElGindy, H., 165, 167-68, 203, 206-7
Elementary contraction, 83
Ellipse, 265-66
Embedding, 169-70. See also Circle embed-

ding
planar, 181
realizable, 179, 181, 185
unrealizable, 183-84

Enneagon, domination, 86
Epsilon-visibility, 195
Essential diagonal, 29
Euler's theorem, 126
Even, S., 196-97, 200, 243
Exponential number, of minimal partitions,

248-49
Exterior and interior visibility, 146, 157
Exterior face, 13, 93, 126
Exterior of polygon, 2
Exterior triangulation. See Triangulation, ex-

terior
Exterior visibility, 146

Facing edge, 38, 53
Fan, 6, 166

center, 6, 9
convex, 171-11
orthogonal convex, 171-12

Fary's theorem, 84
Feng, H.-Y., 119, 229
Finger search trees, 27
Fisk's coloring procedure, 131, 138
Fisk's proof, 4-5, 9-10, 31, 130, 228
Fisk, S., 4
Focus of ellipse, 265-66
Fortress problem, 146, 154
Four color theorem, 5, 46
Fournier, A., 26
Fowler, R. J., 232
Fractional guards, 102
Franzblau, D. S., 229
Frederickson, G. N., 158-59
Free coverage, 235
Free tree, 195
Frontier distance, 71
Further inside, 50

Garey, M. R., 14-15, 19, 23-24, 166, 231-
32, 244

General position, 34, 69-70, 73, 79, 92, 165,
173, 196, 218

Genus of polyhedron, 253, 255
Genus zero, 253, 255
Ghosh, S. K., 171, 230, 252
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Giblin, P. J., 84
Gluing square symbols, 99, 101
Good tab. See Tab, good
Graph matching algorithm, 231
Graph transformatioin, 83
Graph

bar visibility, 195-201
biconnected, 196-97, 199
bipartite, 243-44
block, 200
connectivity, 257
cubic, 160
directed, 215-16
dual, 161
Hamiltonian, 143
intersection, 243
maximal outerplanar, 165, 167-6S
non-Hamiltonian, 161-62
non-planar, 201
outerplanar, 167-68
planar, 46. See also Graph, non-planar
polyhedral, 258
region adjacency, 69
triangulation, 85-87, 147, 168-69
vertex visibility, 165, 166-72, 226
visibility, 765-201
visibility, algorithm, 211-17

Greene, D. H., 30
Grid, 230, 242-47, 252

three-dimensional, 244-47, 252
Grosswald, E., 222
Griinbaum, B., 31, 257-58
Guard

combinatorial, 82, 89-90, 114-15, 132,
159

diagonal, 82, 85, 87, 89, 92, 118-19, 267
edge, 82, 89, 90, 119, 267
geometric, 82, 89, 114
line, 82, 89, 118, 267
minimal number, 228
mobile, Si-82, 90
mobile, in orthogonal polygon, 108
patrol, 81
point, 3, 117, 141, 151, 242, 267
power, 81, 115
vertex, 3, 9, 82, 140, 145, 151, 154, 156,

242, 267
Guessing a solution, 232
Guibas, L. J., 207, 211, 215, 217, 224, 226
Giiting, R. H., 227
Gyori, E., 73

H-cut, 69-72. See also Cut, odd
H-graph, 69-70, 73

H-isolated, 69, 71-72
H-odd-cut, 69-71. See also Cut, odd
H-pair, 69, 73
Haken, W., 5, 158
Half-plane

interior, 117
intersesction, 117

Hamiltonian cycle, 159, 166-67, 169
Hamiltonian graph, 143
Hamiltonian path, 144
Harary, F., 83, 161
Hardness partial order, 231
Hausdorff metric, 35
Height-balance tree, 18
Hershberger, J., 207, 211, 224, 226
Hertel, S.,23, 29, 229
Hexagaon, domination, 87
Hidden line elimination, 227
Hidden surface removal, 202, 226-27
Histogram, 47, 78, 176

vertical, 78
Hoffman, K., 27
Homeomorphism, 55
Honsberger, R., 1, 4, 83
Hopcroft, J. E., 200, 215
Hopcroft-Tarjan planarity algorithm, 200
Horizontal cut, 69-72. See also Cut, odd
Horizontal odd-cut, 69-71. See also Cut, odd
Horizontally convex, 47
Hourglass polygon, 189-94, 226
Hyperbolic paraboloid, 256-57

Illuminable region, 265-66
Imai, H., 211, 224, 229
Incerpi, J., 24, 27
Induced subtree, 185
Infinite number of edges, 44
Insertion into a tree, 18
Instance-question format, 231
Integer lattice, 232
Interior cusp. See Cusp, interior
Interior of polygon, 2
Interior subtree, 181
Intersection graph, 243
Intractable problem, 228
Inverter, 234
Irrational polygon, 266
Irreducible polygon, 42-44
Isothetic polygon, 31

Joe, B., 203-6
Johnson, D. S., 14-15, 19, 23-24, 166, 231-

32, 244
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Jones, W., 169
Jordan curve, 2
Jordan sequence, 27
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Kahn, Klawe, Kleitman proof, 31-47, 54, 56
Kahn, Klawe, Kleitman theorem, 45-46, 152
Keane, M., 266
Keil, J. M., 247-48, 250, 252
Kerckhoff, S.,266
Kernel of a polygon, 117-18, 171, 202, 229,

235, 239, 248-50
Klawe, M., 31, 45, 46, 54, 56, 152
Klee, V., 1, 27, 265
Kleitman, D., 31, 46, 54, 56, 152, 229
Knuth, D. E., 18
Kuratowski's theorem, 201

L-shaped pieces, 67-80, 149, 158, 229
Labeling of a tree, 173
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integer, 264
rectangular, 264

Law of reflection, 265
Leaf node, 70-71, 73
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Lee and Preparata's monotone partitioning

algorithm, 14-15, 23, 47, 53-55, 65, 75
Lee, D. T., 14-15, 23, 47, 53-55, 65, 75,

117, 202-4, 206-7, 211-12, 215, 229,
239, 242, 252

Left edge, 32
Lempel, A., 196-97
Lennes, N. J., 253
Levels in polygon, 34, 39, 73, 95
Leven, D., 207, 226
Lichtenstein, D., 235, 251
Light bulb analogy, 202-3, 220, 265
Lin, A., K., 207, 239, 242, 252
Line arrangement, 211, 213-15
Line guard, 82, 89, 118, 267
Line segment obstacles, 217, 221, 258-63
Lingas, A., 251
Lipski, W., 229
Literal, 231
Literal pattern, 239
Liu, R., 252
Lodi, E., 229
Lozano-Perez, T., 211
Lubiw's proof, 56-65

Lubiw's quadrilateralization algorithm, 47,
65-66

Luccio, F., 229

Malkelvitch, J., 146
Manhattan skyline, 176
Mannila, H., 73
Marchetti, F., 266
Marriage problem, 243
Maruyama, K., 229
Masek, W. J., 230, 234
Masur, H., 266
Matching in graph, 161, 243

maximum, 243, 257
maximum, in planar graph, 257-58
perfect, 144, 161, 244, 261

Matching, three-dimensional, 244
Mate, for quadrilateral, 96, 98-99
Maximal outerplanar graph, 165, 161-68
Maximum matching in graph, 243, 257
McKenna, M., 202, 226-27
Mehlhorn, K., 23, 27, 29, 229
Meister, G. H., 13
Merge

double, 247-48, 250-51
single, 247-48, 250-51

Meshing of trees, 173, 175, 187, 194
Metric, Hausdorff, 35
Minimal partitions, 30
Minimal star cover, 228, 230, 232-33, 247

with holes, 230, 232
without holes, 239, 242

Minimal star partition, 228
with Steiner points, 251-52
without Steiner points, 247-52

Mirrors, 265-66
Mitchell, S., 169
Mobile guard, 81-82, 90
Monotone chain, 14
Monotone partitioning, 14-19, 24, 47
Monotone polygon. See Polygon, monotone
Montuno, D. Y., 26
Mop, 165, 167-168
Moser, L., 264
Moser, W. O. J., 264
Mugnai, C , 229
Multi-level polygon, 34, 39, 73, 95
Multiply-connected polygon, 125, 251
Multiply-connected, 125

n-gon, 2
NP, 231
NP-complete, 166, 228, 231, 247, 251-52
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NP-hard, 30, 230, 231, 239, 244, 252
Naive convex partitioning, 28-30, 121
Necessary and sufficient, 2
Neighbor relation, 32
Neighbor, upper, 62-63, 65
Neighboring edges, 32-37
Nievergelt, J., 15
Nishizeki, T., 159,257
Node

branch, 70-71
leaf, 70-71, 73
sink, 70
source, 70

Non-collinear point set, 263-64
Non-deterministic algorithm, 231-32
Non-tough triangulation, 137
Nonseparable graph, 197
Normal form, of bar layout, 199
Nose, of slanted edge, 56, 57
Ntafos, S., 228, 242-44, 246-47, 252

O'Keefe, 229
O'Rourke, J., 29, 47, 73, 82, 87, 99, 126,

146, 152, 154, 157, 162, 181, 185, 215,
221, 223, 226, 229-31, 238, 257, 259

Odd-cut. See Cut, odd
Ordered cycle, 171
Orientation of an edge, 94-95
Orthogonal art gallery theorem, 31, 46
Orthogonal ear, 31, 47
Orthogonal polygon, 31, 45, 116, 267
Ottmann, T., 227
Output-size sensitive algorithm, 217, 226-27
Outwardly convex, 226

P, 231
Pagli, L., 229
Parity

of cuts, 74, 76-77
of edges adjacent to diagonal, 99, 111-12

Partial order, 177, 231
Partial shadow, 702-3
Partition vs. cover, 228, 247
Partition, 228

convex minimum, 29-30, 252
convex, 29-30, 160-61, 207, 259, 262
convex, in three dimensions, 256-57
into L-shaped pieces, 67-80, 149, 158, 229
into L-shaped pieces, algorithm, 73-80
monotone, 14-19, 24, 47

Paterson, M. S., 232
Path degree sequence, 99
Path

Hamiltonian, 144
polygonal, 14, 24
shortest, 211, 226

Pavlidis, T., 119,229-30
Peak

bottom, 53
top, 53

Pentagon, domination, 85
Perfect matching, 144, 161, 244, 261
PERT digraph, 196
Planar 3SAT, 235, 251
Planar graph. See Graph, planar
Planar point location, 18
Planarity, 200
Plane sweep, 14-75, 23, 65, 74-75, 175, 207.

See also Angular sweep
Pocket of polygon, 152
Point guard. See Guard, point
Point obstacles, 263-65
Polar angle, 204
Polygon, 1

1-orthogonal, 56, 59-60
boundary of, 2
comb, 2, 46, 67, 117, 123, 151
convex, 116, 229
cutting theorem, 23, 24, 207
edge visibility, 81, 176-77, 206-11, 226
exterior of, 2
hourglass, 759-94, 226
interior of, 2
irreducible, 42-44
isothetic, 31
monotone orthogonal, 252
monotone, 14, 19, 79, 116, 123-24, 162-

64, 207, 229
multiply-connected, 725, 251
orthogonal, 37, 45, 116, 267
orthogonal with holes, 61, 73, 725, 140-45
point visibility, 202, 203-6
pseudo-monotone, 52-54, 61
pseudo-orthogonal, 62, 65
pseudo-pyramid, 49, 52, 61
pseudo-star, 248-51
quadrilateralizable, 93, 95, 115
rational, 266
rectanguloid, 31
rectilinear, 31. See also Polygon, orthogo-

nal
self-crossing, 178
shutter, 28
simple, 2
spiral, 91, 116, 779-23, 149, 229
staircase, 47, 248-49
star, 116, 777-119, 171, 202, 229, 267
star-shaped. See Polygon, star
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swastika, 90-91
with holes, 125

Polyhedron, 253-58
simple, 257

Polynomial reducibility, 231
Polynomial-time algorithm, 230, 244
Power of guard, 81, 115
Preparata, F. P., 14-16, 19, 23-24, 47, 53-

55, 65, 75, 117, 124, 202, 207, 229
Prime factorization, 11
Prime number theorem, 265
Priority queue, 219
Prism, triangular, 254
Prison yard problem, 146, 154-64, 261
Projection constraints, 284-85
Pseudo-monotone polygon, 52-54, 61
Pseudo-node, of bar graph, 198
Pseudo-orthogonal polygon, 62, 65
Pseudo-pyramid polygon, 49, 52, 61
Pseudo-star polygon, 248-51
Pyramid, 47

Quadrilateral
balanced, 142
cycle, 141
leaf, 141, 143
number of, 92
removable, 57-58, 60-64
skewed, 142

Quadrilateralizable, 38-39, 45
Quadrilateralization, 31, 32, 33-47

of monotone polygons, 47, 49-53
of pyramids, 47-49
reduced, 141, 143
theorem, 45, 47, 56-57, 62, 67
unique, 32-33, 42

Query, visibility, 226

Ramps in polygon, 34, 39, 73, 95
Ramshaw, L., 207
Raster graphics, 31
Rational polygon, 266
Rawlins, G., 101, 181
Realizable embedding of a tree, 179, 181,

185
Realization

of bar graphs, 201
of visibility tree, 173-1A

Reconstruction
from labeled visibility trees, 178, 187
of visibility graphs, 167, 171

Rectangle cover, 229
Rectanguloid polygon, 31

Rectilinear polygon, 31. See also Polygon,
orthogonal

Recurrence equations, 10
Reduced quadrilateralization, 141, 143
Reduced triangulation, 129, 132, 140-41
Reducible, 37-39, 41-42. See also Polyno-

mial reducibility
Refinement process, 175, 181-82, 185-86
Reflection, of light rays, 265-66
Reflex chain, 119
Reflex vertex, resolve, 28-29, 67
Reflex vertex, 2, 23, 27-29, 67
Region adjacency graph, 69
Region

edge visibility, 219-26
point visibility, 217-19

Regular expression notation, 133, 188
Relatively prime numbers, 221-22
Removable quadrilateral, 57-58, 60-64
Requadrilateralization, 114
Resolve, reflex vertex, 28-29, 67
Retriangulation, 152-53
Riemann surface, 34
Right edge, 32
Rosenstiehl, P., 27

Sack's quadrilateralization algorithm, 47-55
Sack, J.-R.,47, 49, 52, 54, 61,65
Saito, N., 159
Saks, M., 229
Satisfiability, 232-32, 244
Schonhardt, E., 253-54
Schumacker, R. A., 227
Sees, 2
Seidel, R., 215, 255-56
Self-crossing polygon, 178
Septagon, domination, 85-87, 123
Shadow

of slanted edge, 52, 55, 62-64
partial, 102-3

Shallcross, D., 80
Shamos, M. I., 117
Sharir, M., 207, 226
Shape

of decomposition pieces, 228-29
of polygon, 27-28, 116

Sharing guards at interface, 92, 101-8
Shearer, J., 229
Shermer, T., 119, 125, 127-28, 132-33, 136,

140-42, 145-46, 152, 262
Short-cuts, 25
Shortest path, 211, 226
Shortest-path tree, 226
Shutter polygons, 28
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Shyamasundar, R. K., 230, 252
Sidarto, J., 127-28
Side of a diagonal, 94
Simple polygon, 2
Simple polyhedron, 257
Simply-connected, 125
Simpson, R. B., 203-6
Single merge, 247-48, 250-251
Single stack algorithm, 19
Sink node, 70
Sinuosity, 24, 26
Skewed quadrilateral, 142
Slanted edge. See Edge, slanted
Slopes, sorted, 212, 214-15
Smillie, J., 266
Source node, 70
Spatially dense, 266
Spikes, 118, 240-41
Spiral, 26, 73
Sproull, R. F.,227
Square cover, 229
Square symbol, 99-101
Squashing an edge, 83, 85, 104
st* -numbering, 199
st*-numbering algorithm, 197, 200
sf-numbering, 196-97, 199
Stack algorithm, 19, 203-4
Staircase polygon, 47, 248-49
Stalactite, 14
Stalagmite, 14
Standard orientation, 96
Star cover. See Minimal star cover
Star polygon. See Polygon, star
Star-shaped polygon. See Polygon, star
Star. See Polygon, star; 2-star
StarC. See Minimal star cover
StarCH. See Minimal star cover
State of dynamic programming, 248,

250
Steiner point, 29-30, 229-30, 239,

252
Step edge, 38
Step point, 38
Stitching, 25
Stolfi, J.,207
String, 132

tough, 133
Strong visibility, 81, 202, 207
Sum-difference decomposition, 228-29
Sun-burst polygon, 117-18
Supowit, K., 19, 124, 231-32, 235,

238
Suri, S., 119, 207, 217, 221, 223, 226
Sutherland, I. E., 227
Swastika polygon, 90-91

Sweep line, 16, 23. See also Plane sweep;
Angular sweep

Szemeredi, E., 264

Tab, 32, 33-34, 36-37
bad, 38, 43
down, 38
good, 34, 55-39, 43, 45
pair, 34, 41, 45
up, 38

Tamassia, R., 165, 195, 199
Tanimoto, S. L., 232
Tar j an and Van Wyk's triangulation and trap-

ezoidalization algorithm, 18-19, 26-27,
55, 66, 175, 203, 226

Tarjan, R. E., 14-15, 18-19, 23-24, 26-27,
55, 66, 175, 196-197, 200, 203, 207,
226

Tetrahedralizable polyhedra, 253-54,
256

Tetrahedron, 253
Theorem

1.1 [Chvatal's Art Gallery Theorem 1975],
9

1.2 [Triangulation Theorem], 12
1.3 [Meister's Two Ears Theorem 1975],

13
1.4 [Chazelle 1982] Polygon cutting theo-

rem, 24
1.5 [O'Rourke 1982], 29
1.6 [Hertel and Mehlhorn 1983], 29
2.1 [Kahn, Klawe, and Kleitman 1980], 45
2.2 [Kahn, Klawe, and Kleitman 1980], 46
2.3 [Lubiw 1985], 56
2.4 [Lubiw 1985], 62
2.5 [O'Rourke 1983], 67
3.1 [O'Rourke 1983], 87
3.2 [O'Rourke 1985], 99
3.3 [Aggarwal 1984], 108
4.1 [Toussaint 1982], 119
4.2 [Aggarwal 1984], 123
4.3 [Aggarwal 1984], 124
5.1 [O'Rourke 1982], 126
5.2 [Shermer 1982], 128
5.3 [Shermer 1984], 133
5.4 [Aggarwal, Shermer 1984], 140
5.5 [Aggarwal 1984], 142
6.1 [O'Rourke and Wood 1983], 146
6.2 [Aggarwal 1983], 149
6.3 [Aggarwal and O'Rourke 1984], 152
6.4 [O'Rourke 1983], 154
6.5 [O'Rourke 1983], 157
6.6 [O'Rourke 1984], 162
7.1 [ElGindy 1985], 169
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7.2 [Booth and O'Rourke 1985], 181
7.3 [Booth and O'Rourke 1985], 185
7.4 [O'Rourke 1985], 189
7.5 [Wismath 1985], 199
7.6 [Wismath, Tomassia and Tollis 1985],

199
9.1 [O'Rourke and Supowit 1982], 238
9.2 [Lee and Lin 1984], 242
9.3 [Ntafos 1985], 244
9.4 [Ntafos 1985], 247
10.1 [Griinbaum and O'Rourke 1983], 257
10.2 [O'Rourke 1985], 259
10.3 [Boenke and Shermer 1985], 262
10.4 [Boldrighini et al 1978; Kerckhoff et al

1985], 266
Thomas, G. B., Jr., 256
Three dimensions, 253-58
Three-dimensional grid, 244-47, 252
Three-dimensional matching, 244
Tollis, I. G., 165, 195, 199
Top edge, 32
Topological sort, 213, 215-16
Tough string, 133
Tough triangulation, 132-38
Toussaint, G. T., 10, 47, 81-82, 118-19,

176, 202-3, 206, 228-29
Transformation, graph, 83
Transformation, polygon, 83
Trapezoidal decomposition, 229
Trapezoidization algorithm. See Tarjan and

Van Wyk
Trapezoidization, 18, 24, 26-27, 73, 75, 175
Trapezoids, 24
Tree

balanced binary, 219
deletion from, 18
edge visibility in orthogonal polygons,

172-95
finger search, 27
free, 195
height-balanced, 18
horizontal visibility, 173
insertion into, 18
shortest-path, 226
universal, 173, 757-95
vertical visibility, 173

Triangulation algorithm
of Chazelle and Incerpi, 24-26
of Chazelle, 23-24
of Garey, Johnson, Preparata, and Tar j an,

19-23
of Hertel and Mehlhorn, 23
of Tarjan and Van Wyk, 26-27

Triangulation theorem, 12, 34
Triangulation, 4, 11, 158, 253, 259

algorithms, 14, 19, 23-27
exterior, 146, 148, 151-53, 155-56
non-tough, 137
non-uniqueness of, 13
of a polygon with holes, 125
reduced, 129, 132, 140-41
tough,732-38

Trotter, W. T., Jr., 264
Truncation of polyhedron, 257-58
Truth-setting component, 232-35
Tutte, W. T., 161
Tutte's theorem, 161
Two ears theorem, 13
Two-sided plane, 207
Type 1 and 2 endpoints, 59
Type of vertex, 95-96

Ullman, J. D., 200, 215
Universal tree, 173, 757-95
Unquadrilateralizable, 57
Unrealizable embedding of a tree, 183-84
Untetrahedralizable polyhedra, 253-54
Up tab, 35
Upper neighbor, 62-63, 65

V-cut, 69, 72. See also Cut, odd
V-graph, 72
V-odd-cut, 72. See also Cut, odd
V-pair, 73
VLSI design, 31
Van Wyk, C. J., 14, 18-19, 26-27, 55, 66,

175, 203, 226
Variable loop, 233, 238
Variable pattern, 239-41
Vertex cover problem, 244, 247
Vertex guard. See Guard, vertex
Vertex

artificial, 75-76
degree, 257
reflex, 150, 155
reflex, number of in orthogonal polygon,

180
type, 95-96

Vertical cut. See V-cut
Vertical histogram, 78
Vertical odd-cut. See V-odd-cut
Visibility graph, 765-201
Visibility window, 205
Visibility

around line segments, 255
around point obstacles, 263
complete, 202, 207
exterior, 164, 256, 267
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Visibility (continued) Welzl, E., 47, 73, 211-12, 216, 223-
in grids, 242-43 24
interior and exterior, 267 Wesley, M. A., 211
interior, 267 Wismath, S. K., 165, 195, 199
strong, 81, 202, 207 Woo, T. C , 229
weak, 81, 203, 207 Wood, D., 73, 146, 176

Worn pyramid, 49, 52, 61

Watchman theorem, 1
Weak dual, 13, 93
Weak visibility, 81, 203, 207 Yap, C. K., 176


