
ORTHOGONAL POLYGONS

2.1. INTRODUCTION

In this chapter we consider orthogonal polygons, an important subclass of
polygons that yield many interesting partitioning and art gallery theorems.
An orthogonal polygon is one whose edges are all aligned with a pair of
orthogonal coordinate axes, which we take to be horizontal and vertical
without loss of generality.1 Thus the edges alternate between horizontal and
vertical, and always meet orthogonally, with internal angles of either 90° or
270°. Orthogonal polygons are useful as approximations to polygons; and
they arise naturally in domains dominated by Cartesian coordinates, such as
raster graphics, VLSI design, or architecture.

The orthogonal art gallery theorem was first formulated and proved by
Kahn, Klawe, and Kleitman in 1980 (Kahn et al. 1983). It states that [n/A\
guards are occasionally necessary and always sufficient to see the interior of
an orthogonal art gallery room. Thus the constrained nature of an
orthogonal polygon permits covering with three-fourths as many guards as
are needed for unrestricted polygons. Several different proofs of this
theorem have been discovered, and several associated algorithms de-
veloped. As Fisk's proof of the unrestricted art gallery theorem eclipsed
Chvatal's original proof, so Kahn et al. 's proof has been eclipsed by simpler
proofs. But, as with Chvatal's proof, the original proof still retains
considerable interest in its own right. So we will start with Kahn et a/.'s
proof, which establishes a beautiful partitioning result that is as important
for orthogonal polygons as triangulation is for polygons: namely, that every
orthogonal polygon may be partitioned by diagonals between vertices into
convex quadrilaterals. The next section concentrates on establishing this
theorem, from which the orthogonal art gallery theorem follows easily.

1. These polygons commonly have been called "rectilinear" polygons in the literature, but
Griinbaum pointed out to me that "rectilinear" has the well-established meaning "charac-
terized by straight lines," so that every polygon is rectilinear. Other terms used include
"isothetic" and "rectanguloid."
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32 ORTHOGONAL POLYGONS

2.2. KAHN, KLAWE, KLEITMAN PROOF

2.2.1. Convex Quadrilateralization

That a polygon can be partitioned with diagonals into triangles is almost
obvious, perhaps because connecting any two vertices that can see one
another is a valid first step in forming a triangulation: no care is required.
Such is not the case with convex quadrilateralization: considerable care is
required. Grouping pairs of triangles from a triangulation is not sufficient, as
shown by Fig. 2.1a: no pairing of triangles in the illustrated triangulation
leads to a convex quadrilateralization. I believe the main difference is the
difficulty of finding "orthogonal ears." This is illustrated in Fig. 2.1b. It is
natural to consider the quadrilaterals (1, 2, 9,10), (3, 4, 5, 6), and (6, 7, 8, 9)
as "ears," but removing them leaves the non-convex quadrilateral
(2, 3, 6, 9). The unique convex quadrilateralization of this polygon is shown
in Fig. 2.1c, which shows that (6, 7, 8, 9) is not an ear, although (1, 2, 9,10)
and (3, 4, 5, 6) are. In general, convex quadrilateralization is not unique, as
demonstrated in Fig. 2.2.

Henceforth we will shorten "convex quadrilateralization" to "quadri-
lateralization"; the only quadrilateralizations that will be used in this book
are convex quadrilateralizations.

The concept that plays the role of an "ear" is what Kahn et al. call a
"tab." To define this, we must first study the neighbor relation. Let P be an
orthogonal polygon. Call a horizontal edge of P a top edge if the interior of
P lies below it, and a bottom edge if the interior lies above it; left and right
edges are defined similarly. A top edge T and a bottom edge B are
neighbors if:

(a) T and B can see one another (that is, there are points t and b on T
and B, respectively, such that tb is never exterior to P),

(b) there is no bottom edge B' higher than B such that T can see B',
and

(c) there is no top edge T' lower than T such that B see T'.

Note that the neighbor relation is symmetric by definition. Not every

Fig. 2.1. Neither triangle pairing (a) nor ear removal (b) can lead to the unique
quadrilateralization (c).
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a b

Fig. 2.2. Quadrilateralization is not unique.

horizontal edge has a neighbor, but if it does, it is clearly unique. So the
relation matches certain pairs of top and bottom edges; see Fig. 2.3 for
examples. We will see later that there must be at least one pair of
neighboring edges in any orthogonal polygon.

A tab is a pair of neighboring edges connected to each other by a vertical
edge. In Fig. 2.3a, (ab, cd) and {ef, gh) are tabs. What makes tabs
important for convex quadrilateralization is that they can only be quadri-
lateralized in one way: in Fig. 2.3a, the quadrilaterals abed and efgh must be
part of any convex quadrilateralization. This will be proved in Lemma 2.3.
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Fig. 2.3. Neighboring top and bottom edges; (ab, cd) and (ef, gh) are tabs.
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Fig. 2.4. An orthogonal polygon lying on several levels.

Unfortunately, it is not true that every orthogonal polygon has a tab; Fig.
2.3b shows an example that does not. Moreover, the concept can obviously
be extended to define vertical tabs, but it is not even true that every
orthogonal polygon must have either a horizontal or a vertical tab: Fig. 2.2
provides a counterexample. We will see below that Kahn et al. were forced
to use a more complex structural characterization to achieve their result.

We now proceed with the proof. It is long and complicated. The proof is
inductive, showing that any orthogonal polygon is reducible to a "smaller"
one, which is convexly quadrilateralizable by the induction hypothesis. It is
shown that any orthogonal polygon has at least one of three structural
features:

(1) neighboring edges that do not form a tab;
(2) a "good" tab; or
(3) a "tab pair."

(These terms will be defined later.) The presence of these features is the
"hook" that allows the reduction: for polygons without holes, the reduction
amounts to cutting the polygon into two pieces, convexly quadrilaterizing
each, then suturing the two quadrilateralizations together at the cut to form
a convex quadrilateralization of the original.

The proof is remarkably general: it not only holds for orthogonal
polygons, but also for orthogonal polygons with orthogonal holes, and also
for orthogonal polygons that self-overlap in such a way that they can be
considered to lie on several levels connected by "ramps." Figure 2.4 shows
an example. A precise technical definition of the class is: a orthogonal
polygon on a Riemann surface corresponding to a function with singularities
outside of itself. We note that the triangulation theorem could be similarly
extended to the analogous class of unrestricted polygons.

Geometric Lemmas

The first lemma permits degeneracies to be ignored. Define an orthogonal
polygon to have its vertices in general position if no two vertices have the
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same horizontal or vertical coordinate. In the remainder of the section we
will often shorten "orthogonal polygon" to "polygon" when there is no
possibility of confusion.

LEMMA 2.1. A polygon P that is not in general position has the same
quadrilateralization as any "nearby" P' that is in general position.

Proof.2 Consider a sequence of orthogonal regions with the same number
of edges as P, all in general position, that converge to P; distance between
regions is measured by the Hausdorff metric. Since there are only finitely
many quadrilaterizations of these regions, each region in the "tail" of the
sequence must have the same convex quadrilaterization. Since convexity is
closed under taking limits, this quadrilateralization must also be a convex
quadrilaterization for P. •

We will follow (Kahn et al. 1983) in first demonstrating the reductions,
and then establishing the structural characterization that guarantees re-
ducibility. We first need a geometric fact about neighboring edges. If
a = (ax, ay) and b = (bx, by) are two points, let a#b be the point (ax, by),
and let D(a, b) be the rectangle or box with vertices a, b, a#b, b#a. Figure
2.5 illustrates these definitions. If H and V are a horizontal and vertical
edge, respectively, then H#V represents the point on the intersection of the
lines containing H and V.

LEMMA 2.2. Let T and B be neighboring top and bottom edges of a
polygon P. Then there is a left edge L left of both T and B, whose top
endpoint is at least as high as T and whose bottom endpoint is at least as
low as B, and a right edge R with analogous properties, such that
D(L#B, R#T) is completely interior to P.

Proof. Since T and B are neighbors, a point t on T sees a point b on B.
We can clearly chose these to be interior points of T and B. For any point p
interior to P, define the left-bounding edge to be the first vertical edge hit
by a horizontal leftward ray from p. Choose L to be the rightmost of the
left-bounding edges for the points of tb (we will see below that all the points
of tb have the same left-bounding edge, L).

Assume without loss of generality that t is left of b as illustrated in Fig.
2.6. L must be to the left of t, since otherwise, if L were between t and b, T

9 a # b = ( a x , bv )

= ( a x , c i y )
x ,c iy

Fig. 2.5. Definition of the " # " and " • " symbols.

2. This proof assumes mathematical knowledge not used elsewhere in the book; it may be
skipped without loss of continuity.
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Fig. 2.6. If T and B are neighbors, then • (L # 5, /? # T) is empty.

would see some bottom edge above the top of L, and so above B,
contradicting the neighborliness of T and B (this claim is justified in more
detail in Kahn et al. (1983)).

Let / be any point on L between T and B. Then / must be visible to both t
and b. For suppose otherwise: then there must be a point a of P on tl that
blocks visibility. Let /3 be the point on tb horizontal from a, as illustrated in
Fig. 2.6. Then somewhere between a and /3 there must be a vertical edge of
P, which is the left-bounding edge for fi, contradicting the fact that L is the
rightmost left-bounding edge.

Therefore L must have its top at or above T, for otherwise T could see a
bottom edge higher than B, contradicting the neighbor relation. Similarly,
L's bottom must be at or below B. Exactly analogous arguments establish
the same properties for R, the leftmost right-bounding edge.

Finally, we show that Q = n(L#B, R#T) is empty. Any vertical edge
that intersects the interior of Q must have an endpoint in Q, for otherwise it
would block the visibility of t for either L or R. So we can restrict discussion
to horizontal edges. Let H be a horizontal edge that intersects Q. Draw a
line of visibility from t to L or R (say R) such that it passes above H at some
point h, as illustrated in Fig. 2.6. Let H' be the horizontal edge of P that
minimizes the vertical distance to a point on th [H' may be the same as if].
Then if' is a bottom edge visible to T from t, contradicting the neighbor
relation. •

This geometric fact implied by the neighbor relation leads to the crucial
property of tabs.

LEMMA 2.3. If ab and cd are the horizontal edges of a tab, then any
quadrilaterization must include the quadrilateral abed.

Proof. Lemma 2.2 establishes that the situation is as illustrated in Fig. 2.7;

Fig. 2.7. A tab (ab, cd) forces the inclusion of quadrilateral abed.
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here L = ac. Any vertex visible to a, aside from b, c, and d, must lie below
d. But connecting a to such a point means that c cannot be part of any
convex quadrilateral. Similar arguments show that connecting c to any point
above b blocks a from being part of a convex quadrilateral. Thus the
quadrilateral abed is necessary. •

This is the key to the reductions: once a tab is isolated, the local
quadrilaterization is known. We now proceed to describe the three
reductions, after which the conditions supporting the reductions will be
established.

The Three Reductions

We have yet to describe the quantity that is reduced by the reductions, and
that forms the counter for the induction proof. A simple count of the
number of vertices is not adequate because the reductions do not necessarily
reduce the number of vertices. However, they either reduce the number of
vertices or the number of holes. This suggests defining an orthogonal
polygon Px of h1 holes and n1 vertices as smaller than P2 with h2 and n2 holes
and vertices if (1) h1<h2> or (2) h1 = h2 and n1<n2. Thus, for polygons
without holes, "smaller" just means fewer vertices. Finally, define a
polygon to be reducible if, whenever every smaller polygon P' is quadri-
lateralizable, then so is P.

LEMMA 2.4. If P has a pair of neighboring edges that do not form a tab,
then P is reducible.

Proof. Let the top edge T = ab and the neighboring bottom edge B = cd
with a to the left of c. Let b' = d#b and c' = a#cas illustrated in Fig. 2.8b.

Fig. 2.8. Reduction for non-tab neighboring edges ab and cd.
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Note that the rectangle R = D(a, d) = D(c', b') is empty. Modify P to a
multilevel polygon P' by introducing two tabs, one formed by the vertices
a,b', d, c, and the other by the vertices d, c', a, b. In the special case when
P has no holes, P' consists of two separate pieces P1 and P2, as illustrated in
Fig. 2.8a. In any case, if P' is disconnected, then both Px and P2 are smaller
than P, since each has no more holes than P but fewer vertices. We claim
that if, on the other hand, P' is connected, then P' has fewer holes than P,
and so is smaller. This claim may be established by the following argument.

Let T be a point immediately above T and /3 a point immediately below B.
Both T and /3 are exterior to P, since T is a top edge and B a bottom edge.
Now r and (5 are in the same connected component of the exterior of P' , as
they may be connected by a path that skirts either of the new tabs. But %
and j8 cannot be in the same connected component of the exterior of P:
since P' is connected, there must be a path within P that encircles either r
or /3, so that the cutting performed to make P' does not disconnect.
Therefore, the reduction has reduced the number of holes of P by 1, and
therefore P' is smaller.

Now assume the induction hypothesis: that all polygons smaller than P
are quadrilateralizable; this guarantees that the reduced P' is quad-
rilaterizable. By Lemma 2.3, each of the introduced tabs can be quadri-
laterized in just one way, as shown in Fig. 2.8a: ab'dc and bac'd must be
included. Now, in P, replace these two quadrilaterals by abdc as shown in
Fig. 2.8b, and otherwise use the remainder of the quadrilateralization of P'.
The result is a quadrilateralization of P. We have shown therefore that P is
reducible, establishing the lemma. •

The second reduction is based on the presence of certain types of tabs.
This reduction is more complicated, and requires several definitions. Call a
tab an up tab if its bottom edge extends horizontally further than its top
edge, and a down tab if its top extends further than its bottom. Of the two
bounding vertical edges guaranteed for a tab by Lemma 2.2, one connects
the top to the bottom edge; call the other the facing edge of the tab. The top
endpoint of the facing edge is called the step point and the adjacent
horizontal edge the step edge for an up tab; for a down tab the step point
and edge are at the bottom of the facing edge. These definitions are
illustrated in Fig. 2.9.

Although tabs can be quadrilaterized in just one way, the mere presence
of a tab does not lead immediately to a reduction. We classify tabs as either
good or bad, depending on whether they do or do not lead to a reduction.
Let ab and cd be the top and bottom edges of an up tab, and 5 its step point,
as in Fig. 2.9. Then an up tab is bad if (1) its step edge is a bottom edge,
and (2) D(b, s) is empty. These conditions are illustrated in Fig. 2.9. A
good tab is one that is not bad. Thus a good up tab is one either whose step
edge is a top edge, or whose step edge is a bottom edge but there is an edge
within D(b, s), and therefore necessarily a top edge. We will see below that
the presence of a top edge in D(b, s) permits the polygon to be cut near the
tab in such a way as to establish reducibility.
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step point

s» step edge

facing
edge

Fig. 2.9. Definitions of tab components; the tab (ab, cd) is bad.

LEMMA 2.5. If P has a good tab, then P is reducible.

Proof. Assume that the tab is an up tab; the argument for a down tab can
be obtained by turning every figure upside-down. Let the vertices be labeled
as in Fig. 2.9: ab and cd are the top and bottom edges of the tab, e is
adjacent to b, and s is the step point of the tab. Since the tab is good, either
some edge intersects the interior of \3(b, s), or the step edge is a top edge.
In the former case let xy be the lowest edge that intersects n(b, s), and in
the latter let xy be the step edge. In either case, let x be left of y.

The analysis proceeds with two cases: x is left of b, in which case x must
also be above e (Fig. 2.10a), or x is right of b, in which case it may be above
or below e (Figs. 2.10b and 2.10c). In all three figures, it may be that y =s
so that the step edge is a top edge.

Case 1 (x is left of b (Fig. 2.10a).). Replace xy and the chain e, b, a, c, d
with two tabs, one down tab defined by the chain y, b#y, b#c, d, and one
left horizontal tab defined by the chain x, y, y#b, b, e. Call the modified
polygon P'. HP has no holes, then these alterations separate P into two
polygons P1 and P2, as illustrated in Fig. 2.11a; otherwise the tabs overlap
on different levels in P'.

Assume that any polygon smaller than P can be quadrilateralized. If P
has no holes, then P' is clearly smaller, as both Px and P2 have fewer
vertices. If P has holes, then P' has one fewer hole. This can be seen by
considering two exterior points r and /3, with r above xy and /3 below cd;
the argument is identical to that used in Lemma 2.4. Thus in either case P'
is smaller and can therefore be quadrilateralized. It will be easier to assume

b c

Fig. 2.10. Three good tab cases.
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Fig. 2.11. Good tab reduction for Fig. 2.10a.

henceforth that P has no holes, although the argument is identical in the
general case. By Lemma 2.3, the introduced tabs may only be quad-
rilateralized in one way: the quadrilateral (y, y#b, b, e) is included in Px

and (y, b#y, b#c, d) is included in P2, as illustrated in Fig. 2.11a. Note that
the diagonal ey cuts off Px and yd cuts off P2 in such a manner that the two
quadrilateralizations can be put together as shown in Fig. 2.11b: the tab
quadrilaterals are removed and replaced by yebd, and abed is added. The
result is a quadrilateralization of P, establishing that P is reducible.

Case 2 (x is right of b (Figs. 2.10b and 2.10c).). The two situations
illustrated in Figs. 2.10b and 2.10c are handled with the same reduction; we
will use the case where x is above e (Fig. 2.10b) as illustrated. The
replacements made are the same as in Case 1, but the argument is a bit
different. Perform the same alterations as in Case 1, resulting, when P has
no holes, in Px and P2 as illustrated in Fig. 2.12a. As in Case 1, P' is smaller,
and so can be quadrilateralized. The tab introduced to P2 requires the
inclusion of the quadrilateral (y, b#y, b#c, d), just as in Case 1, but
(y, y#b) and eb are no longer neighbors in Ply and so do not form a tab.
Nevertheless, we claim that either the diagonal ey or bx is a part of any
quadrilaterization of Pi.

Suppose to the contrary that y#b lies on more than one quadrilateral.
Then a diagonal from y#b must either (1) go to the left of eb, blocking b
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Fig. 2.12. Good tab reduction for Fig. 2.10b.

from being a vertex of any quadrilateral, or (2) go above xy, blocking any
quadrilateral from containing v. Both (1) and (2) follow from the fact that
D(b, y) is empty, since xy was chosen to be the lowest edge that intersects
U{b, s).

Thus either (e, y, y#b, b) or (b, x, y, y#b) is in the quadrilateralization
of Pj. In the former case, we make the same replacements as in Case 1:
replace the end quadrilaterals in Pl and P2 with yebd. In the latter case
replace with ydbx. In both cases add abed. The result is a quad-
rilateralization of P, illustrated in Fig. 2.12b, establishing that P is
reducible. •

The third and final reduction depends on the presence of a tab pair: an up
tab U and a down tab D such that the step edge of U is the bottom edge of
D and the step edge of D is the top edge of U. Thus, as shown in Fig. 2.13b,
the tabs "face" one another without intervening edges. Reduction is
comparatively straightforward in this case.

LEMMA 2.6. If P contains a tab pair, then P is reducible.

Proof. Let ab, cd form the up tab, and fg, hi form the down tab, as
illustrated in Fig. 2.13b. Move ab up to form the tab («#/ , / ) , cd, and move
fg down to form the tab (b, g#b), hi. If P' is disconnected, then two pieces
JF\ and P2 (Fig. 2.13a) are both smaller than P. UP' is connected, then P'
has one less hole than P, as can be seen by considering paths from an
exterior point A just left of ac and an exterior point p just right of ig. Thus
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Fig. 2.13. Tab pair reduction.

P' is smaller. The induction assumption then guarantees that each is
quadrilateralizable, and Lemma 2.3 ensures the introduced tabs have a
unique quadrilateralization, as shown in Fig. 2.13a. These can be replaced
by abed, bdfh, and hifg in P, producing a quadrilateralization of P (Fig.
2.13b), and establishing that P is reducible. •

We now have established that if any one of the three structural features is
present in P, then P is reducible—that is, the quadrilateralization theorem
can be established by induction. We now turn to proving that in any
orthogonal polygon, at least one of the three structures is present. The
proof is by contradiction: we show that if P is irreducible, and therefore
contains no instances of the three reducible structures, then P must have an
infinite number of edges.

An important tool in the proof will be an association of every horizontal
edge E with a tab tab(E) as follows. If £ is a top edge, define n(E) to be the
highest bottom edge below E that is visible to E; if E is a bottom edge,
n(E) is the lowest top edge above E visible to E. Clearly n(E) is
well-defined for any E, so it may be composed an arbitrary number of
times. Note that if n{n{E)) = n\E) = E, then E and n{E) are neighbors.
Since P has a finite number of edges, the sequence E, n{E),
n\E), ..., nk{E), nk+\E), nk+\E), . . . must be finite. Since visibility is
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n«(E)

n(E)

Fig. 2.14. The chain induced by n(E) leads to tab(E).

symmetric it must be the case that ni+2(E) falls between or at the heights of
n\E) and ni+1(E): otherwise ni+\E) would map to nl{E), which would be
closer and visible by symmetry. Therefore, the sequence cannot terminate
with n\E) = nJ\E) with j-i>2; it must terminate with nk(E) = nk+2(E)
for some k, as illustrated in Fig. 2.14. As we observed above, this implies
that nk{E) and nk+1(E) are neighbors. Because we are assuming that P is
irreducible, it cannot have any neighboring edges that do not form a tab, by
Lemma 2.4. Therefore, nk(E) and nk+\E) form a tab, which is designated
as tab(E). Moreover, since an irreducible polygon cannot contain a good
tab by Lemma 2.5, tab{E) must be a bad tab.

We now prove that the relationship between E and tab{E) illustrated in
Fig. 2.14 is the only possible configuration.

LEMMA 2.7. Let E be a horizontal edge, tab(E) its tab, and F the facing
edge of tab{E). Then if E is a top edge, E falls horizontally between F and
the top edge of tab(E), and if E is a bottom edge, between F and the
bottom edge of tab(E).

Proof. Without loss of generality let the tab tab{E) be an up tab with top
edge nk+\E) and bottom edge nk(E) as illustrated in Fig. 2.15, and
consider the top edge nk~\E). If it overlaps horizontally with nk+\E), then
it must see a bottom edge A that is higher than nk(E), and if it extends left
of F, then it must see a bottom edge B that is higher than nk(E).3 The same
argument can be applied to nk~z(E), and so on, backwards to E. •

So far we have not explored the implications of the fact that since P is
irreducible, each tab(E) must be a bad tab. The next lemma depends
crucially on this constraint.

nk"1(E)

n*(E)

Fig. 2.15. E falls between F and the top edge of tab(E).

3. See Kahn et al. (1983) for a detailed proof of these claims.
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x E

t o b ( E )

Fig. 2.16. There must exist a bottom edge h(E) in the illustrated situation.

LEMMA 2.8. Suppose P is irreducible and that E is a bottom edge such
that tab(E) is a down tab not containing E. Then there is a bottom edge
h(E) that is not part of a down tab.

Proof. Let the top and bottom edges of the tab tab(E) be ab and cd, and
let F be the facing edge, s the step point, and S the step edge, as illustrated
in Fig. 2.16. Since tab(E) is a bad tab, (1) 5 is a top edge, and (2) D(s, c) is
empty. The second condition implies that E is below S. Now E cannot see
S, since tab(E) must fall between E and n(E). Thus a line xz from E to 5
must intersect an edge of P. Let v be the intersection closest to x. Clearly
the edge through y cannot be a bottom edge, since x sees y, nor can it be a
top edge, for the same reason that E cannot see S. So there must be a
vertical edge through y. Let h{E) be the horizontal edge adjacent to the
upper end point of this edge. If h(E) were a top edge, then either x sees it
or one even lower, contradicting the fact that abed is tab(E) and F faces this
tab. Thus h(E) is a bottom edge. However, h(E) could not be the bottom
edge of a down tab, for then x could either see the top of this tab, or some
edge even lower. •

Application of this lemma repeatedly will show that irreducible polygons
must have an infinite number of bottom edges. We must also employ the
restriction that irreducible polygons cannot contain a tab pair.

LEMMA 2.9. If P is irreducible, then P has an infinite number of edges.

Proof. Suppose to the contrary that P has a finite number of edges. Then,
as described previously, the sequence E, n(E), n2{E), . . . must lead to a
tab U, which we can assume without loss of generality to be an up tab. Let
ab be the top edge of the highest up tab U of P, and let S be t/'s step edge.
We seek to establish that there is a bottom edge E that is above ab and not
part of tab(E); then Lemma 2.8 will be applied to obtain a contradiction.

Because U is a bad tab, its step edge 5 must be a bottom edge. Now,
since S is above ab, tab(S) is above U, and since U is the highest up tab,
tab(S) is a down tab. So if S is not part of tab{S), then S can serve as E. So
assume that 5 is the bottom edge of the down tab tab{S). Let d be the step
point of U, e the upper endpoint of the vertical edge incident to b, / the step
point of tab{S), and let E be the horizontal edge meeting e. U and tab{S)
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Fig. 2.17. U is the highest up tab, and 5 its step edge.

cannot form a tab pair (since P is irreducible), so fi=b. Since U is a bad
tab, \3(b, d) is empty, which implies that E is a bottom edge. Since tab{S) is
also a bad tab, U(d,f) is empty, so e must be lower than /. These
relationships are illustrated in Fig. 2.17.

We now show that E is not part of tab(E). Suppose to the contrary that E
is the bottom edge of tab(E), and let T be its top edge. Since tab(E) must
be a down tab, there is a point x of T strictly between b and d horizontally.
x must be above S since D(b, d) is empty, and it must be below the top of
tab{S), since otherwise E and T would not be neighbors. But then x lies
within the rectangle determined by tab{S), guaranteed to be empty by
Lemma 2.2. This contradiction establishes that E is not part of tab(E).

Now we may apply Lemma 2.8 to E (since tab(E) is a down tab) to obtain
a bottom edge h(E) above E that is not part of a down tab. Since again
tab(h(E)) must be a down tab, h(E) is not part of tab(h(E)), and the
lemma is again applicable. Proceeding in this manner we obtain an infinite
sequence of distinct edges E, h(E), h2{E), . . . , thus establishing that P has
an infinite number of edges. •

We can summarize the argument in the following theorem.

THEOREM 2.1 [Kahn, Klawe, and Kleitman 1980]. Every orthogonal
polygon P (with or without holes) is convexly quadrilateralizable.

Proof. By Lemma 2.1 it suffices to consider polygons whose vertices are in
general position. The basis of the induction proof is established by a
rectangle, which is itself a convex quadrilateral. Assume then that all
polygons smaller than P can be quadrilateralized. Lemma 2.9 establishes
that P must contain an instance of at least one of the following structures:

(1) A pair of neighboring edges that do not form a tab.
(2) A good tab.
(3) A tab pair.

Lemmas 2.4, 2.5, and 2.6 show that each of these features permits P to be
reduced to a smaller P' in such a way that a quadrilateralization for P'
(available by the induction hypothesis) extends to a quadrilateralization for
P. D
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2.2.2. The Orthogonal Art Gallery Theorem

With Theorem 2.1 available, an easy proof of [n/4\ sufficiency for coverage
of an orthogonal polygon without holes is possible along the same lines as
Fisk's proof of [n/3\ sufficiency for general polygons.

THEOREM 2.2 [Kahn, Klawe, and Kleitman 1980]. [n/4\ guards are
sometimes necessary and always sufficient to cover the interior of an
orthogonal polygon of n vertices.

Proof. Necessity is established by the orthogonal version of Chvatal's
comb example: one guard is needed for each tong in Fig. 2.18.

For sufficiency, construct a graph G from a quadrilateralization of P by
adding both diagonals to each quadrilateral, as illustrated in Fig. 2.19.
Although it is not immediately obvious, G is planar, and therefore
4-colorable. We can establish 4-colorability without invoking the Four Color
Theorem as follows.

Let Q be the dual of the quadrilateralization of P: each node of Q
corresponds to a quadrilateral, and two nodes are connected by an arc if
their quadrilaterals share a side. Then Q must be a tree, for if it contained a
cycle, this would imply that P has a hole. Now proceed by induction.
Remove any leaf quadrilateral q, leaving the tree Q'. Since q has degree 1,
it may be removed by cutting along a single diagonal d of the quad-
rilateralization. Four-color Q' by the induction hypothesis, and reattach q
to Q'. Two of q's vertices are assigned different colors at the reattachment
points, the endpoints of d, and the other two vertices of q can be assigned
the remaining two colors.

Fig. 2.18. Orthogonal version of Fig. 1.2 establishes [n/4\ necessity.

\
^ /'/ '
A
/

/ / 1

' / '
/ /

/ y
^ 1/

A

/

/ '

/
I

Fig. 2.19. A 4-colorable graph derived from a quadrilateralization by adding all quadrilateral
diagonals.
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Since the quadrilaterals cover P and are convex, placing guards at the
vertices assigned the least frequently used color will cover the interior of P.
As this color must be used no more than [n/4\ times, the theorem is
established. •

Note that the quadrilaterals clipped in this proof are "orthogonal ears";
thus every orthogonal polygon has at least two such ears, providing an
orthogonal counterpart to Theorem 1.3.

We will see in Section 2.5 below that the powerful quadrilateralization
theorem is not necessary to prove [n/4j sufficiency, but it does seem to be
an essential tool in many other proofs. We now turn to an algorithm for
constructing a convex quadrilateralization.

2.3. SACK'S QUADRILATERALIZATION ALGORITHM

2.3.1. Introduction

The proof presented in the preceding section does not immediately lead to
an efficient algorithm. The first such algorithm is due to Sack (1984), and
although it has been superseded to a certain extent by Lubiw's algorithm
(Section 2.4), it remains interesting because it is an exact parallel of Lee and
Preparata's monotone partitioning algorithm (Section 1.3.2). In addition,
when supplemented by proofs of correctness, it can be seen as an alternative
proof of the quadrilateralization theorem. Most of the proofs will only be
sketched in this section; the reader is referred to Sack's thesis (Sack 1984)
for more thorough proofs.

His algorithm factors the problem into three subproblems: partitioning
into monotone polygons, quadrilateralization of monotone polygons, and
quadrilateralization of "pyramids." This latter problem (first analyzed in
Sack and Toussaint (1981)) is solved repeatedly during the quadri-
lateralization of a monotone polygon. We will describe the algorithm
"bottom up," starting with pyramids.

2.3.2. Pyramid Quadrilateralization

Define a (vertical) histogram as an orthogonal polygon with one horizontal
edge (the base) equal in length to the sum of the lengths of all the other
horizontal edges (Edelsbrunner et al, 1984). A (vertical) pyramid is then
defined as a vertical histogram that is monotone with respect to the vertical
direction.4 It is easily seen that a pyramid must consist of two (perhaps
empty) "staircases" as illustrated in Fig. 2.20. It is not surprising that these
highly specialized polygons are easy to quadrilateralize.

Label the reflex vertices on the left staircase ll} . . . , la-x from top to

4. This is equivalent to being horizontally convex, which requires that the polygon meet every
horizontal line in a single segment.
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\

Fig. 2.20. Quadrilateralization of a pyramid by list merging.

bottom, and label the left endpoint of the pyramid base la. Similarly let
rx, . . . , rb-1 be the reflex vertices in the right staircase sorted by height, and
let rb be the right endpoint of the base.

Now merge the two sorted lists of vertices; for the example in Fig. 2.20
the result is

Finally, for each vertex lt in the list, draw a diagonal to the next r}- in the list,
and similarly for each rj} draw a diagonal to the next /,-. We will show that
this procedure quadrilateralizes the pyramid in linear time. First we present
a more formal description of the algorithm.

Algorithm 2.1 (Pyramid Quadrilateralization)
(1) Form two lists la, . . . , l2) l\ and rb, . . . , r2, r1} sorted bottom to top,

of the reflex vertices in the left and right staircases, with la and rb the
endpoints of the base.

(2) Merge these two sorted lists; call the result L.
(3) target ^head(L).

L<-tail(L).
while L not empty do
begin

if head(L) on same staircase as target
then target^-head(L)
else output diagonal (head(L), target)

L«-tail(L).
end

It is clear that this algorithm only requires linear time: the stairway lists
can be constructed (1) in linear time, merging (2) takes only linear time,
and the while loop (3) removes an element with each pass, and so also
consumes just linear time.

We now turn to correctness. Each pair of adjacent reflex vertices on one
staircase is connected to a common vertex on the other staircase. Thus the
pieces of the induced partition are quadrilaterals. All the convex vertices
are included in these quadrilaterals, and every reflex vertex is the source for
a diagonal. Thus the quadrilaterals cover the polygon. It only remains to
show that the quadrilaterals are convex.
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B

Fig. 2.21. /, is connected to a vertex in B.

Let ^ be a reflex vertex on the left stair, as illustrated in Fig. 2.21, and let
Yj be one of the target vertices on the right stair to which it is connected by
the algorithm. Since ry is on the right stair, it cannot be in region A of the
figure. Since r; is later in the list L than /,-, it is lower and cannot be in region
C. Thus Yj is in region B, and so the concavity at /, is "broken." Since every
reflex concavity is broken, the resulting quadrilaterals are all convex. This
completes the proof of correctness.

In the next section we will need a slightly stronger result. Define a
pseudo-pyYamid5 as a monotone pyramid whose horizontal step edges may
be slanted—that is, non-horizontal but sloping upwards maintaining
monotonicity—and whose base edge may be sloped in either direction as
long as both endpoints are below the lowest reflex vertex; see Fig. 2.22. It is
easy to establish that Algorithm 2.1 also works for pseudo-pyramids, and we
will use this result in the next section.

2.3.3. Orthogonal Monotone Quadrilateralization

Sack's monotone quadrilateralization algorithm makes a single pass over the
polygon from top to bottom (the polygon is assumed to be monotone with
respect to the vertical). Let the horizontal edges encountered in such a pass
be ex,..., en, with e1 highest. The algorithm will sometimes treat one of
the diagonals it outputs as one of the eh a slanted horizontal edge. In either
case, the action taken depends on whether e, is a top edge or a bottom edge.
Top edges are pushed onto a stack, forming the non-vertical edges of a
pseudo-pyramid. Bottom edges cause one or two diagonals to be output,
and perhaps the pyramid algorithm to be called to quadrilaterahze the
pyramid contained in the stack.

Edges will be identified as touching the left, the right, or both chains. Of

Fig. 2.22. A pseudo-pyramid.

5. Sack's nomenclature is "worn-pyramid."
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two edges a and b touching the left chain only, a is said to extend further
inside than b if tf's right endpoint is right of 6's right endpoint; the term is
similarly defined for edges touching the right chain only.

The algorithm is presented next, followed by an example and analysis.

Algorithm 2.2 (Monotone Quadrilateralization).
Sort horizontal edges from top to bottom; let elf

Push ex onto stack S.
i^2
while S not empty or i =£ n do
begin

if i = n then
begin

Push e, on S.
Call pyramid algorithm for 5.
exit.

end.

en be the result.

case et

(1) top segment:

(2)

Push e, on 5.

Pop 5.bottom segment: e
case e
(A) e and et touch same chain:

Join other ends of e and et by diagonal d.
if e touches both chains or e extends further inside
than e,

then
begin

Push d on S.

end
else et<—d {NB: i is not incremented}

(B) e and e, are on opposite chains:
Join e and e, with diagonals dx (higher) and d2.
Push dx on 5.
Call pyramid algorithm for S;
Push d2 on 5;

end

An example illustrating the execution of the algorithm is shown in Fig.
2.23; Table 2.1 shows the stack after processing et. Note that an upside-
down pyramid is quadrilateralized directly, without calling the pyramid
algorithm (e.g., ex through e4); only pyramids with bases at the bottom are
pushed onto the stack (e.g., diagonals I through K). This asymmetry makes
it clear that the upright pyramids do not have to be handled with a special
algorithm, but factoring the problem this way does make it easier to
understand (and prove correct).
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Fig. 2.23. A partition produced by the monotone quadrilateralization algorithm.

Table 2.1

1

2

3

4

5

D

6

7

8

9

10

G

11

12

13

14

15

16

17

1

A

B

C

5C

C

E

7E

FE

9 F E

9 F E

FE

H E (pyr)

I

111

JI

13 JI

14 13 JI

15 14 13 JI

K15 14 13 JI (pyr)

L

17 L (pyr)
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We now sketch an inductive proof of correctness; a more detailed proof
may be found in Sack (1984). The induction hypothesis is the conjunction of
these three statements:

(1) The stack S contains only the non-vertical edges of an upright
pseudo-pyramid.

(2) No two edges in S contain points with the same y-coordinate.
(3) The next edge examined by the while loop, ei} is connected by a

vertical edge to the lowest edge of S on the same chain.

These statements are trivially true initially. If et is a top edge (Case 1), the
stack is augmented, and by (3), this is a proper augmentation of a pyramid.
Clearly statement (3) remains true, either because ei+1 is on the chain
opposite that of et, or because ei+1 is directly connected to et by a vertical
edge.

If e, is a bottom edge on the same chain as the stack top e (Case 2A), then
regardless of whether e touches both chains, or extends further inside than
eh (3) guarantees that adding a single diagonal d will cut off a convex
quadrilateral. If e extends further inside, then d represents a "wearing
down" of the pyramid, and is properly pushed. Otherwise d acts just like a
bottom edge. It is easily verified that in either case the truth of statements
(2) and (3) is maintained.

If et is a bottom edge on the chain opposite that touched by the stack top
e (Case 2B), then by properties (2) and (3), the region from the top of e to
e, is empty, and et and e can be connected by a pair of diagonals. The upper
diagonal connects the two chains of the pyramid in S, and the stack is
emptied by a call to Algorithm 2.1. The lower diagonal forms a new
pyramid top.

This completes the proof of correctness. The algorithm clearly requires
just linear time: sorting the horizontal edges can be accomplished by a
linear merge of the edges in the two monotone chains, and the while loop
makes at most as many passes as there are edges and diagonals, which is
also linear. Finally, the pyramid algorithm is itself linear.

As with the generalization of pyramid to pseudo-pyramid, it will be
important in the next section to generalize the class of polygons for which
Algorithm 2.2 applies from orthogonal monotone to pseudo-monotone
polygons. These are polygons that are:

(1) monotone with respect to the vertical,
(2) composed of vertical edges alternating with non-vertical edges,

which must be either horizontal or upwardly slanting to satisfy (1),
(3) and such that the shadow of a slanted edge contains no vertices,

where the shadow of a slanted edge is defined to be the set of points
of the polygon visible to e by a horizontal line segment that is
nowhere exterior to the polygon, but not including the endpoints
of e.

This third requirement (similar to clause (2) of the induction hypothesis) is
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Fig. 2.24. A non-quadrilateralizable monotone polygon.

needed to avoid polygons such as the one shown in Fig. 2.24 that do not
admit a convex quadrilateralization.

It is easily established that Algorithm 2.2 will work on pseudo-monotone
polygons. The next section presents an algorithm for partitioning an
orthogonal polygon into pseudo-monotone pieces.

2.3.4. Partitioning into Monotone Polygons

Define a bottom peak to be a bottom horizontal edge whose endpoints are
both reflex vertices; define a top peak similarly for top edges. Then it is
clear that an orthogonal polygon fails to be monotone with respect to the
vertical direction precisely when it contains top or bottom peaks: these
peaks play the role of up and down cusps in a general polygon (Section
1.3.2). Sack's algorithm is exactly analogous to Lee and Preparata's: the
polygon is cut at each bottom peak by adding diagonals to the closest
horizontal edge above it, and similarly for top peaks. The geometric lemma
that permits the diagonals to be added is as follows.

LEMMA 2.10. Let ab be a bottom peak, and let cd be the lowest
horizontal edge above ab that is partially visible to either a or b. Then:

(a) If cd is a top edge, then the rectangle bounded by ab, cd, and the
facing edges of this neighboring pair (see Lemma 2.2), is empty. See
Fig. 2.25a.

(b) If cd is a bottom edge, then ab and cd do not overlap horizontally,
and the rectangle bounded by ab, the visible endpoint of cd, and the
"facing" vertical edges, is empty. See Fig. 2.25b.

Proof. (Sketch). Part (a) is equivalent to Lemma 2.2. For part (b), if cd

W/,
III,'//ia

c

m
b

d

7/WFf/t/MA

a b
Fig. 2.25. Empty rectangles above bottom peaks.
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and ab overlapped horizontally, then there would have to be an edge lower
than cd and visible to a or b, contradicting the assumption that cd is the
lowest. An argument similar to that used in Lemma 2.2 can be used to
establish the emptiness of the rectangle illustrated in Fig. 2.25b. •

Because the algorithm is so similar to Lee and Preparata's Algorithm 1.2,
we will only present a high-level version here; a detailed version may be
found in Sack (1984). The reason that Lee and Preparata's algorithm cannot
be used without modification is that the monotone pieces resulting from
their algorithm do not necessarily satisfy condition (3) in the definition of
"pseudo-monotone.''

Algorithm 2.3 (Pseudo-Monotone Partitioning of an Orthogonal Polygon).
Sort the horizontal edges, top to bottom; let e1} . . . , en be the result.
for i = 2 to n do

if et is a bottom peak
then e <— lowest horizontal or slanted edge above and visible to et.
if e is a top edge

then Join e and et into a convex quadrilateral
else Join the visible endpoint of e to the closest endpoint of e,.

{Data structure manipulation here.}
else if et is a top peak then {Similar to above.}

This algorithm makes a single pass over the polygon. The algorithm could
be simplified by handling the bottom peaks on a top-to-bottom pass and the
top peaks on a bottom-to-top pass (as is done in Algorithm 1.2), but we will
maintain this more complicated form to simplify the correctness discussion.
Note that the step that joins e and et into a convex quadrilateral is a special
case of the first reduction (of neighboring edges that do not form a tab) in
the Kahn, Klawe, Kleitman proof presented in the previous section.

An example of the partition created by the algorithm is shown in Fig.
2.26, where upward pointing arrows resolve bottom peaks, and downward
arrows resolve top peaks.

We now argue that this algorithm partitions an orthogonal polygon into
pseudo-monotone pieces in O(n log n) time. Assume as an induction
hypothesis that all bottom and top horizontal peaks above a certain height

Fig. 2.26. A partition produced by the monotone partition algorithm.
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a b

Fig. 2.27. The diagonals chosen by the algorithm pass through empty (shaded) regions.

have been resolved by the algorithm, and that the resulting monotone
chains above this height satisfy the pseudo-orthogonal criteria:

(1) Vertical and slanted edges alternate.
(2) The shadow of each slanted edge contains no vertices.

Consider now the next peak encountered, and assume it is a bottom peak
et = ab (the argument for a top peak is slightly different and will not be
presented).

Let cd be edge e selected by the algorithm. There are two cases,
illustrated in Fig. 2.27.

Case A {cd is a top segment). Since cd satisfies condition (2) above, both c
and d project horizontally to the same vertical edge. By a slight modification
of Lemma 2.10, the entire shaded region of Fig. 2.27a is empty, and abed
forms an internal convex quadrilateral.. Diagonals ac and bd satisfy both
properties (1) and (2) of the induction hypothesis. Compare Fig. 2.8: in Fig.
2.27a, ab and cd also are non-tab neighboring edges.

Case B {cd is a bottom segment). The situation is illustrated in Fig. 2.27b.
Assume that the diagonal added by the algorithm is ad. This diagonal is
easily seen to satisfy condition (2) of the induction hypothesis, but it does
not satisfy condition (1), as now ad and dc are consecutive slanted edges.
The solution is to replace a by d#a in the upper polygon. Then the upper
polygon satisfies conditions for a pseudo-orthogonal monotone polygon, and
can therefore be quadrilateralized by Algorithm 2.2. Is is possible to show
(see Sack (1984)) that this algorithm will not use d#a as the endpoint of a
diagonal, and that the unique quadrilateral that includes this vertex remains
convex when d#a is replaced by a.

This completes our sketch of the correctness of Algorithm 2.3. Its time
complexity is O{n log n) for the same reasons Lee and Preparata's has this
bound: the initial sorting of the horizontal edges requires O{n log n), and
there are O{n) insertions and deletions into a dictionary data structure. I
believe that Tar j an and Van Wyk's trapezoidalization algorithm mentioned
in Section 1.3.2 can be used to improve the speed of Sack's algorithm to
O{n log log n).
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2.4. LUBIW'S PROOF AND ALGORITHM

2.4.1. Introduction

In this section we present a clever and succinct proof of the convex
quadrilateralization theorem due to Lubiw (1985). Her proof leads rather
directly to another O(n log n) algorithm. In fact, we present two proofs: one
for orthogonal polygons without holes, and one for those with holes. The
latter obviously encompasses the former, but the proof for polygons without
holes is so elegant that it deserves separate consideration.

Both proofs have the same structure, and depend on the following
observation. From a quadrilateralization of an orthogonal polygon (with or
without holes), remove one quadrilateral. What remains are perhaps several
polygons each of which is quadrilateralizable. But these polygons are not (in
general) themselves orthogonal. Thus there is a broader class of polygons
beyond orthogonal to which the theorem applies; no one has characterized
this class to date. Lubiw identified such classes for orthogonal polygons both
with and without holes. For each member of the class, there is a
quadrilateral whose removal results in smaller polygons within the same
class. The quadrilateralization theorem follows immediately by induction.

Kahn, Klawe, and Kleitman's proof (Section 2.3) stays within the class of
orthogonal polygons at all times; Lubiw's proof starts with a wider class
more suited to the removal of quadrilaterals. The result is a simpler proof.

2.4.2. Orthogonal Polygons without Holes

Define the dual of a quadrilateralization of a polygon as in Section 2.2.2: a
graph with a node associated with each quadrilateral, and an arc between
two nodes if the corresponding quadrilaterals share a diagonal.6 As
previously mentioned, the dual graph of a quadrilateralization of a
orthogonal polygon without holes is a tree, for the same reason that the
dual of a triangulation of a polygon without holes is a tree (Lemma 1.3).
Removal of one quadrilateral from a quadrilateralization of a polygon
therefore disconnects the polygon into quadrilateralizable pieces, each of
which is orthogonal except for one slanted edge. This observation motivates
the following definition.

A 1-orthogonal polygon is a polygon of no holes with a distinguished edge
e called the slanted edge, such that the polygon satisfies four conditions:

(1) There are an even number of edges.
(2) Except for possibly e, the edges are alternately horizontal and

vertical in a traversal of the boundary.
(3) All interior angles are less than or equal to 270°.
(4) The nose of the slanted edge contains no vertices.

6. These graphs will be studied further in the next chapter.
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Fig. 2.28. The nose of a slanted edge.

The nose of a slanted edge e is the right triangle toward the inside of the
polygon whose hypotenuse is e; the nose includes the interior of e but
excludes the remainder of the boundary. See Fig. 2.28. Clearly the
requirement that the nose not contain vertices implies that it is completely
empty, since all other edges must be vertical or horizontal and could not
intersect the nose without including their endpoint.

An orthogonal polygon is 1-orthogonal, where e may be any edge.
Violation of any of the four conditions can lead to non-quadrilateralizable
polygons, as is illustrated in Fig. 2.29.

THEOREM 2.3 [Lubiw 1985].
quadrilateralizable.

Any 1-orthogonal polygon P is convexly

Proof. The proof is by induction. If P has just four edges, then it has
(perhaps after rotation by 90°) two horizontal edges and one vertical edge
by (2). Regardless of the orientation of the slanted edge, P must be convex.
This establishes the basis of the induction.

Assume now that P has more than four edges. We will show that there
exists a removable quadrilateral, a convex quadrilateral whose removal
disconnects P into smaller 1-orthogonal polygons.

Properties (1) and (2) jointly imply that the two edges adjacent to the
slanted edge e = ab are either both horizontal or both vertical. The interior
angle requirement (3) then implies that one of the two situations illustrated
in Fig. 2.30 holds (perhaps after rotation and/or reflection). In both cases, a

3 4

Fig. 2.29. Four unquadrilateralizable polygons, each violating one of the 1-orthogonal
conditions.
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Fig. 2.30. The slanted edge ab in standard orientation; the shading indicates the interior of
the polygon.

top edge has b as its left endpoint. The removable quadrilateral has a and b
as two of its vertices. We now specify the other two vertices c and d. Vertex
c is the leftmost then highest vertex within the region R1 shown in Fig. 2.31.
Rx is closed along the left and top, does not include the two left corners,
and is open elsewhere. Since R1 contains at least the vertex at the other end
of the top edge E incident to b, c must exist. If c is not this other endpoint,
then because it is leftmost, it is at the top of a vertical edge. Thus it is either
at a corner as in Fig. 2.32a, or at the other end of E as in Figs. 2.32b and
2.32c.

Fig. 2.31. Definition of vertex c and region R1.

Corner d of the removable quadrilateral is specified according to two
cases. Define region R2 as shown in Fig. 2.33. It is closed on the top and
right, excludes a and c, and is otherwise open. Define d to be, if it exists,
the highest then rightmost vertex in R2. If either of the situations illustrated
in Fig. 2.32a or 2.32b obtains, then R2 contains at least the vertex at the
lower end of the vertical edge F incident to c, and so d is defined. In these
cases, if F =£ cd, then because d is highest, it is at the top of a vertical edge,
and because rightmost, it is at the right of a horizontal edge, and thus at a
corner.

If the situation shown in Fig. 2.32c holds, however, d may be the left
endpoint of a bottom edge G in R2 (marked as d' in Fig. 2.34a) or R2 may
contain no vertex at all (Fig. 2.34b). In either of these situations, define the
region R3 as illustrated; it is closed on the left and bottom, excludes the two
left corners, and is otherwise open. Now define d to be the leftmost then
lowest vertex in R3. Since R3 includes at least the right endpoint of G, d
must exist.

a b c

Fig. 2.32. Either c is at a corner (a) or at the other end of E (b and c).
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Fig. 2.33. Definition of vertex d and region R2.

Having now defined vertices c and d under all circumstances, remove the
quadrilateral abed. First note that it is convex: the angle at b is convex
because c is in /?x; the angle at a is convex because d is in R2 or R3; the
angles at c and d are convex both when R2 and R3 are applicable.

Removal of abed potentially leaves three polygonal regions, bounded by
be, cd, and ad. Each of these diagonals is clearly the only slanted edge in its
respective polygon; thus condition (2) in the definition of 1-orthogonal is
satisfied for each. Condition (3), that all angles are less than or equal to
270°, is easily seen to hold by examining the cases considered above, which
are gathered in Fig. 2.35. That the nose of each slanted edge is empty
(condition (4)) is guaranteed by choice of c as leftmost then highest, and the
similar constraints on d. These constraints force the shaded regions in Fig.
2.35 to be empty. In all cases, the nose of each slanted edge is empty.

Finally, to prove that each remaining polygon has an even number of
edges (condition (1)), we use the following clever counting argument of
Lubiw. Define the endpoints of top, bottom, left, and right edges as
partitioned into two types as specified in Fig. 2.36a. Endpoints of a slanted
edge are given a type by the adjacent horizontal or vertical edges. It should
be clear that each vertex of a 1-orthogonal polygon is assigned an
unambiguous type by this scheme since, for example, a convex corner
formed by a bottom and a left edge can only be a type 1 vertex. In any
traversal of a 1-orthogonal polygon, the vertices alternate in type. Now note
that a is type 1 and b is type 2 (Fig. 2.30); the cases shown in Fig. 2.35 show
that c is always type 1 and d always type 2. Thus each of the diagonals be,
cd, and ad has both type 1 and type 2 endpoints (see Fig. 2.36b), and

a b

Fig. 2.34. Definition of vertex d and region R3.
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Fig. 2.35. The noses of the diagonals of the removable quadrilateral are all empty (shaded
regions).

therefore the polygon pieces bounded by these diagonals maintain the type
1/2 alternation. Thus they must have an even number of vertices.

We have therefore shown that each of the pieces remaining is a
1-orthogonal polygon. Clearly they have fewer vertices than P, so the
induction hypothesis guarantees they are quadrilateralizable. Joining their
quadrilateralizations to abed yields a quadrilateralization of P, establishing
the theorem. •

An example of a quadrilateralization obtained by repeatedly removing
the removable quadrilateral defined in this theorem is shown in Fig. 2.37. In
the original polygon, edge 12 is chosen as the (degenerate) slanted edge.
Rotations and reflections are often necessary to orient the slanted edge to
match Fig. 2.30, but the procedure is entirely deterministic.

We now turn now to the more difficult case of orthogonal polygons with
holes.

a b

Fig. 2.36. Vertex types; the shading in (a) represents the polygon interior.
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Fig. 2.37. Quadrilateralization by repeated deletion of a removable quadrilateral. The
notation "-90°, Y" means that the figure is rotated 90° clockwise and then reflected in the
Y-axis; the remaining arrow labels may be interpreted similarly.

2.4.3. Orthogonal Polygons with Holes

Because the dual of a quadrilateralization of a polygon with holes is not a
tree, the removal of one quadrilateral may introduce more than one slanted
edge into the remainder. For example, removal of any quadrilateral from
the polygon shown in Fig. 2.38 introduces two slanted edges. Thus the class
of 1-orthogonal polygons will not be sufficient to prove the more general
theorem by the same technique.

Here Lubiw uses the same basic insight (independently) employed by
Sack with his pseudo-pyramids and pseudo-monotone orthogonal polygons:
if the horizontal edges of an orthogonal polygon are slanted, and some
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Fig. 2.38. Removal of any quadrilatenral produces two slanted edges.

further conditions are satisfied, then the resulting polygon is still quad-
rilateralizable. This leads to the following definition:

A pseudo-orthogonal polygon is one that satisfies three conditions:

(1) Every other edge in a traversal is vertical. The other edges are called
slanted; note a slanted edge may be horizontal.

(2) All interior angles are less than or equal to 270°.
(3) The shadow of any slanted edge contains no vertices.

The shadow of an edge e is, as defined in Section 2.2, the horizontal
projection of e. For the precise purposes of her proof, Lubiw defines the
shadow to be open on the bottom if e is a left edge, and open on the top if a
right edge, and in either case not including e's endpoints; see Fig. 2.39.
Closing the open boundaries does not lead to unquadrilateralizable poly-
gons, but the definition as stated leads to precise meshing of regions in the
proof. A horizontal edge is defined to have no shadow; thus all orthogonal
polygons (with or without holes) are pseudo-orthogonal.

Fig. 2.39. The shadow of an edge; the shading indicates the interior of the polygon

THEOREM 2.4 [Lubiw 1985]. A pseudo-orthogonal polygon P is con-
vexly quadrilateralizable.

Proof. The proof is by induction. If P has just four edges, then two must
be horizontal by (1), and regardless of the slant of the slanted edges, P is
convex. This establishes the basis step.

If P has more than four edges, then we show that P has a removable
quadrilateral: one whose removal leaves smaller polygons which are
themselves pseudo-orthogonal. Toward this end, define the upper neighbor
u of a vertex v as the lowest then rightmost vertex above v that is visible to
v, but not connected to v by a slanted edge, and strictly above v if v is on a
top edge.7 Not every vertex has an upper neighbor: for example, a convex
corner at the junction of a top edge and a right edge has none.

We can now specify a removable quadrilateral. Throughout the remain-
der of the proof we will use x < y to mean that x is lower than y, or they

7. These latter qualifications will not be needed in the proof, but only in the algorithm
correctness discussion to follow.
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b b

a b

C <J

Fig. 2.40. b always has an upper neighbor; the shading indicates the interior of the polygon.

have the same height and x is right of v. Let ab with a < b be a bottom
edge, and let b's upper neighbor be c. If c is on a top edge cd, then afr and
cd define a removable quadrilateral.

We must establish that this quadrilateral always exists. First we show that
b always has an upper neighbor. If ab is not horizontal, then the vertical
edge incident to b must be above b to satisfy the 270° requirement (2) (see
Figs. 2.40a and 2.40b). The other endpoint of this edge guarantees that b
has an upper neighbor. If ab is horizontal, then b is at the left. If the angle
at b is convex (Fig. 2.40c) then the situation is as above. If the angle is
reflex (Fig. 2.40d), then there clearly must be at least two vertices above
and visible to b, so again b has an upper neighbor.

Second, we need to show that there is an ab as specified with fr's upper
neighbor on a top edge. Let ab with a < b be the bottom edge with b
maximum among all bottom edges with respect to " < " . Thus b is the
uppermost upper endpoint of all the bottom edges. Then fr's upper neighbor
c cannot be on a bottom edge. Since every vertex has a bottom or top (i.e.,
a slanted) edge incident to it by (1), c must be on a top edge.

Having shown that the quadrilateral always exists, we now show that it is
removable. Let A be the set of points vertically between b and c, excluding
those right of b and left of c, as illustrated in Fig. 2.41. Since c is the upper
neighbor of b, A contains no vertices. Let d be the other end of the top
edge containing c. If d < c, then it must be that d < b to avoid A. But this
would put b in the shadow of dc, violating condition (3). Thus we must have

Fig. 2.41. The region A between b and its upper neighbor c.



64 ORTHOGONAL POLYGONS

Fig. 2.42. The removable quadrilateral in all its orientations. The horizontal solid and dashed
edges represent the closed and open boundaries of B.

c<d. This leads to four cases, as illustrated in Fig. 2.42. Let B be the union
of A and the shadows of ab and cd. Then B is empty and so the
quadrilaterals illustrated in the figure are each internal to P.

Next we show that the removable quadrilateral is convex. If ab is not
horizontal, then the angle at a is clearly less than 180°, and the angle at b is
less than 180° because the vertical edge incident to b must extend upwards
to satisfy (2). If ab is horizontal, then both angles are less than 180° since c
and d are both above ab. Exactly analogous arguments show that the angles
at c and d are less than 180°, thereby establishing that the quadrilateral is
convex.

Removal of the quadrilateral introduces two new slanted edges in each
case of Fig. 2.42. Notice that in each case, the shadow of these slanted

\ >-

/

/

1

2 . ,

4

" \ 7

Fig. 2.43. Quadrilateralization by repeated deletion of removable quadrilaterals. The
quadrilaterals are numbered in the order in which they are removed. The dashed arrows
represent the upper neighbor relation.
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edges is in B and so is empty, thus satisfying condition (3). Since vertical
edges are incident to a, b, c, and d, the alternation of vertical and slanted is
maintained (1). Finally, since angles less than or equal to 270° are being
subdivided by the removal, condition (3) holds for the remainder. Thus the
removal leaves pseudo-orthogonal pieces. Applying the induction hypothe-
sis to these pieces, and merging the resulting quadrilateralizations with the
removed quadrilateral, provides a quadrilateralization for P and establishes
the theorem. •

An example of repeated application of the theorem to an orthogonal
polygon with two holes is shown in Fig. 2.43. In the next section we show
that this procedure can be implemented in O(n logn) time.

2.4.4. Lubiw's Algorithm

The proof in the preceding section leads to a surprisingly straightforward
O(n log n) algorithm for quadrilateralizing a pseudo-orthogonal polygon.
First, the upper neighbors of all vertices are found in O(n log n) time by a
procedure nearly identical to Lee and Preparata's monotone partitioning
algorithm (Section 1.3.2). Then quadrilaterals are removed as in Theorem
2.4 in linear time. The reason this simple approach works is the remarkable
fact, proved by Lubiw, that the upper neighbors do not change when
quadrilaterals are removed. If they did, recomputation would be necessary,
and it would be very difficult to achieve O(n logn) time.

Because the algorithm is so simple and similar to others discussed
previously, it will only be sketched. However, its correctness will be proved
in detail.

The first step of the algorithm is to find the upper neighbor of every
vertex. Note the similarity between the connection of a vertex to its upper
neighbor and the connection of a cusp to the closest visible vertex above it
that is used in Lee and Preparata's monotone decomposition algorithm, or
Sack's algorithm 2.3. Upper neighbors may be found in a single plane sweep
in the same way that all upward cusps can be cut in a single sweep. The
details differ in only minor ways; see Lubiw (1985) for a precise exposition.

The second step of the algorithm is to make a list L of all bottom edges,
sorted bottom to top by their uppermost then leftmost endpoint. This can
be accomplished during the same sweep that computes upper neighbors.

The final step of the algorithm is to remove the uppermost edge ab in L,
identify the upper neighbor c of its upper endpoint b, and remove the
removable quadrilateral specified in Theorem 2.4. This bottom edge ab
satisfies the conditions of the theorem because it is the highest bottom edge.
Moreover, the (at most) two new bottom edges introduced by the removal
of the quadrilateral are above all other bottom edges in L, and so are placed
the end of L.

What remains to be established is that the upper neighbors computed in
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the first step remain valid throughout the execution of the algorithm.
Lubiw's precise statement of this property is the following lemma.

LEMMA 2.11. Let P' result from P by repeated removal of quadrilaterals
according to Theorem 2.4. Then if ab is a bottom edge of P' with a < b, the
upper neighbor c of b in P' is the same as the upper neighbor of b in P.

Proof. Let bx be the vertical edge incident with b in P'. There are three
possible relationships between a, b, and x, as illustrated in Fig. 2.40: x may
be below b only if ab is horizontal (Fig. 2.40d); otherwise it must be above
(Figs. 2.40a, 2.40b, and 2.40c). The vertical edge incident to a vertex is only
removed with a quadrilateral when the vertex itself is removed; thus bx is
also the vertical edge incident to b in P.

Let c be the upper neighbor of b in P. Let A be the union of the two
shadows of the chord be towards the left and right. Because c is an upper
neighbor of b, A is devoid of vertices. The only way that c could not be the
upper neighbor of b in P' is if the removal of some quadrilateral Q blocks
the line of visibility be. Since A is empty, such a Q must contain a vertex
y < b and a vertex z>c. \ib itself is not a vertex of Q, then it falls within a
shadow of one of <2's edges, inside the region B in the proof of Theorem
2.4, a contradiction. So b must be a corner of Q.

Consider now two cases. Suppose b is on the top edge forming Q. Then
either b is at the right of a horizontal edge (Fig. 2.44a) or it is the highest
endpoint of the top edge (Fig. 2.44b). Note that in the former case, the
definition of upper neighbor implies that the left endpoint of the horizontal
edge incident to b is not the upper neighbor of b, by requiring that the
upper neighbor be strictly above b in this case. In either case, Q must lie
below b, and there can be no vertex z of Q, z>c.

Finally, suppose b is on a bottom edge forming Q. Then examination of
Fig. 2.42 shows that b is either removed or converted to a lowest vertex of a
bottom edge. And once it is this type of vertex, further quadrilateral
removals can only reduce the internal angle, keeping it lowest on a bottom
edge, contradicting our assumption that it is highest on a bottom edge in P'.

Thus no such obstructing Q will be removed by the algorithm, and
therefore the upper neighbor relation remains fixed throughout. •

As with Sack's algorithm, I believe Tarjan and Van Wyk's trapezoidaliza-
tion algorithm improves the speed of Lubiw's algorithm to O(n loglogrc).

a b

Fig. 2.44. Removal of Q cannot block b from its upper neighbor.
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2.5. PARTITION INTO L-SHAPED PIECES8

Although the convex quadrilateralization theorem is deep and beautiful, it
is not the only means of proving that [n/4\ guards are sufficient to cover an
orthogonal polygon, nor the only avenue for placing the guards in
O(n log n) time. In this and the succeeding section, a different proof and
algorithm are offered, based on a partition into L-shaped pieces rather than
convex quadrilaterals. In this section we reprove the orthogonal art gallery
theorem (Theorem 2.2), using the L-shaped partition introduced in
O'Rourke (1983b).

2.5.1. Main Inductive Argument

The proof is phrased in terms of r, the number of reflex vertices of the
orthogonal polygon, rather than n, the total number of vertices. This
rephrasing is justified because there is a fixed relationship between r and n:

LEMMA 2.12. In an orthogonal polygon of n vertices, r of which are
reflex, n = 2r + 4.

Proof. Let c be the number of vertices at which the internal angle is JT/2;
clearly, n = c + r. Since the sum of the internal angles of a simple polygon is
(n — 2)TT, and since the angle at each reflex vertex is 3JT/2,

(n - 2)JT = C(JT/2) + r(3n/2).

Solving for c and substituting into n=c + r yields n = 2r + 4. •

Since [n/4\ = L(2r + 4)/4| = [r/2\ + 1, Theorem 2.2 can be stated as
follows:

THEOREM 2.5 \r/2\ + 1 guards are necessary and sufficient to cover the
interior of an orthogonal polygon of r reflex vertices.

The "comb" example (Fig. 2.18) establishes occasional necessity; an
alternate sufficiency proof follows.

Define a cut of an orthogonal polygon as an extension of one of the two
edges incident to a reflex vertex through the interior of the polygon until it
first encounters the boundary of the polygon (see Fig. 2.45). A cut
"resolves" its reflex vertex in the sense that the vertex is no longer reflex in
either of the two pieces of the partition determined by the cut. Clearly a cut
does not introduce any reflex vertices. The induction step of the proof cuts
the polygon in two, and applies the induction hypothesis to each half. This
will yield the formula of the theorem if a cut can be found such that at least
one of the halves contains an odd number of reflex vertices. The only
difficult part of the proof is establishing that such an odd-cut always exists.
This sketch will now be formalized.

8. An earlier version of this section appeared in O'Rourke (1983b), © 1983 Birkhaiiser
Verlag.
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Fig. 2.45. A cut partitions a polygon into two pieces of L and R reflex vertices; since the cut
resolves one reflex vertex, r - L + R + 1.

Proof of the Theorem

The theorem is clearly true for r < 1: a single guard suffices. So assume that
r > 2 and that the theorem holds for all r' < r. Consider now two cases.

Case 1 (There exists a cut that resolves two reflex vertices). This case
occurs when two reflex vertices can "see" one another along a vertical or
horizontal line. Cut the polygon in two along this line, and let L and R be
the number of reflex vertices in the two pieces produced. Since r =
L + R + 2, the formula to be proved is

I//2J 2)/2j + 1 > |L/2J + [R/2\ + 2.

Applying the induction hypothesis to each half yields a coverage of both
polygons (and so the entire original polygon) with [L/2\ + 1 + [R/2\ +1
guards, which, by the above calculation, is less than or equal to the formula
to be established.

Case 2 (No two reflex vertices can see one another along a vertical or
horizontal line). Lemma 2.17 below will establish that in this case, there
exists an odd-cut: a cut such that one of the two pieces has an odd number
of reflex vertices. Let such a cut be chosen, and let L and R be the number
of reflex vertices in the halves, with R odd. As one reflex guard is resolved
by the cut, r = L + R + l. The formula of the theorem can therefore be
written as

I//2J + 1 = [(L + R + 1)/2J + 1 > [L/2J + [(R - l)/2j + 2.

Applying the induction hypothesis to each half yields coverage by [L/2J +
1 + [ ( / ? - l)/2j + 1 (since R is odd), which, by the above calculation, is less
than or equal to the formula to be proved. •

2.5.2. Existence of Odd-Cuts

The existence of odd-cuts will now be established. First note that an odd-cut
may not exist if reflex vertices can see one another along horizontal or
vertical lines (see Fig. 2.46), but that this falls under Case 1 of the proof
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L = 2

R = 0

n = 12

r 4

Fig. 2.46. A polygon that does not admit an odd-cut, but that permits a single cut to resolve
two reflex vertices.

above. Therefore, in this section it will be assumed that the vertices of the
polygon are in "general position" in the sense that no cut can resolve two
reflex vertices. Second note that the existence of an odd-cut is trivial if r, the
total number of reflex vertices, is even: any cut partitions the reflex vertices
according to r = L + R + l, so one of L or R must be odd and the other
even. When r is odd, either L and R are both even or both odd; the task is
to show that a cut can be found such that they are both odd. Finally note
that a horizontal odd-cut does not always exist: Fig. 2.47 shows an example
with r = 5. In this case, only a vertical odd-cut exists. Thus cuts in both
directions must be considered; call a horizontal cut an H-cut and a vertical
cut a V-cut.

The proof depends on a particular orthogonal partitioning of the polygon,
which will now be defined for H-cuts. Call a reflex vertex H-isolated if the
other endpoint of its incident horizontal edge is not reflex, and otherwise
call it a member of an H-pair. Partition the polygon by forming an H-cut at
each reflex vertex that is a member of an H-pair (see Fig. 2.48); the only
reflex vertices not resolved in this partitioning are H-isolated vertices. This
decomposition is a partition into pieces monotone with respect to the v axis,
as was used in Section 2.3. It will be proved that either an H-odd-cut exists
or there is precisely one H-isolated vertex. The proof depends on a rather
close analysis of the structure of this partition, which will be explored in
terms of its region adjacency graph, called its H-graph.

Each piece of the partition corresponds to a node of this graph, and node
A is connected by an arc directed to node B iff (1) A and B are adjacent
pieces, separated by an H-cut, and (2) the H-pair corresponding to the
H-cut lies on the boundary of the A piece. See Fig. 2.48. The following
lemma classifies the nodes according to their incident arcs.

n =14
r - 5

Fig. 2.47. A polygon that has no horizontal odd-cut.
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Fig. 2.48. The H-graph associated with a polygon records region adjacency in the partitioned
formed by cutting at each H-pair member.

LEMMA 2.13. The H-graph corresponding to the above defined partition
of an orthogonal polygon can have just four types of nodes (see Table 2.2).

Table 2.2

Name Total Degree Incoming Arcs Outgoing Arcs

leaf
branch
source
sink

1
3

2 or 4
2

1
1
0
2

0
2

2 or 4
0

Proof. The general position assumption prevents a single cut linking two
reflex vertices. Thus each region can have at most two H-pairs and therefore
four H-cuts on its boundary. Thus the degree of a node is less than or equal
to 4. The definition of "arc" implies that a node cannot have just one
outgoing arc. Thus a degree 1 node must be a leaf. A degree 2 node can
have two outgoing (source) or two incoming (sink) arcs; one outgoing arc is
not possible. A degree 3 node must be a branch, again because one
outgoing is not possible. A degree 4 node must have two H-pairs on its
boundary, which implies that all four arcs are outgoing. •

It will now be shown that the graph for a polygon that does not admit an
H-odd-cut must have a very special structure.

LEMMA 2.14. If a polygon's H-graph contains a sink node, then it admits
an H-odd-cut.
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Fig. 2.49. A sink region 5 always permits an odd-cut.

Proof. Let S be the region corresponding to a sink node, and let C+ and
C_ be the upper and lower H-cuts on the boundary of S. Let S contain k
H-isolated vertices, and let the total number of reflex vertices in the portion
of the original polygon above C+ (not including the vertex forming C+) be
u. See Fig. 2.49.

If u is odd, then C+ is an H-odd-cut. If u is even, a cut at the highest
H-isolated vertex in S (if k > 0) or C_ (if k = 0) is an H-odd-cut. •

Thus, if a polygon does not admit an H-odd-cut, it cannot have any sink
nodes. This implies that such a graph has just a single source node, as two
source nodes can only interlink via sinks. Thus the graph is a tree with a
source root node, and otherwise binary directed towards the leaves.

LEMMA 2.15. If a polygon does not admit an H-odd-cut, then it has
exactly one H-isolated vertex located in its sole source region.

Proof. First it will be shown that all leaf and branch nodes must be devoid
of H-isolated vertices. The proof is by induction on the number of arcs to
the nearest leaf node, which we call the frontier distance.

Suppose some leaf L contains k > 0 H-isolated reflex vertices. Let C be
the H-cut corresponding to its single incoming arc (see Fig. 2.50). Then if k
is odd, C is an odd-cut, and if k is even, then the H-isolated vertex in L
closest to C is an odd-cut. This establishes the basis of the induction.

Suppose now that all leaf and branch nodes with frontier distance d' <d
have no H-isolated vertices, and consider a branch node B at distance d. Let
C be the H-cut corresponding to its single incoming arc, and let k > 0 be the
number of H-isolated vertices in B. If k is odd, then C is an odd-cut, since
by the induction hypothesis none of the descendants of B have any
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1

1

c

L

k=4 H-isolated

Fig. 2.50. If a leaf region L has k >0 H-isolated vertices, then it admits an H-odd-cut.

H-isolated vertices, and otherwise the reflex vertices come in H-pairs. If k is
even, then the H-isolated vertex in B closest to C can form an odd-cut.

Finally, it will be shown that the single source region S must have exactly
one H-isolated vertex to avoid an H-odd-cut. Suppose S contains an even
number k of H-isolated vertices, and let C be a cut corresponding to one of
5"s outgoing arcs (see Fig. 2.51). Then C is an odd-cut, since it resolves one
reflex vertex of an H-pair, and otherwise all other reflex vertices are either
in the even k H-isolated vertices or they come in H-pairs. If k is odd and
greater than 1, then the second closest one to C forms an odd-cut. Thus
there must be exactly one H-isolated vertex. •

Clearly Lemmas 2.13-2.15 holds for V-cuts as well as H-cuts. Thus, if a
polygon does not admit an H-odd-cut nor a V-odd-cut, then it must have a
single H-isolated vertex h and a single V-isolated vertex v, both located in
source regions of the H- and V-graphs, respectively. That these conditions
are impossible to achieve is shown by the following lemma.

LEMMA 2.16. A polygon of r > 3 reflex vertices cannot have exactly one
H-isolated vertex in a region corresponding to a source node of its H-graph,
and exactly one V-isolated vertex in a region corresponding to a source
node of its V-graph.

Proof. Let h and v be the H- and V-isolated vertices, respectively. All
reflex vertices besides h and v (there is at least one such since r > 3) are

k=3 H-isolated

Fig. 2.51. A source region S admits an H-odd-cut if it contains k # 1 H-isolated vertices.
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Fig. 2.52. Reflex vertices that are members of both H- and V-pairs form a spiral chain whose
end-points are either H- or V-isolated.

members of both an H-pair and a V-pair, else they would be isolated. This
implies that they are all adjacent, forming a contiguous chain of reflex
vertices. This chain cannot close upon itself without forming a hole,
contradicting the assumption that the polygon has no holes. The polygon is
therefore a spiral (having a single concave chain) whose endpoints are h and
v (see Fig. 2.52). But then h is in a leaf region of the H-graph and v in a leaf
region of the V-graph, contradicting the requirement that they be located in
source regions. •

The existence of odd-cuts is now established:

LEMMA 2.17. An orthogonal polygon with an odd number r > 3 of reflex
vertices, no two of which can see one another along a vertical or horizontal
line, admits an odd-cut.

This completes the proof of Theorem 2.5.9 This proof easily extends to
"multi-level" orthogonal polygons connected by ramps, as used in Theorem
2.1, but it does not immediately extend to orthogonal polygons with holes.
This latter case will be considered in Chapter 5.

2.6. ALGORITHM TO PARTITION INTO L-SHAPED PIECES10

The proof described in the previous section does not translate directly into
an algorithm, because of the difficulty of finding odd-cuts. Nevertheless, we
now show that, with the addition of a few new ideas, it can be implemented
to run in O(n log n) time. Application of the new trapezoidalization
algorithm reduces the time to 6(« loglogn). We will assume throughout
that the polygon is in general position; this is the hard case, as was pointed
out in Section 2.5.2.

9. A somewhat simpler proof along similar lines was offered in Mannila and Wood (1984). As
this book was being revised a third, even simpler proof was published (Gydri, 1986).
10. An earlier version of this section appeared in Edelsbrunner et al. (1984), © 1984 Academic
Press.
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At a coarse level, the algorithm is very simple. First the polygon is
preprocessed to detect which horizontal cuts are odd-cuts. Then it is
partitioned at every such horizontal odd-cut. Finally, guards are placed in
each of the resulting pieces. This will achieve coverage with [r/2\ +1
guards.

The simplicity of this procedure results from care applied at two critical
junctures. First, it is easier algorithmically to make an odd-cut in a polygon
with an odd number r of reflex vertices than in one with an even number.
The reason, which will be detailed below, is that no updating of the
preprocessed computations are necessary for each cut when the number of
reflex vertices is odd. We therefore take the counterintuitive step of
complicating the polygon by introducing a new reflex vertex if r is even; the
bound of |//2j + 1 is clearly unaffected.

The second critical juncture arises when all horizontal odd-cuts have been
made, and only vertical odd-cuts remain. As previously mentioned, the
polygon must then have a restricted structure, and guard placement is
nearly trivial. This is fortunate, as otherwise the preprocessing step might
have to be repeated with each oscillation between horizontal and vertical
cuts.

These claims are justified in the following section.

2.6.1. The Algorithm

The algorithm for locating [r/2\ + 1 guards in an orthogonal polygon of n
vertices, r of which are reflex, consists of six distinct steps:

(1) If r is even, then add an additional reflex vertex.
(2) Perform a plane sweep to find all horizontal cuts.
(3) Traverse the boundary once, labeling the parity of the cuts.
(4) Partition the polygon at each horizontal odd-cut.
(5) For each resulting piece, place a guard at every other reflex vertex.
(6) Remove the extra reflex vertex, if introduced in step (1).

Each of these steps will now be described in detail and justified.

Add Reflex Vertex: O{n)

If r is even, then [(r + l)/2j + 1 = [r/2\ + 1, so the addition of a reflex
vertex is justified. The reason for doing so was alluded to above and will be
expanded on below. The extra reflex vertex can be added in linear time as
follows. Choose an arbitrary convex vertex v = (x, v). Find the smallest
non-zero horizontal and vertical separations Ax and Av from x and v to
other vertices by examining the coordinates of each of the O(n) vertices.
Delete vertex v and replace it with three others as illustrated in Fig. 2.53.
Since no edges of the polygon can cross the rectangle with corners (x, y) and
(x + AJC/2, v + Ay/2), clearly this "dent" maintains the simplicity of the
polygon. That it does not interfere with visibility will be shown later.
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(x + Ax/2, y+Ay/2)

Fig. 2.53. A reflex vertex introduced by removing a "chip" from the polygon at a convex
vertex v.

Plane Sweep for Horizontal Cuts: O(n log n) or O(n log log n)

Each reflex vertex determines a unique horizontal cut. The goal of this step
is to find each horizontal cut and to insert a new "artificial" vertex into the
circular list of vertices representing the polygon at the end of each cut,
doubly linking each reflex vertex with its associated artificial vertex. This
data structure then serves as input to step (3) of the algorithm.

The locations of the artificial vertices are found by a sweep of a horizontal
line from top to bottom over the polygon. This is a standard plane sweep,
and is nearly identical to the monotone partitioning algorithm of Lee and
Preparata (Algorithm 1.2), or to that used in Sections 2.3 and 2.4. The
vertical edges of the polygon are sorted by their maximum v coordinate. At
each position of the sweep line H, a data structure S holds all those vertical
edges pierced by H, organized left to right. When H moves down and
encounters a reflex vertex v, the vertical edge hit by u's horizontal cut is
available in S as adjacent to the vertical edge whose top or bottom is v (see
Fig. 2.54). After computing the coordinates of the corresponding artificial
vertex, a vertical edge is either inserted or deleted from the data structure
S, depending on whether v is the top or the bottom of a vertical edge. The
data structure can be chosen to support O(logn) insertion and deletion
time, which leads to O(n logn) time overall. Since these horizontal cuts are
precisely what the trapezoidalization algorithm of Tarj an and Van Wyk
constructs (Section 1.3.2), use of that algorithm instead of a plane sweep
reduces the time complexity of this step to O(n log log n). As this is the only
step that might be supra-linear, the entire algorithm is O(n log log n).
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Fig. 2.54. When the sweep line H hits a reflex vertex v, the artificial vertex a on its cut lies on
a vertical edge adjacent to u's edge in S.
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Boundary Traversal to Compute Cut Parity: O(n)

The next step is to determine which of the horizontal cuts are odd-cuts—
that is, have an odd number of reflex vertices to one side or another. As the
total number of reflex vertices r is known, finding the number to one side of
a cut determines the number to the other side. The number to one side of
each cut can be found in a single boundary traversal of the polygon as
follows.

U 7 |6

7A__-
—*S 5« 014

Fig. 2.55. Labels on reflex (solid dots) and artificial vertices (open circles) are generated in a
counterclockwise scan of the boundary, incrementing the label counter at each reflex vertex.

Distinguish three types of vertices: convex, reflex, and artificial. Start at
an arbitrary vertex, initialize a counter to zero, and proceed counterclock-
wise around the polygon. If the next vertex is convex, do nothing; if the
next vertex is artificial, label it with the counter value; if the next vertex is
reflex, increment the counter value and label the vertex with this new value
(see Fig. 2.55). As soon as both end points of a cut are labeled, the number
of reflex vertices k to one side is determined by the difference between the
two labels. When the artificial vertex of a cut is encountered second, then
the exact difference of the labels is k\ when the reflex vertex is second, then
k is the difference less 1 (see Fig. 2.56).

a b
- - O

c = b - a c - b - a - l

Fig. 2.56. The labels a and b assigned to the two ends of a cut determine the number of reflex
vertices c to one side by their difference or difference less 1.

It is not actually necessary to compute the number of reflex vertices to
each side, as only the parity is needed. Thus each reflex and artificial vertex
can be labeled as even or odd during the traversal, and the parity of the cuts
determined by straightforward modification of the rules above.

Cut at Each Horizontal Odd-Cut: O(n)

The goal of the fourth step is to cut the polygon at each horizontal odd-cut;
the remaining pieces will then be easy to cover with guards. The only



2.6. ALGORITHM TO PARTITION INTO L-SHAPED PIECES 77
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Fig. 2.57. Partitioning at an odd-cut can either flip or leave the parity of other cuts unchanged
when the total number of reflex vertices is even.

potential difficulty with this step is that, after a particular cut is made, the
parities computed in the previous step may no longer be correct for the cuts
in the two pieces. For example, Fig. 2.57 shows that a particular odd-cut can
either leave the parity of other cuts unchanged, or it could flip their parity,
depending on whether the odd number of reflex vertices is inside the
portion including the cut or not. However, note that the situations in Fig.
2.57 can only arise when the total number of reflex vertices r is even. When
r is odd, then there is only one type of odd-cut: a cut that has an odd
number of reflex vertices to each side. Partitioning the polygon at such an
odd-cut leaves the parity of the cuts in each half unchanged (see Fig. 2.58).

Since step (1) of the algorithm guarantees that r is odd, all the horizontal
odd-cuts may be made without any updating to the parities computed in
step (3). At the conclusion of this partitioning, we are left with several
orthogonal polygons, all of which have only even horizontal cuts remaining.

even
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odd

Fig. 2.58. If the total number of reflex vertices is odd, then partitioning at an odd-cut does
not affect the parity of other cuts.
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Guard Placement'. O(n)

Consider now an orthogonal polygon with no horizontal odd-cuts. If it has
no reflex vertices, then it is a rectangle and can be covered with a single
guard placed anywhere within the interior. This satisfies the bound
I//2J + 1 of the theorem.

If there is at least one reflex vertex, then Lemma 2.17 establishes that a
vertical odd-cut exists. However, finding such a cut would require repetition
of the previous four steps of the algorithm, and ultimately may lead to
switching back to horizontal cuts again. Such oscillation and the computa-
tion it entails could be very expensive. Fortunately, polygons without
horizontal odd-cuts have a special structure that makes guard placement
easy.

It was proven in Section 2.5.2 that a polygon with only even horizontal
cuts must appear as in Fig. 2.59: it is formed by two "histograms" joined at
their bases. This structural restriction was stated in a different but
equivalent terms in Lemma 2.15. More precisely, define a vertical histogram
as in Section 2.3.2: an orthogonal polygon that has one horizontal edge (the
base) equal in length to the sum of lengths of all the other horizontal edges.
Then a polygon that has no horizontal odd-cuts must have a reflex vertex
whose horizontal cut partitions the polygon into two vertical histograms (as
in Fig. 2.59). Such a polygon clearly must have an odd number of reflex
vertices.

Guards placed at every other reflex vertex from left to right will
necessarily cover such a polygon. To see this, let the reflex vertices be
v1} v2, • • • , vk in sorted order from lowest x coordinate to highest; here k is
odd. Make a vertical cut at v2, v4> . . . , v2[ki2\- The polygon has now been
partitioned into \k/2\ +1 L-shaped pieces, each containing one reflex
vertex (see Fig. 2.59). Place guards on vx, v3, . . . , v2|*:/2j+i- This clearly
covers the polygon with [k/2\ + 1 guards, achieving the bound of the
theorem.

The sorting of the reflex vertices can be accomplished in linear time by

Fig. 2.59. Polygons with no horizontal odd-cuts have a horizontal cut (dashed) that parititions
them into two vertical histograms, which can then be cut vertically into L-shaped pieces at
every other reflex vertex.
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Fig. 2.60. The chip region C is visible to some guard g, regardless of whether a horizontal (a)
or vertical (b) cut emanates from v.

merging the two histogram chains, which are necessarily already sorted.
Once the order is determined, no vertical cuts need actually be made: the
guards are simply assigned to every other reflex vertex. Note that after step
(5) is completed, the polygon has been implicitly partitioned into L-shaped
pieces; one of these may be modified to a rectangle in the final step
discussed next.

Finally, we note that the same simple guard location procedure would
work if the polygon were monotone with respect to the x axis. This is a
wider class of shapes than the double histograms that result from step (5).

Replacement of Chip: O(n)

If an extra reflex vertex was introduced by removing a "chip" C at a convex
corner of the polygon in step (1) of the algorithm (see Fig. 2.60), then
returning the polygon to its original form will not require any more guards,
nor even a movement of the existing guard locations.

Consider two cases. If the introduced reflex vertex v is assigned a guard
during step (5), then retract the chip back to the original convex corner, and
place the guard in that corner. Clearly the L-shaped region formerly
covered by the guard at v is now a rectangle and covered by the guard in the
corner. If v is not assigned a guard, then a cut was made at that vertex in
the algorithm, either a horizontal cut in step (3) or a vertical cut (implicitly)
in step (4). In either case, one of the two edges incident to v is a complete
edge of an L-shaped region that has a guard g in it (see Fig. 2.60). This
follows since the edges of the chip were chosen too small to be hit by any
cuts. Clearly the guard g sees into C.

2.6.2. Discussion

We have assumed that no two reflex vertices of the polygon can see one
another along a vertical or horizontal line. Lemma 2.17 depends on this
assumption: without it a polygon may have no odd-cuts, either horizontal or
vertical (Fig. 2.46). Fortunately this degeneracy is in our favor, so to speak,
and is easy to handle.
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Fig. 2.61. Guards positioned in the polygon of Fig. 2.55. The dashed lines are the horizontal
cuts made in step (4) of the algorithm, and the dotted lines are the vertical cuts implicit in step
(5). Here r = 19, and [r/2j + 1 = 10 guards are used.

If two reflex vertices see one another along a horizontal, this can be
detected during the plane sweep, step (2) of the algorithm. Before
commencing step (3), we can cut the polygon into pieces at each such
horizontal. As established in Section 2.5.1, recursive application will
achieve the desired bound, and each piece can be processed by the
algorithm separately.

If two reflex vertices see one another along a vertical, one of the
L-shaped regions formed by the implicit vertical cuts in step (5) may
degenerate to a rectangle, but this in no way affects the execution of the
analysis of the algorithm.

The guard locations chosen by the algorithm for the example used in Fig.
2.55 and the partition they induce, are shown in Fig. 2.61.11

11. I thank Carmen Castells and David Shallcross for implementing this algorithm.


