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Abstract. We show that the space of polygonizations of a fixed planar point set S of n
points is connected by O(n2) “moves” between simple polygons. Each move is composed of
a sequence of atomic moves called “stretches” and “twangs,” which walk between weakly
simple “polygonal wraps” of S. These moves show promise to serve as a basis for generating
random polygons.

1. Introduction

This paper1 studies polygonizations of a fixed planar point set S of n points. Let
the n points be labeled pi, i = 0, 1, . . . , n−1. A polygonization of S is a permutation
σ of {0, 1, . . . , n−1} that determines a simple (non-self-intersecting) polygon P = Pσ =
(pσ(0), . . . , pσ(n−1)). We will abbreviate “simple polygon” to polygon throughout. We do
not make any general position assumptions about S, except to assume the points do not
lie in one line so that there is at least one polygon whose vertex set is S. A point set S
may induce as few as 1 polygon, if S is in convex position.2 For a simple construction that
induces 2Θ(n) polygons see Fig. 1a, and [CHUZ01] for additional details.

Our goal in this work is to develop a computationally natural and efficient method to
explore all polygonizations of a fixed set S. One motivation is the generation of “random
polygons” by first generating a random S and then selecting uniformly at random a poly-
gonization of S. Generating random polygons efficiently is a long unsolved problem; only
heuristics [AH96] or algorithms for special cases [ZSSM96], [HHH02] are known. Our work
can be viewed as following a suggestion in [ZSSM96]:

2000 ACM Subject Classification: Nonnumerical Algorithms: F.2.2; Discrete Mathematics: G.2.
Key words and phrases: polygons, polygonization, random polygons, connected configuration space.
1Revision of earlier extended abstract [DFOR08].
2S is in convex position if every point in S is on the hull of S. and as many as 4.64n polygons [GNT00].

Submitted to STACS (Symposium on Theoretical Aspects of Computer Science)

1



2 DAMIAN, FLATLAND, O’ROURKE, AND RAMASWAMI

“start with a ... simple polygon and apply some simplicity-preserving, re-
versible operations ... with the property that any simple polygon is reachable
by a sequence of operations”

Our two operations are called stretch and twang (defined in Sec. 2.2). Neither is simplicity
preserving, but they are nearly so in that they produce polygonal wraps defined as follows.

Definition 1.1. A polygonal wrap Pσ is a polygonal chain pσ(1), pσ(2), . . ., determined by
a sequence σ of point indices drawn from {0, 1, . . . , n−1} with the following properties:

(1) Every index in {0, 1, . . . , n−1} occurs in σ.
(2) Indices may be repeated. If index i appears more than once in σ, we call pi a point

of multiple contact.
(3) There exists an arbitrarily small perturbation of the points in multiple contact that

makes the polygonal chain non-self-intersecting.

Thus polygonal wraps disallow proper crossings3 but permit self-touching. This notion is
called a “weakly simple polygon” in the literature, but we choose to use our terminology to
emphasize the underlying fixed point set and the nature of our twang operation. If a point
p appears exactly twice in a polygonal wrap, we call p a point of double contact. Fig. 1b
shows a polygonal wrap with five double-contacts (p1, p4, p5, p8 and p9).

Stretches and twangs take one polygonal wrap to another. A stretch followed by a
natural sequence of twangs, which we call a cascade, constitutes a forward move. Forward
moves (described in Sec. 2.3) take a polygon to a polygon, i.e., they are simplicity preserving.
Reverse moves will be introduced in Sec. 6. A move is either a forward or a reverse move.
We call a stretch or twang an atomic move to distinguish it from the more complex forward
and reverse moves.

Our main result is that the configuration space of polygonizations for a fixed S is
connected by forward/reverse moves, each of which is composed of a number of stretches
and twangs, and that the diameter of the space isO(n2) moves. We can bound the worst-case
number of atomic moves constituting a particular forward/reverse move by the geometry
of the point set. Experimental results on random point sets show that, in the practical
situation that is one of our motivations, the bound is small, perhaps even constant. We
have also established a quadratic lower bound on the worst-case number of atomic operations
as a function of n. Establishing a combinatorial upper bound has so far proven elusive and
is an open problem.

One can view our work as in the tradition of connecting discrete structures (e.g., tri-
angulations, matchings) via local moves (e.g., edge flips, edge swaps) [BH08]. Our result
is comparable to that in [vLS82], which shows connectivity of polygonizations in O(n3)
edge-edge swap moves through intermediate self-crossing polygons, and to that in [HHH02],
which establishes noncrossing connectivity within special classes of polygonizations. The
main novelty of our work is that we avoid proper crossings but achieve connectivity via
polygonal wraps.

We begin by defining pockets, which play a central role in our algorithms for polygonal
transformations. Then in Sec. 2.1 we describe two natural operations that transform one
polygon into another but fail to achieve connectivity of the configuration space of polygo-
nizations, which motivates our definitions of stretches and twangs in Sec. 2.2. Following

3Two segments properly cross if they share a point x in the relative interior of both, and cross transversely
at x.



CONNECTING POLYGONIZATIONS 3

p
0

p
1

p
2

p
3

p
5

p
8

p
7

p
4

p
6

p
9 vk

v1

a

b

v2
v3

v4
0 0 01 1

(a) (b) (c)

Figure 1: Examples. (a) A set of n = 3k + 2 points that admits 2k polygonizations. (b)
Polygonal wrap Pσ with σ = (0, 8, 6, 8, 1, 5, 9, 2, 9, 4, 5, 1, 4, 3, 7) (c) A polygoniza-
tion with one pocket with lid ab.

these preliminaries, we establish connectivity and compute the diameter in Secs. 3–7. We
explore the possible application to random polygons in Sec. 8, establishing that a random
walk through the polygonizations graph is ergodic, i.e., approaches a stable distribution
that reaches all polygonizations. We conclude with open problems in Sec. 9.

1.1. Pockets and Canonical Polygonization

Let P be a polygonization of S. A pocket lid is an edge on the boundary of the convex
hull of S that is not an edge of P . A pocket of P is a polygon external to P that is bounded
by P and a pocket lid. For a fixed edge ab on the convex hull of S with a preceding b
in counterclockwise order on the hull, we define the canonical polygonization of S to be a
polygon with a single pocket with lid ab, in which the pocket vertices are ordered by angle
about vertex a, and from closest to farthest from a if along the same line through a. We
call this ordering the canonical order of the pocket vertices; see Fig. 1c. The existence of
this canonical polygonization for any point set S not in convex position was established
in [CHUZ01].

2. Polygonal Transformations

Let P be a polygon defined by a circular index sequence σ. We examine operations that
permute this sequence, transforming P into a new polygon with the same set of vertices
linked in a different order. Throughout the paper we use 4abc to denote the closed triangle
with corners a, b and c.

2.1. Local Transformations

The systematic study of constant-sized transformations that alter one simple polygon to
another was initiated in [HHH02]. They defined a k-flip as an alteration of k (not necessarily
consecutive) edges, and established a number of results, including showing that 3-flips are
sufficient to connect polygonizations among several subclasses of polygons based on various
visibility properties. But no constant k-flip move is known to be sufficient for connecting all
simple polygonizations, and they conclude that “the connectivity of general simple polygons
remains a challenging open problem.” Although we do not resolve this open problem by a
“local transformation” in their sense, we do resolve it by stepping outside their paradigm
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Figure 2: Hop(ab, v) illustrated.

in two regards: (1) We permit polygonal wraps as intermediate structures; and (2) Our
atomic moves are local and constant-sized, but they cascade into sequences of as many as
Ω(n2) atomic moves.

The most natural local transformation is a swap transposition of two consecutive ver-
tices of P that results in a new (non-self-intersecting) polygon. A swap is a particular
2-flip. Because this is easily seen as insufficient for polygonization connectivity, 3-flips were
explored in [HHH02]. Much less obviously, even these were shown to be insufficient for
connectivity, except within various polygon subclasses. We review one of their 3-flips, the
“planar VE-flip,” which we call a hop, because our stretch operation is a generalization of
this.

The hop operation generalizes the swap by allowing a vertex to hop to any position in
the permutation, as long as the resulting polygon is simple. Fig. 2 shows the stretching of
the edge ab down to vertex v, effectively “hopping” v between a and b in the permutation.
We denote this operation by Hop(e, v), where e = ab (note the first argument is from and
the second to).

To specify the conditions under which a hop operation is valid, we introduce some
definitions, which will be used subsequently as well. A polygon P has two sides, the interior
of P and the exterior of P . Let abc = (a, b, c) be three noncollinear vertices consecutive
in the polygonization P . We call vertex b a true corner vertex since the boundary of P
takes a turn at b. We distinguish between the convex side of b, that side of P with angle
∠abc smaller than π, and the reflex side of b, the side of P with angle ∠abc larger than π.
Note that this definition ignores which side is the interior and which side is the exterior of
P , and so is unrelated to whether b is a convex or a reflex vertex in P . Every true corner
vertex has a convex and a reflex side (collinear vertices will be discussed in Sec. 2.2). To
ensure that the resulting polygon is simple, Hop(e, v) is valid if and only if the following
two conditions hold: (1) the triangle induced by the two edges incident to v is empty of
other polygon vertices and (2) the triangle induced by e and v lies on the reflex side of v
and is empty of other polygon vertices.

Although more powerful than a swap, there also exist polygons that do not admit any
hops, as was established in [HHH02], and so hops do not suffice to connect all polygoniza-
tions.

The limited transformation capabilities of these 2- and 3-flip operations motivate our
introduction of two new operations, stretch and twang. The former operation relaxes the
two hop conditions and allows the creation of a polygonal wrap. The latter operation
restores the polygonal wrap to a polygon. We show that together they are capable of
transforming any polygon into a canonical form (Secs. 3-5), and from there to any other
polygon (Secs. 6-7).
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2.2. Stretches and Twangs

Unlike the Hop(e, v) operation, which requires v to fully see the edge e into which it
is hopping, the Stretch(e, v) operation only requires that v see a point x in the interior4

of e. The stretch is accomplished in two stages: (i) temporarily introduce two new “pseu-
dovertices” on e in a small neighborhood of x (this is what we call Stretch0 below), and
(ii) remove the pseudovertices immediately using twangs.

Stretch0. Let v see a point x in the interior of an edge e of P . By see we mean “clear
visibility”, i.e., the segment vx shares no points with ∂P other than v and x (see Fig. 3a).
Note that every vertex v of P sees such an x (in fact, infinitely many x) on some e. Let x−

and x+ be two points to either side of x on e, both in the interior of e, such that v can see
both x− and x+. Two such points always exist in a neighborhood of x. We call these points
pseudovertices. Let e = ab, with x− on the same side of x as a. Then Stretch0(e, v) alters
the polygon to replace e with (a, x−, v, x+, b), effectively “stretching” e out to reach v by
inserting a narrow triangle 4x−vx+ that sits on e (see Fig. 3b).

x
x- x+

vv v

)c()b()a(

x

STRETCH (e,v)0

TWANG( v)x-a
TWANG(v   )x+b

a be a ba b

Figure 3: Stretch(e, v) illustrated (a) v sees x ∈ e (b) Stretch0(e, v) (c) Stretch(e, v).

To complete the definition of Stretch(e, v), which removes the pseudovertices x+ and
x−, we first define the twang operation.

Twang. Informally, if one views the polygon boundary as an elastic band, a twang operation
detaches the boundary from a vertex v and snaps it to v’s convex side.

Definition 2.1. The operation Twang(abc) is defined for any three consecutive vertices
abc ∈ σ such that

(1) {a, b, c} are not collinear.
(2) b is either a pseudovertex, or a vertex in multiple contact. If b is a vertex in multiple

contact, then 4abc does not contain a nested multiple contact at b. By this we mean
the following: Infinitesimally perturb the vertices of P to separate each multiple
contact, so that P becomes simple. Then 4abc does not contain any other occurrence
of b in σ. (E.g., in Fig. 4a, 4a′bc′ contains a second occurrence of b which prevents
snapping a′bc′ to b’s convex side.)

Under these conditions, the operation Twang(abc) replaces the sequence abc in P by sp(abc),
where sp(abc) indicates the shortest path from a to c that stays inside the closed 4abc and
does not cross ∂P. We call b the twang vertex. Whenever a and c are irrelevant to the
discussion, we denote the twang operation simply by Twang(b).
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Figure 4: Twang(abc) illustrated (a) Twang(abc) replaces abc by sp(abc) (b) Twang(abc)
creates the hairpin vertex a and three doubled edges ab1, b1b2 and b2b3.

Informally, Twang(abc) “snaps” the boundary to wrap around the hull of the points in
4abc, excluding b (see Fig. 4a). A twang operation can be viewed as taking a step toward
simplicity by either removing a pseudovertex or reducing the contact multiplicity of a vertex.
We should note that sp(abc) includes every vertex along this path, even collinear vertices. If
there are no points inside 4abc, then sp(abc) = ac, and Twang(abc) can be viewed as the
reverse of Hop(ac, b). If a=c (i.e., ab and bc overlap in P), we call b a hairpin vertex of P; in
this case, Twang(aba) replaces aba in P by a. Hairpin vertices and “multiple edges” arise
naturally from twangs. In Fig. 4b for instance, Twang(abc) produces a hairpin vertex at a
and doubled edges ab1, b1b2, b2b3. So we must countenance such degeneracies. In general,
there are points in the closed triangle, and the twang increases the contact multiplicity
of some of these points. Below, we will apply twangs repeatedly to remove all multiple
contacts.

Stretch. We can now complete the definition of Stretch(e, v), with e = ab. First
execute Stretch0(e, v), which picks the two pseudovertices x+ and x−. Then execute
Twang(ax−v) and Twang(vx+b), which detach the boundary from x+ and x− and return
to a polygonal wrap of S (see Fig. 3c). We refer to e (v) as the stretch edge (vertex ).

2.3. Twang Cascades

A twang in general removes one contact of the twang vertex and creates perhaps several
others. A TwangCascade applied on a polygonal wrap P removes all multiple contacts
from P. Note that for any point b of multiple contact, there always exists a vertex sequence
abc that satisfies the twang conditions, and therefore the twang cascade loop never gets
stuck. In general, there are several twang choices at any one step of the cascade. Although
the selection order does not affect our proofs, there are cases where different orders will
result in different final polygons at the end of a cascade. We therefore select a canonical
ordering, always twanging the lowest-indexed point among the alternatives available.

4By “interior” we mean “relative interior,” i.e., not an endpoint.
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TwangCascade(P)

Loop for as long as P has a point of multiple contact b:

1. Among all the vertex sequences in P that satisfy the twang conditions (cf. Def. 2.1),
select the lowest-indexed b in the sequence abc.

2. Twang(abc).

That a twang cascade eventually terminates is not immediate. The lemma below, shows
that Twang(abc) shortens the perimeter of the polygonal wrap (because it replaces abc by
sp(abc)) by at least a constant δ depending on the geometry of the point set. Therefore,
any twang cascade must terminate in a finite number of steps.

Lemma 2.2. A single twang Twang(abc) decreases the perimeter of the polygonal wrap by
at least δ = 2dmin(1− sin(αmax/2)), where dmin is the smallest pairwise point distance and
αmax is the maximum strictly convex angle formed by any triple of non-collinear points.

Proof. Let C be the circle centered at b of radius dmin, and let b1 (b2) be at the intersection
of C and ab (bc) (see Fig. 5). Then sp(abc) is a convex path nested inside the convex
quadrilateral ab1b2c. It follows from the theorem that, for two strictly nested convex bodies,
the inner perimeter is less than the outer perimeter [BB04, p. 32], that |sp(abc)| < |ab1|+
|b1b2|+ |b2c|. This in turn implies that the decrease in the perimeter is at least |b1b|+ |bb2|−

maxα

mind

b

a c

b1 b2

x1
x2 x3

x4

Figure 5: Lower bound on δ in the proof of Lemma 2.2.

|b1b2|. Simple calculations show that b1b2 = 2dmin sin(αmax/2), so the perimeter decreases
by at least δ = 2dmin − 2dmin sin(αmax/2), which concludes the proof.

Twang Cascade Bounds. We have been unsuccessful in obtaining a combinatorial upper
bound on the number of twangs in any twang cascade. An impediment to establishing a
bound is that the multiplicity of contacts at a point can decrease and then increase again in
a twang cascade, as illustrated in Fig. 6. This example hints at the complex changes that
can occur during a cascade, and why establishing an upper bound is problematical.

Figures 7 and 8 show that Ω(n) points can each twang Ω(n) times in one cascade,
providing an Ω(n2) worst-case lower bound on the length of a cascade. In Figure 7, the
cascade is initiated by Stretch(e, v) followed by Twang(v). From there on Twang(aibici)
twangs in a cycle. Each such twang alters the path to sp(ai, ci), which wraps around bi+1.
In the next pass through the cycle, Twang(aibi+1ci) occurs. This continues just twice in
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Figure 6: Point v twangs twice: (a) Initial P (b) After Stretch(e, b1) (c–h) After
Twang(aibici), i = 1 . . . 7 (i) v in double contact a second time, and will twang
a second time. If Twang(xvy) were chosen in (g) instead of Twang(a6vc6), v
would not twang twice.

Fig. 7, but in general the number of cycles is the number of bj vertices inside each 4aibici.
Fig. 8 shows that this number can be Ω(n). Here the bj vertices are evenly spaced on a

e

v

ci

bi

ai

Figure 7: Stretch(e, v) followed by
Twang(v) initiates a quadratic-
length twang cascade.

a
i

c
i

b
i

Figure 8: It is possible for each triangle
4aibici to enclose Ω(n) vertices
bj .

circle, and ∠(ai, bi, ci) = 90◦. As the length |aibi| grows longer, the fraction of points inside
4aibici approaches n/4.

Despite these weak bounds, our experiments suggest that the average length of a twang
cascade for random S is about 1.2, with cascades of length > 7 rare.

Forward Move. We define a forward move on a polygonization P of a set S as a stretch (with
the additional requirement that the pseudovertices on the stretch edge lie on the reflex side
of the stretch vertex), followed by a twang and then a twang cascade, as described below:
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ForwardMove(P, e, v)

Preconditions:
(i) P is a simple polygon
(ii) e and v satisfy the conditions of Stretch(e, v), and
(iii) v is a true corner vertex such that pseudovertices x+ and x− on e

lie on the reflex side of v.
{Let u, v, w be the vertex sequence containing v in P (necessarily unique, since P is simple).}

1. P ← Stretch(e, v).
2. P ← Twang(uvw).
3. P ′ ← TwangCascade(P).

A ForwardMove takes one polygonization P to another P ′ (see Fig. 9), as follows
from Lemma 2.2. Note that x+ and x− must lie on the reflex side of v (i.e., precondition
(iii) of ForwardMove) so that Stretch(e, v) does not introduce a nested double contact
in 4uvw which would prevent the subsequent Twang(uvw). Next we discuss an important
phenomenon that can occur during a forward move.

Stretch Vertex Placement. We note that the initial stretch that starts a move might be
“undone” by cycling of the cascade. This phenomenon is illustrated in Fig. 9, where the
initial Stretch(ab, v) inserts v between a and b in the polygonal wrap (Fig. 9b), but v ends
up between c and b in the final polygonization (Fig. 9f). Thus any attempt to specifically
place v in the polygonization sequence between two particular vertices might be canceled
by the subsequent cascade. This phenomenon presents a challenge to reducing a polygon
to canonical form (discussed in Sec. 5).

v
=b1

(d) (e) (f)

e

b2

a2

c2
b3

a3

c3

=a4

c4

a b a b a b a b 4
a=b b a b

cc c c
c

c=

u

w

v

a1u=
=

v v
v v

(a) (b) (c)c1w=

a1u=

Figure 9: Forward move illustrated. (a) Initial polygon P (b) Step 1: Stretch(ab, v)
(c) Step 2: Twang(a1b1c1) (d-f) Step 3: Twang(a2b2c2), Twang(a3b3c3),
Twang(a4b4c4).

3. Single Pocket Reduction Algorithm

Now that the basic properties of the moves are established, we aim to show that our
moves suffice to connect any two polygonizations of a point set S. The plan is to reduce
an arbitrary polygonization to the canonical polygonization. En route to explaining this
reduction algorithm, we show how to remove any particular pocket by redistributing its
vertices to other pockets. This method will be applied repeatedly in Sec. 4 to move all
pockets to one particular pocket.
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In this section we assume that P has two or more pockets. We use H(P ) to refer to
the closed region defined by the convex hull of P , and ∂H(P ) for its boundary. For a fixed
hull edge ` that is the lid of a pocket A, the goal is to reduce A to ` by redistributing the
vertices of A among the other pockets, using forward moves only. This is accomplished by
the Single Pocket Reduction algorithm, which repeatedly picks a hull vertex v of A
and attaches v to a pocket other than A; see Fig. 10 for an example run.

Single Pocket Reduction(P, `) Algorithm

Loop for as long as the pocket A of P with lid ` contains three or more vertices:
1. Pick an edge-vertex pair (e, v) such that

e is an edge of P on ∂B for some pocket B 6= A
v ∈ A is a non-lid true corner vertex on ∂H(A) that sees e

2. P ← ForwardMove(P, e, v).

We now establish that the Single Pocket Reduction algorithm terminates in a
finite number of iterations. First we prove a more general lemma showing that a twang
operation can potentially reduce, but never expand, the hull of a pocket.

Lemma 3.1 (Hull Nesting under Twangs). Let A be a pocket of a polygonal wrap P and
let vertex b 6∈ ∂H(P) satisfy the twang conditions. Let A′ be the pocket with the same lid as
A after Twang(b). Then A′ ⊆ H(A).

Proof. Let abc be the vertex sequence involved in the twang operation. Then Twang(abc)
replaces the path abc by sp(abc). If abc does not belong to ∂A, then Twang(abc) does not
affect A and therefore A′ ≡ A. So assume that abc belongs to ∂A. This implies that b is a
vertex of A. Note that b is a non-lid vertex, since b 6∈ ∂H(P). Then 4abc ⊂ H(A), and the
claim follows from the fact that sp(abc) ⊂ 4abc.
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Figure 10: Single Pocket Reduction(P, a1h1) illustrated: (a) Initial P ; (b) After
Stretch(a2b2, b1). (c) After Twang(a1b1c1). (d) After Twang(c1d1h1). (e) Af-
ter Stretch(b1a2, c1). (f) After Twang(d1c1h1). (g) After Stretch(b1c1, d1) +
Twang(a1d1h1).

Lemma 3.2. The Single Pocket Reduction algorithm terminates in O(n) forward
moves.

Proof. Let S denote the set of vertices of P in H(A). Thus |S| = O(n). We show that |S|
decreases by at least 1 in each loop iteration, thus establishing the claim of the lemma.

First observe that the existence of an edge vertex pair (e, v) selected in Step 1 is guar-
anteed by the fact that P has at least one pocket other than A. In particular, there is at
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least one true corner vertex v ∈ ∂H(A) that sees points on the boundary of some pocket
B 6= A (otherwise, P has only one pocket). Step 2 of the Single Pocket Reduction
algorithm, which performs a forward move to a different polygonization, attempts to reduce
A by vertex v, thus decrementing |S|. We now show that this step is successful in that it
does not reattach v back to A. Furthermore, we show that S acquires no new vertices
during this step. These together show that |S| decreases by at least 1 in each loop iteration.

The first step of the forward move, Stretch(e, v), does not affect S. The second step,
Twang(uvw), replaces the path uvw by sp(uvw), thus eliminating v from A. Because v
is a true corner vertex of A, H(A) does not contain v at the end of this step. Let A′ be
the pocket of P with the same lid as A at the end of TwangCascade(P ). Since A’s lid
vertices never twang, Lemma 3.1 implies that H(A′) is a subset of H(A) and therefore |S|
does not increase during the twang cascade. Furthermore, since H(A) does not contain v
after the first twang operation, v must lie outside of H(A′) at the end of the twang cascade.
This concludes the proof.

4. Multiple Pocket Reduction Algorithm

For a given hull edge e, the goal is to transform P to a polygon with a single pocket
with lid e, using forward moves only. If e is an edge of the polygon, for the purpose of the
algorithm discussed here we treat e as a (degenerate) target pocket T . We assume that, in
addition to T , P has one or more other pockets, otherwise there is nothing to do. Then we
can use the Single Pocket Reduction algorithm to eliminate all pockets of P but T , as
described in the Pocket Reduction algorithm below.

Pocket Reduction (P, e) Algorithm

If e is an edge of P , set T ← e, otherwise set T ← the pocket with lid e
(in either case, we treat T as a pocket).

For each pocket lid e′ 6= e
Call Single Pocket Reduction(P, e′)

Observe that the Pocket Reduction algorithm terminates in O(n2) forward moves:
there are O(n) pockets each of which gets reduced to its lid edge in O(n) forward moves
(cf. Lemma 3.2).

Fig. 11 illustrates the Pocket Reduction algorithm on a 17-vertex polygon with
three pockets A, B and C, each of which has 3 non-lid vertices, and target pocket T with
lid edge e = t1t2. The algorithm first calls Single Pocket Reduction(P, a1h1), which
transfers to B all non-lid vertices of A, so B ends up with 6 non-lid vertices (this reduction is
illustrated in detail in Fig. 10). Similarly, Single Pocket Reduction(P, a2h2) transfers
to C all non-lid vertices of B, so C ends up with 9 non-lid vertices, and finally Single
Pocket Reduction(P, a3h3) transfers all these vertices to T . This example suggests that
the bound O(n2) is, in fact, tight, as proved by the following lemma.

Lemma 4.1. The Pocket Reduction algorithm employs Θ(n2) forward moves, in the
worst case.

Proof. We have shown that the Pocket Reduction algorithm always terminates in O(n2)
forward moves. We now show that there are cases in which the Pocket Reduction
algorithm employs Θ(n2) forward moves, thus proving the claim of the lemma.
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Figure 11: Pocket Reduction(P, t1t2): (a) Initial P . (b) After Single Pocket
Reduction(P, a1h1). (c) After Single Pocket Reduction(P, a2h2). (d) After Sin-
gle Pocket Reduction(P, a3h3). (e) After Canonical Polygonization(P, t1t2).

Consider an (n = 5k)-vertex polygon P with a structure similar to the one in Fig. 11a.
Let Ai be the pocket of P with lid aihi, for i = 1, 2, . . . , k. Let P1 = P and

Pi+1 ← Single Pocket Reduction(Pi, aihi),

in which each forward move involves an edge of the pocket with lid ai+1hi+1. We will
later show that such forward moves are always possible. We seek to prove that execution
instances of Pocket Reduction(P ) in which P2, P3, . . . , Pk+1 are computed in this order,
perform a total of

3
k∑
i=1

i = Θ(n2)

forward moves. Let A′i be the pocket with lid aihi in Pi. We prove by induction that the
following invariants hold, for each i:

(1) A′i contains all non-lid vertices of A1, A2, . . . , Ai.
(2) For any j > i, Aj is the same in Pi and P (i.e., it does not get altered during the

construction of P2, . . . , Pi).
An immediate consequence of invariants (1) and (2) is that the interior of H(A′i) contains
vertices of A′i only, therefore the twang cascade initiated at a vertex of A′i involves vertices
of A′i only (by Lem. 3.1). This implies that the number of forward moves employed in
reducing A′i is equal to the number of vertices of A′i, which is equal to 3i (cf. invariant (1)),
thus proving the claim on the total number of forward moves.

The base case corresponding to i = 1 is immediate, since A′1 = A1. To prove the
inductive step, assume that invariants (1) and (2) hold for P1, P2, . . . , Pi, for some i < k,
and consider the polygon Pi+1. Invariant (2) tells us that Ai+1 is identical in Pi and P . This
along with invariant (1) implies that there exists true corner vertex u ∈ ∂H(A′i) visible to an
edge e ∈ Ai+1, meaning that ForwardMove(e, u) is possible. By choice, Single Pocket
Reduction(Pi, aihi) involves such a forward move. The result is that Ai+1 absorbs u,
∂H(A′i) loses u, and pockets Aj , for j > i+ 1, remain unaltered. Identical arguments hold
for subsequent forward moves involved in the reduction process for A′i. At the end of this
process, A′i+1 contains all vertices of A′i, and the pockets Aj , for j > i + 1, are as in the
original polygon P . This shows that the two invariants hold for Ai+1, thus completing the
proof.
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5. Single Pocket to Canonical Polygonization

Let P (e) denote an arbitrary one-pocket polygonization of S with pocket lid e = ab.
Here we give an algorithm to transform P (e) into the canonical polygonization Pc(e). This,
along with the algorithms discussed in Secs. 3 and 4, gives us a method to transform any
polygonization of S into the canonical form Pc(e). Our canonical polygonization algorithm
incrementally arranges pocket vertices in canonical order (cf. Sec. 1.1) along the pocket
boundary by applying a series of forward moves to P (e).

Canonical Polygonization(P, e = ab) Algorithm

Let a = v0, v1, v2, . . . , vk, vk+1 = b be the canonical order of the vertices of pocket P (e).
For each i = 1, 2, . . . , k

1. Set `i ← line passing through a and vi

2. Set ei−1 ← pocket edge vi−1vj , with j > i− 1
3. If ei−1 is not identical to vi−1vi, apply ForwardMove(ei−1, vi).

We now show that the one-pocket polygonization resulting after the i-th iteration of the
loop above has the points v0, . . . , vi in canonical order along the pocket boundary. (Note
that this invariant ensures there is an edge (vi−1, vj) with j > i−1 in Step 2.) This, in turn,
is established by showing that the ForwardMove in the i-th iteration involves only points
in the set {vi, vi+1, . . . , vk}. These observations are formalized in the following lemmas.

Lemma 5.1. The i-th iteration of the Canonical Polygonization loop produces a poly-
gonization of S with one pocket with lid e and with vertices v0, . . . , vi consecutive along the
pocket boundary.

Proof. The proof is by induction. The base case corresponds to i = 1 and is trivially true
for the case when e0 = v0v1. Otherwise, v1 sees a subset of e0 (since no edge can block
visibility from v0 to v1) and therefore Stretch(e0, v1) is possible. See Fig. 12a, where
e0 = (v0, v3). Furthermore, v1 may not twang a second time during the twang cascade of
the forward move. This is because a second Twang(v1) may only be triggered by the twang
of a hull vertex, which can never occur (hull vertices never twang). This implies that the
ForwardMove in Step 3 of the first iteration creates a one-pocket polygonization in which
v0 and v1 are consecutive along the pocket boundary (see Fig. 12a,b). This completes the
base case.
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Figure 12: Canonical Polygonization: Stretch(vi, x) is always possible. (a) Base
case (i = 1): v1 sees v0 (b) After iteration 1, v0 and v1 are consecutive along the
pocket boundary (c) vi sees ei−1.
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To prove the inductive step, suppose that the lemma holds for iterations 1, . . . , i−1.
Note that the existence of the edge ei−1 selected in Step 2 of the algorithm follows imme-
diately from the fact that v0, v1, . . . vi−1 are consecutive along the pocket boundary (by the
inductive hypothesis). If ei−1 is identical to vi−1vi, there is nothing to prove. So assume
that ei−1 and vi−1vi are distinct. We now show that vi sees ei−1, so that Stretch(ei−1, vi)
is possible.

First observe that the wedge bounded by `i−1 and `i is either degenerate (if v0, vi−1, vi
are collinear), or is empty of any pocket points (since vi follows vi−1 in the clockwise sorted
order). In the former case, vi sees vi−1 and ei−1. In the latter case, ei−1 must intersect `i
(cf. Fig. 12c). In either case, vi sees ei−1 and hence Stretch(ei−1, vi) is possible. This
along with the induction hypothesis implies that at the end of stretch operation, vertices
v0, v1, . . . vi are consecutive along the pocket boundary.

Next we show by contradiction that the twang cascade of the forward move involves
only vertices vi+1, . . . , vk, so that v0, v1, . . . vi remain consecutive along the pocket boundary.
Suppose the claim is false. For ease of presentation, define rank(vi) = i. Let y be the first
vertex with rank(y) ≤ i to get into double contact. Clearly y cannot coincide with a, since
a is a hull vertex and cannot get into double contact. Let Twang(qrs) be the twang that
created the double contact at y. Note that at the time of Twang(qrs), vertices v0, v1, . . . vi
are consecutive along the pocket boundary, since none of these vertices was in double contact
prior to y (by choice of y) and therefore could not have twanged. Since Twang(qrs) creates
the double contact at y, y ∈ 4qrs and lies on sp(qrs). We also have that rank(r) > i, by
our choice of y.

Two cases are possible: (i) y lies strictly to the left of `i, and (ii) y lies on `i. In
either case, since y ∈ 4qrs and r lies on or to the right of `i, it must be that min{rank(q),
rank(s)} < rank(y). Suppose w.l.o.g that rank(q) < rank(y). Thus we have that rank(q)
< rank(y) ≤ rank(vi) < rank(r). In other words rank(r) − rank(q) ≥ 2, but since q ∈
{v0, v1, . . . vi−1} and qr is an edge of the pocket, it must be that rank(r) − rank(q) = 1
(since v0, v1, . . . vi are consecutive along the pocket boundary). Thus we have reached a
contradiction. This completes the induction step.

Lemma 5.2. The Canonical Polygonization algorithm constructs Pc(e) in O(n) for-
ward moves.

Proof. The claim that the Canonical Polygonization algorithm constructs the canon-
ical form Pc(e) follows immediately from Lemma 5.1. The bound on the number of moves
follows from the fact that once a point vi is placed in the correct position in the pocket in the
i-th iteration of the algorithm, its position will not be changed again. Hence, the number
of forward moves required to place all points v1, . . . , vk in order on the pocket boundary is
O(k), which is O(n).

6. Reverse Moves

Connectivity of the space of polygonizations will follow by reducing two given polygo-
nizations P1 and P2 to a common canonical form Pc, and then reversing the moves from Pc
to P2. Although we could just define a reverse move as a time-reversal of a forward move, it
must be admitted that such reverse moves are less natural than their forward counterparts.
So we concentrate on establishing that reverse moves can be achieved by a sequence of
atomic stretches and twangs.
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Reverse Stretch. The reverse of Stretch(e, v) may be achieved by a sequence of one or
more twangs, as illustrated in Fig. 13a. This result follows from the fact that the “funnel”
created by the stretch is empty, and so the twangs reversing the stretch do not cascade.
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Figure 13: Reverse atomic moves: (a) Stretch(ab, v) is reversed by Twang(v),
Twang(c1), Twang(c2), Twang(c3). (b) Twang(b) is reversed by
Stretch(x2x3, b), Twang(x2), Twang(x1) and Twang(x3).

Reverse Twang. An “untwang” can be accomplished by one stretch followed by a series of
twangs. Fig. 13b illustrates how Twang(abc) may be reversed by one Stretch(e, b), for
any edge e of sp(abc), followed by zero or more twangs. Observe that the initial stretch in
the reverse twang operation is not restricted to the reflex side of the stretch vertex, as it is
in a ForwardMove. If b is a hairpin vertex (i.e., a and c coincide), we view ac as an edge
of length zero and the reverse of Twang(b) is simply Stretch(ac, b).

We have shown that the total effect of any forward move, consisting of one stretch
and a twang cascade, can be reversed by a sequence of stretches and twangs. We call this
sequence a reverse move. One way to view the consequence of the above two results can
be expressed via regular expressions. Let the symbols s and t represent a Stretch and
Twang respectively. Then a forward move can be represented by the expression st+: a
stretch followed by one or more twangs. A reverse stretch, s−1 can be achieved by one or
more twangs: t+. And a reverse twang t−1 can be achieved by st∗. Thus the reverse of the
forward move st+ is (t−1)+s−1 = (st∗)+t+ , a sequence of stretches and twangs, at least
one of each.

7. Connectivity and Diameter of Polygonization Space

We begin with a summary of the algorithm which, given two polygonizations P1 and
P2 of a fixed point set, transforms P1 into P2 using stretches and twangs only.

Polygon Transformation(P1, P2) Algorithm

1. Select an arbitrary edge e of ∂H(P1).
2. P1 ← Pocket Reduction(P1, e).

M1 ← atomic moves of [P2 ← Pocket Reduction(P2, e)].
3. Pc ← Canonical Polygonization(P1, e).

M2 ← atomic moves of [Canonical Polygonization(P2, e).]
4. Let (M1 ⊕M2)R be the reverse of the moves in M1 ⊕M2, where ⊕ represents concatenation).
5. For each stretch s (twang t) in (M1 ⊕M2)R in order,

execute reverse stretch s−1(reverse twang t−1) on Pc.

This algorithm, along with Lemmas 4.1 and 5.2, establishes our main theorem:
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Theorem 7.1. The space of polygonizations of a fixed set of n points is connected via a
sequence of forward and reverse moves. Each node of the space has degree in O(n2), and
the diameter of the polygonization space is O(n2) moves.

Proof. The first part of the theorem is established by the Polygon Transformation
algorithm, whose correctness follows from Lemmas 4.1 and 5.2. The degree of a node is
bounded by the number of vertex-edge pairs in the polygonization, which is O(n2) (see
ahead to Fig. 14 for an example that achieves degree Ω(n2)). For any given polygonizations
P1 and P2 of a fixed point set S, the Polygon Transformation(P1, P2) algorithm takes
O(n2) forward/reverse moves (cf. Lemmas 4.1 and 5.2), so the diameter of the space of
polygonizations of S is O(n2).

This diameter bound is tight for our specific algorithm (cf. Lemma 4.1) but might not
be for other algorithms. Each twang operation can be carried out in O(n) time using a hull
routine on the sorted points inside 4abc; and Ω(n) might be needed, because sp() might
hit O(n) vertices. So the running time of a single forward/reverse move is T ·O(n), where
T is an upper bound on the number of twangs in a move.

8. Random Polygon Generation

Define the polygonization graph G for a set of points S to have a node for each (sim-
ple) polygonization of S, and an arc connecting two polygonizations if they are connected
by a single forward move. We define this graph as undirected, so it encompasses reverse
moves as well. In this section we explore the possibility of using a random walk through G
to generate “random” polygons. The random walk is a Markov chain that starts at some
initial polygonization and then chooses among the available forward/reverse moves ran-
domly according to some probability distribution. We will examine two different transition
distributions below. We next address three fundamental questions: Is this Markov chain
ergodic? If so, what is the stationary distribution? And does its mixing time qualify as
“rapidly mixing”? For the purposes of random polygon generation, ideal answers would be:
yes, uniform, and yes. The answers we provide are: yes, uniform or nonuniform,
depending..., and likely yes.

8.1. Ergodicity

A Markov chain is ergodic if all states are reached with positive probability, and if
it is aperiodic [Ran06]. If the chain is ergodic, then the probability of any particular
polygonization tends to a unique stationary distribution as the number of steps in the
random walk t → ∞. Ergodicity is clearly essential if the walk is to result in “random”
polygons under any notion of randomness.

That all states are reached with positive probability is settled by connectedness (The-
orem 7.1). In our context, aperiodicity reduces to the question of whether G is nonbipar-
tite [Lov93, p. 356] (bipartite G can lead to periodic oscillations in probability).

Bipartiteness in turn depends on the choice of probability distribution for the random
walk transitions. Perhaps the most natural choice is to select among the moves available
from one polygonization with equal probability. Call this the equal-transitions model. We
have indeed established that G is nonbipartite under this model, by showing that, for any
set S (not in convex position), G contains a triangle. (Since G is undirected, there are closed
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walks of length two; therefore, the existence of a closed walk of odd length is necessary and
sufficient to ensure that the Markov chain is aperiodic.) We leave this nonbipartiteness
as a claim, however, because an unequal-transitions model yields aperiodicity easily. If we
add self-loops to each node of G by not transitioning with some positive probability, G is
trivially nonbipartite. So, under either transitions model, the random walk through G is
ergodic.

8.2. Stationary Distribution

It is well known that, for an ergodic Markov chain under the equal-transitions model,
the stationary distribution assigns to each node p of G a probability proportional to the
degree of p in G; more precisely, the probability is π(p) = deg(p)/(2E), where E is the
number of edges of G [Lov93, p. 356]. Thus, the distribution is uniform only when G is
regular. We now show with the example in Fig. 14 that G can be far from regular. The

(a)

(b)

(c)

a

b

(d)

b

e

Figure 14: (a) Point set S. (b) A polygonization with degree O(n). (c) A polygonization
with degree Ω(n2). (d) After Stretch(e, b) and Twang(b).

polygonization of S shown in (b) of the figure has the property that each vertex can see
only a constant number of vertices and edges. For example, vertex a can see six vertices
and seven edges. Because all moves are initiated by a stretch from an edge to a vertex,
or vertex to a vertex (Sec. 6), this polygon has degree O(n) in G. On the other hand,
the polygonization shown in (c) has Ω(n) vertices each of which can see Ω(n) vertices and
edges (e.g., b can see the entire top chain of the polygon). Each of the stretches determined
by these (e, v) pairs leads after one twang to distinct polygons (e.g., (d)). Therefore this
polygon node has degree Ω(n2) in G.
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Thus, not all polygonizations of S have the same degree in G, and therefore not all are
equally likely destinations of a random walk through G under the equal-transitions model.
In particular, the polygon in (c) has a higher probability than does the polygon in (b). This
nonuniform distribution might be desired, for there is a sense in which it is natural that
some polygonizations be more rarely reached than other “well-connected” polygonizations.

If, instead, a uniform distribution is desired, it can be achieved via an unequal-transitions
model. We know that the maximum degree ∆ of G is

(
n
2

)
. There is a well-known technique

to alter the probabilities to achieve a uniform stationary distribution (see, e.g., [BH08] or
[Sin93, p. 62]): from a node p ∈ G, move to an adjacent node with probability 1/∆, and
stay at p with probability deg(p)/∆.

In our implementation, we followed the equal-transitions model so that the walk never
remains at the same node.

8.3. Mixing Time

The mixing time of an ergodic Markov process is, roughly, the number of steps before
the distribution π of polygonizations is close to the stationary distribution Π, i.e., it is
the time needed for convergence. One can measure the distance between the distributions
as the maximum of |Π(p) − π(p)| over all nodes p of G. One definition of the mixing
time [Ran06, Def. 3] (there are others) is expressed as a function of the closeness ε: T (ε)
is the minimum number of steps t so that the distance between the distributions is ≤ ε
for all t′ > t. A Markov chain is then called rapidly mixing if T (ε) is bounded by a
polynomial in 1/ε and n [Kan94], where for us n is the number of points in S. For example,
it is well known that the mixing time for random walks on the n-dimensional hypercube
graph is O(n log(n/ε)) [Ran06, Thm. 3], and so these walks are rapidly mixing. Often the
dependence on ε is suppressed; the mixing time for the hypercube is then Θ(n log n).

Note that the configuration space GH for the hypercube has N = 2n nodes, one for
every n-bit binary number, but the mixing time is close to logN . This logarithmic reduction
from the size of the configuration space to the mixing time holds in a wide variety of
circumstances,5 and we can expect it in our situation. We mentioned earlier (Sec. 1) that
the number of polygonizations N of a set of n points can be exponential. Indeed the
maximum is known to be in Ω(4.6n) [GNT00].6

Computing the mixing time is notoriously difficult (although see [MRS99] for a notable
success). We were unsuccessful in computing a polynomial bound, and instead will offer a
conjecture supported by analogy and evidence.

The analogy is with the hypercube. Recall that Fig. 1a has at least 2k polygonizations,
and these polygonization have a natural mapping to k-bit binary numbers. Moves between
polygonizations are similar but not identical to bit flips. So a random walk through the
polygonizations of this polygon is similar to a random walk on the hypercube graph.

We conducted an experiment to pursue this analogy, using a variant of the polygon
shown in Fig. 15a, which breaks collinearities by distributing the vertices onto top, middle,
and bottom circular arcs. We map each polygonization of this point set to a k-bit binary
number, where the kth bit indicates whether the shortest path from the kth middle vertex

5The mixing time is roughly logN/(1− µ), where µ is the mixing rate [Lov93, p. 358].
6See http://theory.csail.mit.edu/~edemaine/polygonization/ for further references.
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is to a top (1) or bottom (0) vertex.7 (Note this map is many-to-one, as there are more
than 2k polygonizations.)

Although we do not have a precise method of generating forward and reverse moves
with equal probability (to follow the equal-transitions model), we can simulate these moves
by selecting a random stretch (recall that both forward and reverse moves commence with a
stretch), followed by a sequence of twangs and stretches. To capture reverse twang cascades,
we permit stretching from a vertex in multiple contact with a heuristically determined
probability. Because forward moves always reduce the perimeter, we used long-term stability
of the perimeter to indicate that the heuristic finds an equal balance of forward and reverse
moves.

With these caveats noted, the results are displayed in Fig. 15b, which shows the number
of the 256 bit patterns reached over 5000 stretches, overlayed with the number of bit patterns
reached in a hypercube walk of 1000 bit flips. After 5000 stretches, 91% of the polygon
patterns were visited (and 22 patterns were not reached). The hypercube walk reached
96% of the patterns after 1000 bit flips. Although differences in convergence are evident, it
seems fair to say that the two walks (when scaled) are analogous.
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Figure 15: k=8, 2k=256. (a) Polygonization→bits map. (b) Numbers visited vs. stretches,
both for polygonizations and hypercube bit flips. The horizontal scale for poly-
gonizations is 5× that for hypercube.

Each node of the hypercube graph on n bits has degree n, and we noted above that
some nodes of G have degree Ω(n2). We suspect that this difference will retard the mixing
time in comparison to the hypercube’s O(n log(n/ε)), but we conjecture that random walks
on G are still rapidly mixing, perhaps O((n/ε)2).

9. Open Problems

Our work leaves many interesting problems open. A central unresolved question is
whether there is a combinatorial upper bound on the number of twangs T in a twang cascade.
We have shown that T is Ω(n2), but have no upper bound except that of Lemma 2.2.

7Path length is measured by the number of edges, with Euclidean length breaking ties.
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We have established a few properties of the polygonization graph G (connectedness,
nonbipartiteness, upper bounds on node degree and diameter), but its structure remains
to be fully elucidated. For example, we have not established lower bounds on either node
degree or diameter.

In Sec. 7 we established connectivity with forward moves and their reverse, and although
both moves are composed of atomic stretches and twangs, the forward moves seem more
naturally determined. This suggests the question of whether forward moves suffice to ensure
connectivity.

Using stretches and twangs to generate random polygons (Sec. 8) raises many issues,
the most prominent being settling our conjecture that the random walk through G is rapidly
mixing.

Finally, we are extending our work to 3D polyhedralizations of a fixed 3D point set.

Acknowledgements. We are grateful to the referees for their insightful comments, sugges-
tions, and corrections.
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