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A Survey of Folding and Unfolding in

Computational Geometry

Erik D. Demaine∗ Joseph O’Rourke†

Abstract

We survey results in a recent branch of computational geometry: fold-
ing and unfolding of linkages, paper, and polyhedra.

1 Introduction

Folding and unfolding problems have been implicit since Albrecht Dürer in the
early 1500’s [Dür77], but have not been studied extensively in the mathematical
literature until recently. Over the past few years, there has been a surge of inter-
est in these problems in discrete and computational geometry. This paper gives
a brief survey of most of the work in this area. Related, shorter surveys are given
by Demaine [Dem00], Demaine and Demaine [DD01], and O’Rourke [O’R98].
We are currently preparing a monograph on the topic [DO05].

In general, we are interested in how objects (such as linkages, pieces of pa-
per, and polyhedra) can be moved or reconfigured (folded) subject to certain
constraints depending on the type of object and the problem of interest. Typ-
ically the process of unfolding approaches a more basic shape, whereas folding

complicates the shape. We define the configuration space as the set of all config-
urations or states of the object permitted by the folding constraints, with paths
in the space corresponding to motions (foldings) of the object.

This survey is divided into three sections corresponding to the type of object
being folded: linkages, paper, or polyhedra. Unavoidably, areas with which we
are more familiar or for which there is a more extensive literature are covered
in more detail. For example, more problems have been explored in linkage and
paper folding than in polyhedron folding, and our corresponding sections reflect
this imbalance. On the other hand, this survey cannot do justice to the wealth
of research on protein folding, so only a partial survey appears in Section 2.5.
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bridge, MA 02139, USA, edemaine@mit.edu. Supported by NSF CAREER award CCF-
0347776.
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cs.smith.edu. Supported by NSF Distinguished Teaching Scholars award DUE-0123154.
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2 Linkages

2.1 Definitions and Fundamental Questions

A linkage or framework consists of a collection of rigid line segments (bars or
links) joined at their endpoints (vertices or joints) to form a particular graph.
A linkage can be folded by moving the vertices in R

d in any way that preserves
the length of every bar. Unless otherwise specified, we assume the vertices to
be universal joints, permitting the full angular range of motions. Restricted
angular motions will be discussed in Section 2.5.2.

Linkages have been studied extensively in the case that bars are permitted
to cross; see, for example, [HJW84, JS99, KM95, Kem76, LW95, Sal73, Whi92].
Such linkages can be very complex, even in the plane. In 1876, Kempe [Kem76]
suggested an incomplete argument to show that a planar linkage can be built so
that a vertex traces an arbitrary polynomial curve—there is a linkage that can
“sign your name.” It was not until recently that Kempe’s claim was established
rigorously by Kapovich and Millson [KM02]. Hopcroft, Joseph, and Whitesides
[HJW84] showed that deciding whether a planar linkage can reach a particular
configuration is PSPACE-complete. Jordan and Steiner [JS99] proved that there
is a linkage whose configuration space is homeomorphic to an arbitrary compact
real algebraic variety with Euclidean topology, and thus planar linkages are
equivalent to the theory of the reals (solving systems of polynomial inequalities
over reals). On the other hand, for a linkage whose graph is just a cycle, all
configurations can be reached in Euclidean space of any dimension greater than 2
by a sequence of simple motions [LW95, Sal73], and in the plane there is a simple
restriction characterizing which polygons can be inverted in orientation [LW95].

Recently there has been much work on the case that the linkage must re-
main simple, that is, never have two bars cross.1 The remainder of this survey
assumes this noncrossing constraint. Such linkage folding has applications in
hydraulic tube bending [O’R98] and motion planning of robot arms. There are
also connections to protein folding in molecular biology, which we touch upon
in Section 2.5. See also [CDR03, O’R98, Tou99a] for other surveys on linkage
folding without crossings.

Perhaps the most fundamental question one can ask about folding linkages
is whether it is possible to fold between any two configurations. That is, is
there a folding between any two simple configurations of the same linkage (with
matching graphs, combinatorial embeddings, and bar lengths) while preserving
the bar lengths and not crossing any bars during the folding? Because folding
motions can be reversed and concatenated, this fundamental question is equiv-
alent to whether every simple configuration can be folded into some canonical

configuration, a configuration whose definition depends on the type of linkage
under consideration.

We concentrate here on allowing all continuous motions that maintain sim-
plicity, but we should mention that different applications often further constrain

1Typically, bars are allowed to touch, provided they do not properly intersect. However,
requiring bars to touch only at common endpoints does not change the results.
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the permissible motions in various ways. For example, hydraulic tube bending
allows only one joint to bend at any one time, and moreover the joint angle can
never reverse direction. Such constraints often drastically alter what is possible.
See, e.g., [AFM03].

In the context of linkages whose edges cannot cross, three general types of
linkages are commonly studied, characterized by the structure of their associated
graphs (see Figure 1): a polygonal arc or open polygonal chain (a single path);
a polygonal cycle, polygon, or closed polygonal chain (a single cycle); and a
polygonal tree (a single tree).2 The canonical configuration of an arc is the
straight configuration, all vertex angles equal to 180◦. A canonical configuration
of a cycle is a convex configuration, planar and having all interior vertex angles
less than or equal to 180◦. It is relatively easy to show that convex configurations
are indeed “canonical” in the sense that any one can be folded into any other, a
result that first appeared in [ADE+01]. Finally, a canonical configuration of a
tree is a flat configuration: all vertices lie on a horizontal line, and all bars point
“rightward” from a common root. Again it is easy to fold any flat configuration
into any other [BDD+02].

?

?

?

Figure 1: The three common types of linkages and their associated canonical

configurations. From top to bottom, a polygonal arc
?
→ the straight configu-

ration, a polygonal cycle
?
→ a convex configuration, and a polygonal tree

?
→ a

(nearly) flat configuration.

The fundamental questions thus become whether every arc can be straight-
ened, every cycle can be convexified, and every tree can be flattened. The
answers to these questions depend on the dimension of the space in which the
linkage starts, and the dimension of the space in which the linkage may be

2More general graphs have been studied largely in the context of allowing bars to cross,
exploring either aspects of the configurations space (e.g., the Kempe work mentioned earlier),
or the conditions which render the graph rigid. Graph rigidity is a rich topic, not detailed
here, which also plays a role in the noncrossing-bar scenario in Section 2.2.1.
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folded. Over the past few years, this collection of questions has been completely
resolved. Table 1 summarizes the answers to these questions when the dimen-
sions of the initial configuration and the folding process are equal. The answers
in the columns for arcs and cycles are analogous to the existence of knots tied
from one-dimensional string: nontrivial knots exist only in 3D. In contrast, the
column for trees in Table 1 presents an interesting difference in 2D: while trees
in the plane are topologically unknotted, they can be geometrically locked. This
observation is some evidence for the belief that the fundamental problems are
most difficult in 2D.

Can all arcs Can all cycles Can all trees
Dimension be straightened? be convexified? be flattened?

2 Yes [CDR03] Yes [CDR03] No [BDD+02]
3 No [CJ98, BDD+01] No [CJ98, BDD+01] No [from arcs]

4 & above Yes [CO99, CO01] Yes [CO99, CO01] Yes [CO01]

Table 1: Answers to fundamental questions for linkage folding without crossings.

The next three subsections describe the historical progress of these results
and other results closely related to the fundamental questions, one section per
row in Table 1. Along the way, Sections 2.3.1–2.3.4 describe several special
forms of linkage folding arising out of a problem posed by Erdős in 1935; and
Section 2.3.8 considers the generalization of multiple chains. Finally, Section 2.5
discusses the connections between linkage folding and protein folding, and de-
scribes the most closely related results and open problems.

2.2 Fundamental Questions in 2D

Section 2.2.1 describes the development of the theorems for straightening arcs
and convexifying cycles in 2D. Section 2.2.2 discusses the contrary result that
not all trees can be flattened.

2.2.1 Carpenter’s Rule Problem: Polygonal Chains in 2D

The questions of whether every polygonal arc can be straightened and every
polygonal cycle can be convexified in the plane have arisen in many contexts
over the last quarter-century.3 In the discrete and computational geometry
community, the arc-straightening problem has become known as the carpenter’s

rule problem because a carpenter’s rule folds like a polygonal arc.
Most people’s initial intuition is that the answers to these problems are yes,

but describing a precise general motion proved difficult. It was not until 2000
that the problems were solved by Connelly, Demaine, and Rote [CDR03], with

3Posed independently by Stephen Schanuel and George Bergman in the early 1970’s, Ulf
Grenander in 1987, William Lenhart and Sue Whitesides in 1991, and Joseph Mitchell in
1992 [CDR03].
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Figure 2: Two views of convexifying a “doubled tree” linkage. The top snap-
shots are all scaled the same, and the bottom snapshots are rescaled to improve
visibility.

an answer of yes. Figure 2 shows an example of the motion resulting from this
theorem.

More generally, the result in [CDR03] shows that a collection of nonintersect-
ing polygonal arcs and cycles in the plane may be simultaneously folded so that
the outermost arcs are straightened and the outermost cycles are convexified.
The “outermost” proviso is necessary because arcs and cycles cannot always be
straightened and convexified when they are contained in other cycles. The key
idea for the solution, introduced by Günter Rote, is to look for expansive motions
in which no vertex-to-vertex distance decreases. Bars cannot cross before get-
ting closer, so expansiveness allows us to ignore the difficult nonlocal constraint
that bars must not cross. Expansiveness brings the problem into the areas of
rigidity theory and tensegrity theory, which study frameworks of rigid bars, un-
shrinkable struts, and unexpandable cables. Tools from these areas helped show
that, infinitesimally, arcs and cycles can be folded expansively. These infinites-
imal motions are combined by flowing along a vector field defined implicitly
by an optimization problem. As a result, the motion is piecewise-differentiable
(C1). In addition, any symmetries present in the initial configuration of the
linkage are preserved throughout the motion. Similar techniques show that the
area of each cycle increases by this motion and furthermore by any expansive
motion [CDR03].

Since the original theorem, two additional algorithms have been developed
for unfolding polygonal chains. Figure 3 provides a visual comparison of all
three algorithms.

Ileana Streinu [Str00] demonstrated another expansive motion for straight-
ening arcs and convexifying polygons that is piecewise-algebraic, composed of a
polynomial-length sequence of mechanisms, each with a single degree of freedom.
In this sense the motion is easier to implement “mechanically.” It is also possible
to compute the algebraic curves involved, though the running time is exponen-
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(a) Via convex programming [CDR03]

(b) Via pseudotriangulations [Str00]. Pinned vertices are circled.

(c) Via energy minimization [CDIO04].

Figure 3: Convexifying a common polygon via all three convexification methods.

tial in n. This method also elucidates an interesting combinatorial structure to
2D linkage unfolding through “pseudotriangulations,” which have subsequently
received much attention in computational geometry (see, e.g., [O’R02, Rot03]).

Cantarella, Demaine, Iben, and O’Brien [CDIO04] gave an energy-based
algorithm for straightening arcs and convexifying polygons. This algorithm
follows the downhill gradient of an appropriate energy function, corresponding
roughly to the intuition of filling the polygon with air. The resulting motion
is not expansive, essentially averaging out the strut constraints. On the other
hand, the existence of the downhill gradient relies on the existence of expansive
motions from [CDR03], by showing that the latter decrease energy. The motion
avoids self-intersection not through expansiveness but by designing the energy
function to approach +∞ near an intersecting configuration; any downhill flow
avoids such spikes. The result is a C∞ motion, easily computed as a piecewise-
linear motion in angle space. The number of steps in the piecewise-linear motion
is polynomial in two quantities: in the number of vertices n, and in the ratio
between the maximum edge length and the initial minimum distance between
a vertex and an edge.
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2.2.2 Trees in 2D

In 1998, Biedl et al. [BDD+02] showed that not all trees can be flattened in
the plane. Their example consists of at least 5 petals connected at a central
high-degree vertex. The version shown in Figure 4 uses 8 petals. Each petal is
an arc of three bars, the last of which is “wedged” into the center vertex.

6→

Figure 4: The locked tree on the left, from [BDD+02], cannot be reconfigured
into the nearly flat configuration on the right. (Figure 1 of [BDD+02].)

Intuitively, the argument that the tree is locked is as follows. No petal can
be straightened unless enough angular room has been made. But no petal can
be reduced to occupy less angular space by more than a small positive number
unless the petal has already been straightened. This circular dependence implies
that no petal can be straightened, so the tree is locked. The details of this
argument, in particular obtaining suitable tolerances for closeness, are somewhat
intricate [BDD+02]. The key is that each petal occupies a wedge of space whose
angle is less than 90◦, which is why at least 5 petals are required.

This tree remains locked if we replace the central degree-5 (or higher) vertex
with multiple degree-3 vertices connected by very short bars [BDD+02, full ver-
sion]. Connelly, Demaine, and Rote [CDR02] showed that the tree in Figure 5,
with a single degree-3 vertex and the remaining vertices having degrees 1 and 2,
is locked, proving tightness of the arc-and-cycle result in [CDR03]. In [CDR02],
they also present an extension to rigidity/tensegrity theory that permits estab-
lishing via linear programming that many classes of planar linkages (e.g., trees)
are locked. In particular, they use this method to give short proofs that the
tree in Figure 4 and the tree with one degree-3 vertex are strongly locked, in
the sense that sufficiently small perturbations of the vertex positions and bar
lengths result in a tree that cannot be moved more than ε in the configuration
space for any ε > 0.

2.3 Fundamental Questions in 3D

Linkage folding in 3D was initiated earlier, by Paul Erdős in 1935 [Erd35]. His
problem and its solution are described in Section 2.3.1. Sections 2.3.2–2.3.4
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Figure 5: The locked tree from [CDR02]. (Based on Figure 1(c) of [CDR02].)

consider various extensions of this problem. All of this work deals with linkages
that start in the plane, but fold through 3D. The more general situation, an
arbitrary linkage starting in 3D, is addressed in Section 2.3.6. As this prob-
lem proves unsolvable in general, additional special cases are addressed in Sec-
tion 2.3.7. Finally, Section 2.3.8 considers the generalized problem of multiple
interlocking chains.

2.3.1 Flips for Planar Polygons in 3D

The roots of linkage folding go back to a problem Erdős posed in 1935 in the
American Mathematics Monthy [Erd35]. Define a pocket of a polygon to be
a region bounded by a subchain of the polygon edges, and define the lid of
the pocket to be the edge of the convex hull connecting the endpoints of that
subchain. Every nonconvex polygon has at least one pocket. Erdős defined a flip

as a rotation of a pocket’s chain of edges into 3D about the pocket lid by 180◦,
landing the subchain back in the plane of the polygon, such that the polygon
remains simple (i.e., non-self-intersecting); see Figure 6. He asked whether every
polygon may be convexified by a finite number of simultaneous pocket flips.

The answer was provided in a later issue of the Monthly by de Sz.-Nagy [Nag39].
First, Nagy observed that flipping several pockets at once could lead to self-
crossing; see Figure 7b. However, restricting to one flip at a time, Nagy proved
that a finite number of flips suffice to convexify any polygon; see Figure 6 for
a three-step example. This beautiful result has been rediscovered and reproved
several times, as uncovered by Grünbaum and Toussaint, and detailed in their
histories of the problem [Grü95, Tou99b].

Unfortunately, the number of required flips can be arbitrarily large in terms
of the number of vertices, even for a quadrangle. This fact was originally proved
by Joss and Shannon (1973); see [Grü95, Tou99b, BDD+01]. Figure 8 shows
the construction. By making the vertical edge of the quadrangle very short and
even closer to the horizontal edge, the angles after the first flip approach the
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(a)

(b)

Figure 6: (a) Flipping a polygon until it is convex. Pockets are shaded. (b) The
first flip shown in three dimensions.

Figure 7: Flipping multiple pockets simultaneously can lead to crossings
[Nag39].

mirror image of the original quadrangle, and hence the number of required flips
approaches infinity.

Mark Overmars4 posed the still-open problem of bounding the number of
flips in terms of natural measures of geometric closeness such as the diameter
(maximum distance between two vertices), sharpest angle, or the minimum
feature size (minimum distance between two nonincident edges).

Another open problem is to determine the complexity of finding the shortest
or longest sequence of flips to convexify a given polygon. Weak NP-hardness
has been established for the related problem of finding the longest sequence of

4Personal communication, February 1998.
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Figure 8: Quadrangles can require arbitrarily many flips to convexify [Grü95,
Tou99b, BDD+01].

flipturns [ACD+02].

2.3.2 Flips in Nonsimple Polygons

Flips can be generalized to apply to nonsimple polygons: consider two ver-
tices adjacent along the convex hull of the polygon, splitting the polygon into
two chains, and rotate one (either) chain by 180◦ with respect to the other
chain about the axis through the two vertices. Simplicity may not be pre-
served throughout the motion, just as it may not hold in the initial or final
configuration. The obvious question is whether every nonsimple polygon can
be convexified by a finite sequence of such flips. Grünbaum and Zaks [GZ98]
proved that if at each step we choose the flip that maximizes the resulting sum
of distances between all pairs of vertices, then this metric increases at each
flip, and the polygon becomes convex after finitely many flips. Without so-
phisticated data structures, computing these flips requires Ω(n2) time per flip.
Toussaint [Tou99b] proved that a different sequence of flips convexifies a nonsim-
ple polygon, and this sequence can be computed in O(n) time per flip. Recently,
Biedl and Demaine [BD01] established that every sequence of flips eventually
convexifies a nonsimple polygon. We expect that each flip can be executed in
polylogarithmic amortized time using dynamic convex-hull data structures as
in [ACD+02].5

2.3.3 Deflations

A deflation [FHM+01, Weg93, Tou99b] is the reverse of a flip, in the sense
that a deflation of a polygon should result in a simple polygon that can be
flipped into the original polygon. More precisely, a deflation is a rotation by
180◦ about a line meeting the polygon at two vertices and nowhere else, thus
separating the chain into two subchains, such that the rotation does not cause
any intersections. Hence, after the deflation, this line becomes a line of support
(a line extending a convex-hull edge). Wegner [Weg93] proposed the notion of

5Personal communication with Jeff Erickson.
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deflations, and their striking similarity to flips led him to conjecture that every
polygon can be deflated only a finite number of times. Surprisingly, this is not
true: Fevens, Hernandez, Mesa, Soss, and Toussaint [FHM+01] characterized a
class of quadrangles whose unique deflation leads to another quadrangle in the
class, thus repeating ad infinitum.

2.3.4 Other Variations

Erdős flips have inspired several directions of research on related notions, in-
cluding pivots, pops, and flipturns. See [Tou99b] for a survey of this area, with
more recent work on flipturns in [ABC+00, ACD+02, Bie04].

2.3.5 Efficient Algorithms for Planar Linkages in 3D

Motivated by the inefficiency of the flip algorithm, Biedl et al. [BDD+01] devel-
oped an algorithm to convexify planar polygons by motions in 3D using a linear
number of simple moves. The essence of this algorithm is to lift the polygon,
bar by bar, at all times maintaining a convex chain (or arch) lying in a plane
orthogonal to the plane containing the polygon; see Figure 9. The details of the
algorithm are significantly more involved than the overarching idea.

Figure 9: A planar polygon partially lifted into a convex arch lying in a vertical
plane (shaded). (Based on Figure 6 of [BDD+01].)

A second linear-time algorithm, which is in some ways conceptually simpler,
was developed by Aronov, Goodman, and Pollack [AGP02]. Their algorithm at
all times maintains the arch as a convex quadrilateral. At each step, the algo-
rithm lifts two edges, forming a “twisted trapezoid,” incorporates the trapezoid
into the arch, makes the arch planar, and reduces it back to a quadrilateral.
Avoiding intersections during the lifting phase requires a delicate argument.

In contrast to convexifying a cycle, it is relatively easy to straighten a polyg-
onal arc lying in a plane, or on the surface of a convex polyhedron, by motions
in 3D [BDD+01]. For an arc in a plane, the basic idea is to pull the arc up
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into a vertical line. For a convex surface, the same idea is followed, but with
the orientation of the line changing to remain normal to the surface. The algo-
rithm lifts each bar in turn, from one end of the arc to the other, at all times
maintaining a prefix of the arc in a line normal to the current facet of the poly-
hedron. Each lifting motion causes two joint angles to rotate, so that the lifted
prefix remains normal to the facet at all times, while the remainder of the chain
remains in its original position. Whenever the algorithm reaches a vertex that
bridges between two adjacent facets, it rotates the prefix to bring it normal to
the next facet. This algorithm also generalizes to flattening planar trees and
trees on the surface of a convex polyhedron, via motions in 3D.

2.3.6 Almost Knots

What if the linkage starts in an arbitrary position in 3D instead of in a plane?
In general, a polygonal arc or an unknotted polygonal cycle in 3D cannot al-
ways be straightened or convexified [CJ98, Tou01, BDD+01] (Table 1, 3D row).
Figure 10 shows an example of a locked arc in 3D. Provided that each of the
two end bars is longer than the sum s of the middle three bar lengths, the ends
of the chain cannot get close enough to the middle bars to untangle the chain
(sometimes called the “knitting needles” example). More precisely, because the
ends of the chain remain outside a sphere with radius s and centered at one
of the middle vertices, we can connect the ends of the chain with an unknot-
ted flexible cord outside the sphere, and any straightening motion unties the
resulting knot, which is impossible without crossings [BDD+01].

Figure 10: A locked polygonal arc in 3D with 5 bars [CJ98, BDD+01].

Alt, Knauer, Rote, and Whitesides [AKRW04] proved that it is PSPACE-
hard to decide whether a 3D polygonal arc (or a 2D polygonal tree) can be
reconfigured between two specified configurations. On the other hand, it remains
open to determine the complexity of deciding whether a polygonal arc can be
straightened. The next two sections describe special cases of 3D chains, more
general than planar chains, that can be straightened and convexified.

2.3.7 Simple Projection

The “almost knottedness” of the example in Section 2.3.6 suggests that polyg-
onal chains having simple orthogonal projections can always be straightened or
convexified. This fact is established by two papers [BDD+01, CKM+01]. In ad-
dition, there is a polynomial-time algorithm to decide whether a polygonal chain
has a simple projection, and if so find a suitable plane for projection [BGRT99].

12



For a polygonal arc with a simple orthogonal projection, the straightening
method is relatively straightforward [BDD+01]. The basic idea is to process
the arc from one end to the other, accumulating bars into a compact “accor-
dion” (x-monotone chain) lying in a plane orthogonal to the projection plane,
in which each bar is nearly vertical. Once this accumulation is complete, the
planar accordion is unfolded joint-by-joint into a straight arc. We observe that
a similar algorithm can be used to fold a polygonal tree with a simple orthogo-
nal projection into a generalized accordion, which can then be folded into a flat
configuration.

For a polygonal cycle with a simple orthogonal projection, the convexification
method is based on two steps [CKM+01]. First, the projection of the polygon is
convexified via the results described in Section 2.2.1, by folding the 3D polygon
to track the shadow, keeping constant the ascent of each bar. Second, Calvo,
Krizanc, Morin, Soss, and Toussaint [CKM+01] develop an algorithm for con-
vexifying a polygon with convex projection. The basic idea is to reconfigure the
convex projection into a triangle, and stretch each accordion formed by an edge
in the projection. In linear time they show how to compute a motion for the
second step that consists of O(n) simple moves, each changing at most seven
vertex angles.

2.3.8 Interlocked Chains in 3D

Although Table 1 settles the question of when one chain can lock (only in
3D), the conditions that permit pairs of chains to “interlock” are largely un-
known. This line of investigation was prompted by a question posed by Anna
Lubiw [DO01a]: into how many pieces must an n-bar 3D chain be cut (at ver-
tices) so that the pieces can be separated and straightened? It is now known that
the chain need be fractured into no more than dn/2e − 1 pieces [DLOS02] but
this upper bound is likely not tight: the only lower bound known is b(n−1)/4c.

A collection of disjoint, noncrossing chains can be separated if, for any dis-
tance d, there is a non-self-crossing motion that results in every pair of points
on different chains being separated by at least d. If a collection cannot be sepa-
rated, its chains are interlocked. Which collections of relatively short chains can
interlock was investigated in several papers [DLOS03, DLOS02]. Three typical
results (all for chains with universal joints) are as follows:

1. No pair of 3-bar open chains can interlock, even with an arbitrary number
of additional 2-bar open chains.

2. A 3-bar open chain can interlock with a 4-bar closed chain. (See Fig-
ure 11.)

3. A 3-bar open chain can interlock with a 4-bar open chain.

The proof of the first result (for just a pair of 3-bar chains) identifies a plane
parallel to and separating the middle bars of each chain, and then nonuniformly
scales the coordinate system to straighten the other links while avoiding in-
tersections. The second result uses a topological argument based on “links”
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(multicomponent knots), in a manner similar to the use of knots in the proof
that the chain in Figure 10 is locked. The proof of the third listed result is quite
intricate, relying on ad hoc geometric arguments [DLOS02]. There are many
open problems here, one of the most intriguing being this: what is the smallest
k that permits a k-bar open chain to interlock with a 2-bar open chain?

Figure 11: A 3-bar open chain (grey) interlocked with a 4-bar closed chain
(black).

2.4 Fundamental Questions in 4D and Higher Dimensions

In all dimensions higher than 3, it is known that all knots are trivial; analogously,
all polygonal arcs can be straightened, all polygonal cycles can be convexified,
and all polygonal trees can be flattened [CO99, CO01] (Table 1, 4D row). Intu-
itively, this result holds because the number of degrees of freedom of any vertex
is at least two higher than the dimensionality of the obstacles imposed by any
bar. This property allows Cocan and O’Rourke [CO99, CO01] to establish, for
example, that the last bar of a polygonal arc can be folded by itself to any target
position that is simple.

Cocan and O’Rourke [CO01] show how to straighten an arc using O(n)
simple moves that can be computed in O(n2) time and O(n) space. On the other
hand, their method for convexifying a polygon requires O(n6) simple moves and
O(n6 log n) time to compute.

2.5 Protein Folding

Protein folding [CD93, Hay98, ML94] is an important problem in molecular
biology because it is generally believed that the folded structure of a protein
(the fundamental building block of life) determines its function and behavior.

2.5.1 Connection to Linkages

A protein can be modeled by a linkage in which the vertices represent amino
acids and the bars represent bonds connecting them. The bars representing
bonds are typically close in length, within a factor less than two. Depending on
the level of detail, the protein can be modeled as a tree (more precise) or as a
chain (less precise).
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An amazing property of proteins is that they fold quickly and consistently
to a minimum-energy configuration. Understanding this motion has immediate
connections to linkage folding in 3D. A central unsolved theoretical question
[BDD+01] arising in this context is whether every equilateral polygonal arc in
3D can be straightened. Cantarella and Johnston [CJ98] proved that this is true
for arcs of at most 5 bars. More generally, can every equilateral polygonal tree
in 3D be flattened?

2.5.2 Fixed-Angle Linkages

A more accurate mathematical model of foldings of proteins is not by linkages
whose vertices are universal joints, but rather by fixed-angle linkages in which
each vertex forms a fixed angle between its incident bars. This angular con-
straint roughly halves the number of degrees of freedom in the linkage; the
basic motion is rotating a portion of the linkage around a bar of the linkage.
Foldings of such linkages have been explored extensively by Soss and Tous-
saint [ST00, Sos01]. For example, they prove in [ST00] that it is NP-complete
to decide whether a fixed-angle polygonal arc can be flattened (reconfigured to
lie a plane), and in [Sos01] that it is NP-complete to decide whether a fixed-
angle polygonal arc can be folded into its mirror image. More positive results
analyze the polynomial complexity of determining the maximum extent of a
rotation around a bar: Soss and Toussaint [ST00, Sos01] prove an O(n2) upper
bound, and Soss, Erickson, and Overmars [Sos01, SEO01] give a 3SUM-hardness
reduction, suggesting an Ω(n2) lower bound.

Another line of investigation on fixed-angle chains was opened in [ADD+02,
ADM+02]. Define a linkage X to be flat-state connected if, for each pair of its
flat realizations x1 and x2, there is a reconfiguration from x1 to x2 that avoids
self-intersection throughout. In general this motion alters the linkage to nonflat
configurations in R

3 intermediate between the two flat states. The main question
is to determine whether every fixed-angle open chain is flat-state connected. It
has been established that the answer is yes for chains all of whose fixed angles
between consecutive bars are nonacute [ADD+02], and although other special
cases have been settled [ADM+02], the main question remains open.

2.5.3 Producible Chains

A connection between fixed-angle nonacute chains and a model of protein pro-
duction was recently established in [DLO03]. Here the ribosome—the “machine”
that creates protein chains in biological cells—is modeled as a cone, with the
fixed-angled chain produced bar-by-bar inside and emerging through the cone’s
apex. A configuration of a chain is said to be α-producible if there exists a
continuous motion of the chain as it is created by the above model from within
a cone of half-angle α ≤ π/2. The main result of [DLO03] is a theorem that
identifies producible with flattenable chains, in this sense: a configuration of a
chain whose fixed angles are ≥ π−α, for α ≤ π/2, is α-producible if and only if
it is flattenable. For example, for α = 45◦, this theorem says that a fixed-135◦-
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angle chain (which is nonacute) is producible within a 90◦ cone if and only if
that configuration is flattenable.

The proof uses a coiled cannonical configuration of the chain, which can be
obtained by time-reversal of the production steps, winding the chain inside the
cone. This canonical form establishes that all α-producible chains can be recon-
figured to one another. Then it is shown how to produce any flat configuration
by rolling the cone around on the plane into which the flat chain is produced.
Because locked chains are not flattenable, the equivalence of producible and
flattenable configurations shows that cone production cannot lead to locked
configurations. This result in turn leads to the conclusion that the producible
chains are rare, in a technical sense, suggesting that the entire configuration
space for folding proteins might not need to be searched.

2.5.4 H-P Model

So far in this section we have not considered the forces involved in protein folding
in nature. There are several models of these forces.

One of the most popular models of protein folding is the hydrophobic-
hydrophilic (H-P) model [CD93, Dil90, Hay98], which defines both a geometry
and a quality metric of foldings. This model represents a protein as a chain of
amino acids, distinguished into two categories, hydrophobic (H) and hydrophilic
(P). A folding of such a protein chain in this model is an embedding along edges
of the square lattice in 2D or the cubic lattice in 3D without self-intersection.
The optimum or minimum-energy folding maximizes the number of hydropho-
bic (H) nodes that are adjacent in the lattice. Intuitively, this metric causes
hydrophobic amino acids to avoid the surrounding water.

This combinatorial model is attractive in its simplicity, and already seems
to capture several essential features of protein folding such as the tendency for
the hydrophobic components to fold to the center of a globular protein [CD93].
While a 3D H-P model most naturally matches the physical world, in fact it is
more realistic as a 2D model for computationally feasible problem sizes. The
reason for this is that the perimeter-to-area ratio of a short 2D chain is a close
approximation to the surface-to-volume ratio of a long 3D chain [CD93, Hay98].

Much work has been done on the H-P model [BL98, CD91, CD90, CGP+98,
HI96, LD89, LD90, LW91, UM93a, UM93b, UM93c]. Recently, on the computa-
tional side, Berger and Leighton [BL98] proved NP-completeness of finding the
optimal folding in 3D, and Crescenzi et al. [CGP+98] proved NP-completeness
in 2D. Hart and Istrail [HI96] have developed a 3/8-approximation in 3D
and a 1/4-approximation in 2D for maximizing the number of hydrophobic-
hydrophobic adjacencies.

Aichholzer, Bremner, Demaine, Meijer, Sacristan, and Soss [ABD+03] have
begun exploring an important yet potentially more tractable aspect of protein
folding: can we design a protein that folds stably into a desired shape? In the H-
P model, a protein folds stably if it has a unique minimum-energy configuration.
So far, Aichholzer et al. [ABD+03] have proved the existence of stably folding
proteins of all lengths divisible by 4, and for closed chains of all possible (even)
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lengths. It remains open to characterize the possible shapes (connected subsets
of the square grid) attained by stable protein foldings.

3 Paper

Paper folding (origami) has led to several interesting mathematical and compu-
tational questions over the past fifteen years or so. A piece of paper, normally
a (solid) polygon such as a square or rectangle, can be folded by a continuous
motion that preserves the distances on the surface and does not cause the paper
to properly self-intersect. Informally, paper cannot tear, stretch, or cross itself,
but may otherwise bend freely. (There is a contrast here to folding other ma-
terials, such as sheet metal, that must remain piecewise planar throughout the
folding process.) Formally, a folding is a continuum of isometric embeddings of
the piece of paper in R

3. However, the use of the term “embedding” is weak:
paper is permitted to touch itself provided it does not properly cross itself. In
particular, a flat folding folds the piece of paper back into the plane, and so the
paper must necessarily touch itself. We frequently ignore the continuous motion
of a folding and instead concentrate on the final folded state of the paper; in
the case of a flat folding, the flat folded state is called a flat origami. This
concentration on the final folded state was recently justified by a proof that
there always exists a continuous motion from a planar polygonal piece of paper
to any “legal” folded state [DDMO04].

Some of the pioneering work in origami mathematics (see Section 3.3.1)
studies the crease pattern that results from unfolding a flat origami, that is,
the graph of edges on the paper that fold to edges of a flat origami. Stated in
reverse, what crease patterns have flat foldings? Various necessary conditions
are known [Hul94, Jus94, Kaw89], but there is little hope for a polynomial
characterization: Bern and Hayes [BH96] have shown that this decision problem
is NP-hard.

A more recent trend, as in [BH96], is to explore computational origami, the
algorithmic aspects of paper folding. This field essentially began with Robert
Lang’s work on algorithmic origami design [Lan96], starting around 1993. Since
then, the field of computational origami has grown significantly, in particular
in the past two years by applying computational geometry techniques. This
section surveys this work. See also [DD01].

3.1 Categorization

Most results in computational origami fall under one or more of three categories:
universality results, efficient decision algorithms, and computational intractabil-
ity results. This categorization applies more generally to folding and unfolding,
but is particularly useful for results in computational origami.

A universality result shows that, subject to a certain model of folding, every-
thing is possible. For example, any tree-shaped origami base (Section 3.2.2), any
polygonal silhouette (Section 3.2.1), and any polyhedral surface (Section 3.2.1)
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can be folded out of a sufficiently large piece of paper. Universality results often
come with efficient algorithms for finding the foldings; pure existence results are
rare.

When universality results are impossible (some objects cannot be folded),
the next-best result is an efficient decision algorithm to determine whether a
given object is foldable. Here “efficient” normally means “polynomial time.”
For example, there is a polynomial-time algorithm to decide whether a “map”
(grid of creases marked mountain and valley) can be folded by a sequence of
simple folds (Section 3.3.4).

Not all paper-folding problems have efficient algorithms, and this can be
proved by a computational intractability result. For example, it is NP-hard to
tell whether a given crease pattern folds into some flat origami (Section 3.3.2),
even when folds are restricted to simple folds (Section 3.3.4). These results
mean that there are no polynomial-time algorithms for these problems, unless
some of the hardest computational problems can also be solved in polynomial
time, which is generally deemed unlikely.

We further distinguish computational origami results as addressing either
origami design or origami foldability. In origami design, some aspects of the
target configuration are specified, and the goal is to design a suitable detailed
folded state that can be folded out of paper. In origami foldability, the tar-
get configuration is unspecified and arbitrary; rather, the initial configuration
is specified, in particular the crease pattern, possibly marked with mountains
and valleys, and the goal is to fold something (anything) using precisely those
creases. While at first it may seem that understanding origami foldability is a
necessary component for origami design, the results indicate that in fact origami
design is easier to solve than origami foldability, which is usually intractable.

Our survey of computational origami is partitioned accordingly into Sec-
tion 3.2 (origami design) and Section 3.3 (origami foldability).

3.2 Origami Design

We define origami design loosely as, given a piece of paper, fold it into an object
with certain desired properties, e.g., a particular shape. The natural theoretical
version of this problem is to ask for an origami with a specific silhouette or
three-dimensional shape; this problem can be solved in general (Section 3.2.1),
although the algorithms developed so far do not lead to practical foldings. A
specific form of this problem has been solved for practical purposes by Lang’s
tree method (Section 3.2.2), which has brought modern origami design to a new
level of complexity. Related to this work is the problem of folding a piece of
paper to align a prescribed graph (Section 3.2.3), which can be used for a magic
trick involving folding and one complete straight cut.

3.2.1 Silhouettes and Polyhedra

A direct approach to origami design is to specify the exact final shape that
the paper should take. More precisely, suppose we specify a particular flat

18



silhouette, or a three-dimensional polyhedral surface, and desire a folding of a
sufficiently large square of paper into precisely this object, allowing coverage
by multiple layers of paper. For what polyhedral shapes is this possible? This
problem is implicit throughout origami design, and was first formally posed
by Bern and Hayes in 1996 [BH96]. The surprising answer is “always,” as
established by Demaine, Demaine, and Mitchell in 1999 [DDM99, DDM00].

The basic idea of the approach is to fold the piece of paper into a thin strip,
and then wrap this strip around the desired shape. This wrapping can be done
particularly efficiently using methods in computational geometry. Specifically,
three algorithms are described in [DDM00] for this process. One algorithm
optimizes paper usage: the amount of paper required can be made arbitrarily
close to the surface area of the shape, but only at the expense of increasing the
aspect ratio of the rectangular paper. Another algorithm maximizes the width
of the strip subject to some constraints. A third algorithm places the visible
seams of the paper in any desired pattern forming a decomposition of the sides
into convex polygons. In particular, the number and total length of seams can
be optimized in polynomial time in most cases [DDM00].

All of these algorithms allow an additional twist: the paper may be colored
differently on both sides, and the shape may be two-colored according to which
side should be showing. In principle, this allows the design of two-color models
similar to the models in Montroll’s Origami Inside-Out [Mon93]. An example
is shown in Figure 12.

Figure 12: A flat folding of a square of paper, black on one side and white on
the other side, designed by John Montroll [Mon91, pp. 94–103]. (Figure 1(b) of
[DDM00].)

Because of the use of thin strips, none of these methods lead to practical
foldings, except for small examples or when the initial piece of paper is a thin
strip. Nonetheless, the universality results of [DDM00] open the door to many
new problems. For example, how small a square can be folded into a desired
object, e.g., a k × k chessboard? This optimization problem remains open even
in this special case, as do many other problems about finding efficient, practical
foldings of silhouettes, two-color patterns, and polyhedra.
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3.2.2 Tree Method

The tree method of origami design is a general approach for “true” origami de-
sign (in contrast to the other topics that we discuss, which involve less usual
forms of origami). In short, the tree method enables design of efficient and prac-
tical origami within a particular class of three-dimensional shapes, most useful
for origami design. Some components of this method, such as special cases of
the constituent molecules and the idea of disk packing, as well as other meth-
ods for origami design, have been explored in the Japanese technical origami
community, in particular by Jun Maekawa, Fumiaki Kawahata, and Toshiyuki
Meguro. This work has led to several successful designs, but a full survey is
beyond the scope of this paper; see [Lan03, Lan98]. It suffices to say that the
explosion in origami design over the last 30 years, during which the majority of
origami models have been designed, may largely be due to an understanding of
these general techniques.

Here we concentrate on Robert Lang’s work [Lan94a, Lan94b, Lan96, Lan98,
Lan03], which is the most extensive. Over the past decade, starting around
1993, Lang has developed the tree method to the point where an algorithm
and computer program have been explicitly defined and implemented. Anyone
with a Macintosh computer can experiment with the tree method using Lang’s
program TreeMaker [Lan98].

The tree method allows one to design an origami base in the shape of a
specified tree with desired edge lengths, which can then be folded and shaped
into an origami model. See Figure 13 for an example. More precisely, the
tree method designs a uniaxial base [Lan96], which must have the following
properties: the base lies above and on the xy-plane, all facets of the base are
perpendicular to the xy-plane, the projection of the base to the xy plane is
precisely where the base comes in contact with the xy-plane, and this projection
is a one-dimensional tree.

It is known that every metric tree (unrooted tree with prescribed edge
lengths) is the projection of a uniaxial base that can be folded from, e.g., a
square. The tree method gives an algorithm to find the folding that is optimal
in the sense that it folds the uniaxial base with the specified projection using
the smallest possible square piece of paper (or more generally, using the smallest
possible scaling of a given convex polygon). These foldings have led to many
impressive origami designs; see [Lan03] in particular.

There are two catches to this result. First, it is currently unknown whether
the prescribed folding self-intersects, though it is conjectured that self-intersec-
tion does not arise, and this conjecture has been verified on extensive examples.
Second, the optimization problem is difficult, a fairly general form of nonlinear
constrained optimization. So while optimization is possible in principle in finite
time, in practice heuristics must be applied; fortunately, such heuristics fre-
quently yield good, practical solutions. Indeed, additional practical constraints
can be imposed, such as symmetry in the crease pattern, or the constraint that
angles of creases are integer multiples of some value (e.g., 22.5◦) subject to some
flexibility in the metric tree.
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Figure 13: Lang’s TreeMaker applied to an 8-vertex tree to produce a lizard
base. (Figure 2.1.11 of [Lan98].)

3.2.3 One Complete Straight Cut

Take a piece of paper, fold it flat, make one complete straight cut, and unfold the
pieces. What shapes can result? This fold-and-cut problem was first formally
stated by Martin Gardner in 1960 [Gar95]. The problem has a much longer
history, going back to 1721 in a Japanese puzzle book [Sen21], Betsy Ross in
1777 [Har73], and Houdini in 1922 [Hou22]. See [DDL98] for a more detailed
history.

More formally, given a planar graph drawn with straight edges on a piece of
paper, can the paper be folded flat so as to map the entire graph to a common
line, and map nothing else to that line? The surprising answer is that this
is always possible, for any collection of line segments in the plane, forming
nonconvex polygons, adjoining polygons, nested polygons, etc. There are two
solutions to the problem. The first (partial) solution [DDL98, DDL99b] is based
on a structure called the straight skeleton, which captures the symmetries of the
graph, thereby exploiting a more global structure of the problem. This solution
applies to a large class of instances, which we do not describe in detail here. See
Figure 14 for two examples. The second (complete) solution [BDEH01] is based
on disk packing to make the problem more local, and achieves efficient bounds
on the number of creases.

While this problem may not seem directly connected to pure paper folding
because of the one cut, the equivalent problem of folding a piece of paper to
line up a given collection of edges is in fact closely connected to origami design.
Specifically, one subproblem that arises in TreeMaker (Section 3.2.2) is that the
piece of paper is decomposed into convex polygons, and the paper must be folded
flat so as to line up all the edges of the convex polygons, and place the interior
of these polygons above this line. The fold-and-cut problem is a generalization
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Figure 14: Crease patterns for folding a rectangle of paper flat so that one
complete straight cut makes a butterfly (left) or a swan (right), based on
[DDL98, DDL99b].

of this situation to arbitrary graphs: nonconvex polygons, nested polygons, etc.
In TreeMaker, there are important additional constraints in how the edges can
be lined up, called path constraints, which are necessary to enforce the desired
geometric tree. These constraints lead to additional components in the solution
called gussets.

3.3 Origami Foldability

We distinguish origami design from origami foldability in which the starting
point is a given crease pattern and the goal is to fold an origami that uses
precisely these creases. (Arguably, this is a special case of our generic definition
of origami design, but we find it a useful distinction.) The most common case
studied is when the resulting origami should be flat, i.e., lie in a plane.

3.3.1 Local Foldability

For crease patterns with a single vertex, it is relatively easy to characterize
flat foldability. Without specified crease directions, a single-vertex crease pat-
tern is flat-foldable precisely if the alternate angles around the vertex sum
to 180◦; see Figure 15. This is known as Kawasaki’s theorem [BH96, Hul94,
Jus94, Kaw89]. When the angle condition is satisfied, a characterization of
valid mountain-valley assignments and flat foldings can be found in linear time
[BH96, Jus94], using Maekawa’s theorem [BH96, Hul94, Jus94] and another the-
orem of Kawasaki [BH96, Hul94, Kaw89] about constraints on mountains and
valleys. In particular, Hull has shown that the number of distinct mountain-
valley assignments of a vertex can be computed in linear time [Hul03].

A crease pattern is called locally foldable if there is a mountain-valley as-
signment so that each vertex locally folds flat, i.e., a small disk around each
vertex folds flat. Testing local foldability is nontrivial because each vertex has
flexibility in its assignment, and these assignments must be chosen consistently:
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Figure 15: A locally flat-foldable vertex: θ1 + θ3 + · · · = θ2 + θ4 + · · · = 180◦.

no crease should be assigned both mountain and valley by the two incident ver-
tices. Bern and Hayes [BH96] proved that consistency can be resolved efficiently
when it is possible: local foldability can be tested in linear time.

3.3.2 Existence of Folded States

Given a crease pattern, does it have a flat folded state? Bern and Hayes [BH96]
have proved that this decision problem is NP-hard, and thus computationally
intractable. Because local foldability is easy to test, the only difficult part
is global foldability, or more precisely, computing a valid overlap order of the
crease faces that fold to a common portion of the plane. Indeed, Bern and Hayes
[BH96] prove that, given a crease pattern and a mountain-valley assignment that
definitely folds flat, finding the overlap order of a flat folded state is NP-hard.

3.3.3 Equivalence to Continuous Folding Process

In the previous section we have alluded to the difference between two models
of folding: the final folded state (specified by a crease pattern, mountain-valley
or angle assignment, and overlap order) and a continuous motion to bring the
paper to that folded state. Basically all results, in particular those described
so far, have focused on the former model: proving that a folded state exists
with the desired properties. Intuitively, by appropriately flexing the paper, any
folded state can be reached by a continuous motion, so the two models should be
equivalent. Only recently has this been proved, initially for rectangular pieces
of paper [DM01], and recently for general polygonal pieces of paper [DDMO04]
During these motions, the number of creases is finite at any moment in time,
but overall the number of creases is uncountably infinite. An interesting open
problem is whether a finite crease pattern suffices.

The only other paper of which we are aware that explicitly constructs contin-
uous folding processes is [DD97]. This paper proves that every convex polygon
can be folded into a uniaxial base via Lang’s universal molecule [Lan98] with-
out gussets. Furthermore, unlike [DM01], no additional creases are introduced
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during the motion, and each crease face remains flat. This result can be used
to animate the folding process.

3.3.4 Map Folding: Sequence of Simple Folds

In contrast to the complex origami folds arising from reaching folded states
[DD97, DM01], we can consider the less complex model of simple folds. A
simple fold (or book fold) is a fold by ±180◦ along a single line. Examples
are shown in Figure 16. This model is closely related to “pureland origami”
introduced by Smith [Smi76, Smi93].

We can ask the same foldability questions for a sequence of simple folds.
Given a crease pattern, can it be folded flat via a sequence of simple folds?
What if a particular mountain-valley assignment is imposed?

An interesting special case of these problems is map folding (see Figure 16):
given a rectangle of paper with horizontal and vertical creases, each marked
mountain or valley, can it be folded flat via a sequence of simple folds? Tra-
ditionally, map folding has been studied from a combinatorial point of view;
see, e.g., [Lun68, Lun71]. Arkin, Bender, Demaine, Demaine, Mitchell, Sethia,
and Skiena [ABD+04] have shown that deciding foldability of a map by simple
folds can be solved in polynomial time. If the simple folds are required to fold
all layers at once, the running time is at most O(n log n), and otherwise the
running time is linear.

Figure 16: Folding a 2 × 4 map via a sequence of 3 simple folds.

Surprisingly, slight generalizations of map folding are (weakly) NP-complete
[ABD+04]. Deciding whether a rectangle with horizontal, vertical, and diagonal
(±45◦) creases can be folded via a sequence of simple folds is NP-complete.
Alternatively, if the piece of paper is more general, a polygon with horizontal
and vertical sides, and the creases are only horizontal and vertical, the same
problem is NP-complete.

These hardness results are weak in the sense that they leave open the exis-
tence of a pseudopolynomial-time algorithm, whose running time is polynomial
in the total length of creases. Another intriguing open problem, posed by Jack
Edmonds, is the complexity of deciding whether a map has a flat folded state,
as opposed to a folding by a sequence of simple folds. Examples of maps in
which these two notions of foldability differ are shown in Figure 17.

3.4 Flattening Polyhedra

When one flattens a cardboard box for recycling, generally the surface is cut
open. Suppose instead of allowing cuts to a polyhedral surface in order to flatten
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Figure 17: Two maps that cannot be folded by simple folds, but can be folded
flat. (These are challenging puzzles.) The numbering indicates the overlap order
of faces. (Figure 12 of [ABD+04].)

it, we treat it as a piece of paper and fold as in origami. We run into the same
dichotomy as in Section 3.3.2: do we want a continuous motion of the polyhe-
dron, or does a description of the final folded state suffice? If we start with a
convex polyhedron, and each face of the crease pattern must remain rigid dur-
ing the folding, then Connelly’s extension [Con80] of Cauchy’s rigidity theorem
from 1813 [Cau13, Cro97] says that the polyhedron cannot fold at all. Even if
we start with a nonconvex polyhedron and keep each face of the crease pattern
rigid, the Bellows Theorem [CSW97] says that the volume of the polyhedron
cannot change, so foldings are limited. However, if we allow the paper to curve
(e.g., introduce new creases) during the motion, as in origami, then folding be-
comes surprisingly flexible. For example, a cone can be inverted [Con93]; see
Figure 18.

Figure 18: Inverting a tetrahedral cone by a continuous isometric motion. Based
on Figure 2.5 of [Con93].

A natural question [DDL00] is whether every polyhedron can be flattened :
folded into a flat origami. Intuitively, this can be achieved by applying force to
the polyhedral model, but in practice this can easily lead to tearing. There is
an interesting connection of this problem to a higher-dimensional version of the
fold-and-cut problem from Section 3.2.3. Given any polyhedral complex, can
R

3 be folded (through R
4) “flat” into R

3 so that the surface of the polyhedral
complex maps to a common plane, and nothing else maps to that plane? While
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the applicability of four dimensions is difficult to imagine, the problem’s restric-
tion to the surface of the complex is quite practical, e.g., in packaging: flatten

the polyhedral complex into a flat folded state, without cutting or stretching
the paper.

The flattening problem remains open if we desire a continuous folding process
into the flat state. If we instead focus on the existence of a flat folded state
of a polyhedron, then much more is known. Demaine, Demaine, and Lubiw
[DDL00] have shown how to flatten several classes of polyhedra, including convex
polyhedra and orthogonal polyhedra. See Figure 19 for an example. Recently,
Demaine, Demaine, Hayes, and Lubiw [DDHL04] have shown that all polyhedra
have flat folded states. They conjecture further that every polyhedral complex
can be flattened.

Figure 19: Flattening a tetrahedron, from left to right. Note that the faces are
not flat in the middle picture.

A natural question is whether the methods of Demaine and Mitchell [DM01]
and [DDMO04] described in Section 3.3.3 can be generalized to show that these
folded states induce continuous folding motions as in Figure 18.

4 Polyhedra

A standard method for building a model of a polyhedron is to cut out a flat net

or unfolding, fold it up, and glue the edges together so as to make precisely the
desired surface. Given the polyhedron of interest, a natural problem is to find
a suitable unfolding. On the other hand, given a polygonal piece of paper, we
might ask whether it can be folded and its edges can be glued together so as to
form a convex polyhedron. These two questions are addressed in Sections 4.1
and 4.2, respectively. Section 4.3 extends different forms of the latter question
to nonconvex polyhedra. Section 4.4 connects these problems to linkage and
paper folding.

4.1 Unfolding Polyhedra

A classic open problem is whether (the surface of) every convex polyhedron
can be cut along some of its edges and unfolded into one flat piece without
overlap [She75, O’R98]. Such edge-unfoldings go back to Dürer [Dür77], and
have important practical applications in manufacturing, such as sheet-metal
bending [O’R98, Wan97]. It seems folklore that the answer to this question
should be yes, but the evidence for a positive answer is actually slim. Only

26



very simple classes of polyhedra are known to be edge-unfoldable; for example,
pyramids, prisms, “prismoids,”6 and other more specialized classes [DO05]. In
contrast, experiments by Schevon [Sch89, O’R98] suggest that a random edge-
unfolding of a random polytope overlaps with probability 1. Of course, such
a result would not preclude, for every polytope, the existence of at least one
nonoverlapping edge-unfolding, or even that a large but subconstant fraction
of the polytope’s edge-unfoldings do not overlap. However, the unlikeliness of
finding an unfolding by chance makes the search more difficult.

An easier version of this edge-unfolding problem is the fewest-nets problem:
prove an upper bound on the number of pieces required by a multipiece non-
overlapping edge unfolding of a convex polyhedron. The obvious upper bound
is the number F of faces in the polyhedron; the original problem asks whether
an upper bound of 1 is possible. In the middle, the first bound of cF for c < 1
was obtained by Michael Spriggs,7 who established c = 2/3. The smallest value
of c obtained so far8 is 1/2. Proving an upper bound that is sublinear in F
would be a significant advancement.

We can also examine to what extent edge unfoldings can be generalized to
nonconvex polyhedra. In particular, define a polyhedron to be topologically

convex if its 1-skeleton (graph) is the 1-skeleton of a convex polyhedron. Does
every topologically convex polyhedron have an edge-unfolding? In particular,
every polyhedron made up of convex faces and homeomorphic to a sphere is
topologically convex; can they all be edge-unfolded? This problem was posed
by Schevon [Sch87].

Bern, Demaine, Eppstein, Kuo, Mantler, and Snoeyink [BDE+03] have shown
that the answer to both of these questions is no: there is a polyhedron made
up of triangles and homeomorphic to a sphere that has no (one-piece, nonover-
lapping) edge-unfolding. The polyhedron is shown in Figure 20. It consists of
four “hats” glued to the faces of a regular tetrahedron, such that only the peaks
of the hats have positive curvature, that is, have less than 360◦ of incident ma-
terial. This property limits the unfoldings significantly, because (1) any set of
cuts must avoid cycles in order to create a one-piece unfolding, and (2) a leaf in
a forest of cuts can only lie at a positive-curvature vertex of the polyhedron: a
leaf at a negative-curvature vertex (more than 360◦ of incident material) would
cause local overlap.

The complexity of deciding whether a given topologically convex polyhedron
can be edge-unfolded remains open.

Another intriguing open problem in this area is whether every polyhedron
homeomorphic to a sphere has some one-piece unfolding, not necessarily using
cuts along edges. It is known that every convex polyhedron has an unfolding in
this model, allowing cuts across the faces of the polytope. Specifically, the star

unfolding [AAOS97, AO92] is the set of shortest paths from a common source

6The convex hull of two equiangular convex polygons, oriented so that corresponding edges
are parallel.

7Personal communication, August 2003.
8Personal communication from Vida Dujmović, Pat Morin, and David Wood, Febru-

ary 2004.
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point to each vertex of the polytope, and the source unfolding [MMP87] is the
set of points with more than one shortest path to a common source. Both of
these unfoldings avoid overlap, the star unfolding being the more difficult case
to establish [AO92]. The source unfolding (but not the star unfolding) also
generalizes to unfold convex polyhedra in higher dimensions [MP03a].

But many nonconvex polyhedra also have such unfoldings. For example, Fig-
ure 20 illustrates one for the polyhedron described above. Biedl, Demaine, De-
maine, Lubiw, Overmars, O’Rourke, Robbins, and Whitesides [BDD+98] have
shown how to unfold many orthogonal polyhedra, even with holes and knotted
topology, although it remains open whether all orthogonal polyhedra can be un-
folded. The only known scenario that prevents unfolding altogether [BDE+03]
is a polyhedron with a single vertex of negative curvature (see Figure 21), but
this requires the polyhedron to have boundary (edges incident to only one face).

Figure 20: (Left) Simplicial polyhedron with no edge-unfolding. (Right) An
unfolding when cuts are allowed across faces.

A recent approach to unfolding both convex and nonconvex polyhedra in
any dimension is the notion of “vertex-unfolding” [DEE+01]; see Figure 22.
Specifically, a vertex-unfolding may cut only along edges of the polyhedron (like
an edge-unfolding) but permits the facets to remain connected only at vertices
(instead of along edges as in edge-unfolding). Thus, a vertex-unfolding is con-
nected, but its interior may be disconnected, “pinching” at a vertex. This notion
also generalizes to polyhedra in any dimension. Demaine, Eppstein, Erickson,
Hart, and O’Rourke [DEE+01] proved that every simplicial manifold in any di-
mension has a nonoverlapping vertex-unfolding. In particular, this result covers
triangulated polyhedra in 3D, possibly with boundary, but it remains open to
what extent vertex-unfoldings exist for polyhedra with nontriangular faces. For
example, does every convex polyhedron in 3D have a vertex-unfolding?
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Figure 21: A polyhedron with boundary that has no one-piece unfolding even
when cuts are allowed across faces. Vertex v has negative curvature, that is,
more than 360◦ of incident material. (Based on Figure 9 of [BDE+03].)

Figure 22: Vertex-unfolding of a triangulated cube with hinge points aligned.
(Based on Figure 2 of [DEE+01].)

4.2 Folding Polygons into Convex Polyhedra

In addition to unfolding polyhedra into simple planar polygons, we can consider
the reverse problem of folding polygons into polyhedra. More precisely, when
can a polygon have its boundary glued together, with each portion gluing to
portions of matching length, and the resulting topological object be folded into
a convex polyhedron? (There is almost too much flexibility with nonconvex
polyhedra for this problem, but see Section 4.3 for related problems of interest
in this context.) A particular kind of gluing is an edge-to-edge gluing, in which
each entire edge of the polygon is glued to precisely one other edge of the
polygon. The existence of such a gluing requires a perfect pairing of edges with
matching lengths.

4.2.1 Edge-to-Edge Gluings

Introducing this area, Lubiw and O’Rourke [LO96] showed how to test in poly-
nomial time whether a polygon has an edge-to-edge gluing that can be folded
into a convex polyhedron, and how to list all such edge-to-edge gluings in ex-
ponential time. A key tool in their work is a theorem of the Russian geometer
A. D. Aleksandrov [Ale50]. The theorem states that a topological gluing can be
realized geometrically by a convex polyhedron precisely if the gluing is topolog-
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ically a sphere, and at most 360◦ of material is glued to any one point—that is,
every point should have nonnegative curvature.

Based on this tool, Lubiw and O’Rourke use dynamic programming to de-
velop their algorithms. There are Ω(n2) subproblems corresponding to gluing
subchains of the polygon, assuming that the two ends of the subchain have al-
ready been glued together. These subproblems are additionally parameterized
by how much angle of material remains at the point to which the two ends of the
chain glue in order to maintain positive curvature. It is this parameterization
that forces enumeration of all gluings to take exponential time. But for the
decision problem of the existence of any gluing, the remaining angle at the ends
only needs to be bounded, and only polynomially many subproblems need to
be considered, resulting in an O(n3) algorithm.

A particularly surprising discovery from this work [LO96] is that the well-
known “Latin cross” unfolding of the cube can be folded into exactly five convex
polyhedra by edge-to-edge gluing: a doubly covered (flat) quadrangle, an (ir-
regular) tetrahedron, a pentahedron, the cube, and an (irregular) octahedron.
See Figure 23 for crease patterns and gluing instructions. These foldings are
the subject of a video [DDL+99a].
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Figure 23: The five edge-to-edge gluings of the Latin cross [LO96].

4.2.2 Non-Edge-to-Edge Gluings

More recently, Demaine, Demaine, Lubiw, and O’Rourke [DDLO00b, DDLO02]
have extended this work in various directions, in particular to non-edge-to-edge
gluings.

In contrast to edge-to-edge gluings, any convex polygon can be glued into
a continuum of distinct convex polyhedra, making it more difficult for an al-
gorithm to enumerate all gluings of a given polygon. Fortunately, there are
only finitely many combinatorially distinct gluings of any polygon. For convex
polygons, there are only polynomially many combinatorially distinct gluings,
and they can be enumerated for a given convex polygon in polynomial time.
This result generalizes to any polygon in which there is a constant bound on
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the sharpest angle. For general nonconvex polygons, there can be exponentially
many (2Θ(n)) combinatorially distinct gluings, but only that many. Again this
corresponds to an algorithm running in 2O(n) time. Because of the exponential
worst-case lower bound on the number of combinatorially distinct gluings, we
are justified both here and in the enumeration algorithm of [LO96] to spend ex-
ponential time. It remains open whether there is an output-sensitive algorithm,
whose running time is polynomial in the number of resulting gluings, or in the
number of gluings desired by the user. For non-edge-to-edge gluings, it even
remains open whether there is a polynomial-time algorithm to decide whether
a gluing exists.

The algorithms for enumerating all non-edge-to-edge gluings have been im-
plemented independently by Anna Lubiw (July 2000) and by Koichi Hirata [Hir00]
(June 2000). These programs have been applied to the example of the Latin
cross. There are surprisingly many more, but still finitely many, non-edge-to-
edge gluings: a total of 85 distinct gluings (43 modulo symmetry). A man-
ual reconstruction of the polyhedra resulting from these gluings reveals 23
distinct shapes: the cube, seven different tetrahedra, three different pentahe-
dra, four different hexahedra, six different octahedra, and two flat quadrangles
[DDLO00a, DO05].

Alexander, Dyson, and O’Rourke [ADO02] performed a case study of all the
gluings of the square, reconstructing all the incongruent polyhedra that result.
This situation is complicated by the existence of entire continua of gluings and
polyhedra. Nonetheless, the entire configuration space of the polyhedra can
be characterized, as shown in Figure 24. Although in this case it is connected,
there are convex polygons of n vertices whose space of all gluings into polyhedra
has Ω(n2) connected components [DO05]. Although it is almost certain that all
of these gluings lead to distinct polyhedra, it seems difficult to establish this
property without a method for reconstructing the three-dimensional structure,
the topic of the next section.

4.2.3 Constructing Polyhedra

Another intriguing open problem in this area [DDLO02] remains relatively un-
explored: Aleksandrov’s theorem implies that any valid gluing (homeomorphic
to a sphere and having nonnegative curvature everywhere) can be folded into
a unique convex polyhedron, but how efficiently can this polyhedron be con-
structed? The key difficulty here is to determine the dihedral angles of the
polyhedron, that is, by how much each crease is folded. Finding a (superset of)
the creases is straightforward:9 every edge of the polyhedron is a shortest path
between two positive-curvature vertices, so compute all-pairs shortest paths in
the polyhedral metric defined by the gluing [CH96, KO00, Kap99].

Sabitov [Sab96] recently presented a finite algorithm for this reconstruction
problem, reducing the problem to finding roots of a collection of polynomi-
als of exponentially high degree. The algorithm is based on another his re-

9Personal communication with Boris Aronov, June 1998. The essence of the argument is
also present in Aleksandrov [Ale96].
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Figure 24: The continua of polyhedra foldable from a square. (Figure 2 of
[ADO02].)

sults [Sab98, Sab96] that expresses the volume of a triangulated polyhedron as
the root of a polynomial in the edge lengths, independent of how the polyhedron
is geometrically embedded in 3-space. (This result was also used to settle the fa-
mous Bellows Conjecture [CSW97].) Sabitov’s algorithm was recently extended
and its bounds improved by Fedorchuk and Pak [FP04] to express the internal
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vertex-to-vertex diagonal lengths as roots of a polynomial of degree 4m for a
polyhedron of m edges. The polyhedron can easily be reconstructed from these
diagonal lengths.

4.3 Folding Nets into Nonconvex Polyhedra

Define a net to be a connected edge-to-edge gluing of polygons to form a tree
structure, the edges shared by polygons denoting creases. An open problem
mentioned in Section 4.2.3 is deciding whether a given net can be folded into
a convex polyhedron using only the given creases. More generally, we can ask
whether a given net folds into a nonconvex polyhedron. Now Aleksandrov’s
theorem and Cauchy’s rigidity theorem do not apply, so for a given gluing we
are no longer easily guaranteed existence or uniqueness.

Given the dihedral angles associated with creases in the net, it is easy to de-
cide foldability in polynomial time [BLS99, Sun99]: we only need to check that
edges match up and no two faces cross. Without the dihedral angles, when does
a given net fold into any polyhedron? Biedl, Lubiw, and Sun [BLS99, Sun99]
proved a closely related problem to be weakly NP-complete: does a given or-
thogonal net (each face is an orthogonal polygon) fold into an orthogonal poly-
hedron? The difference with this problem is that it constrains each dihedral
angle to be ±90◦. It remained open whether this constraint actually restricted
what polyhedra could be folded, even for this particular reduction. More gener-
ally, is there a nonorthogonal polyhedron (i.e., one that has at least one dihedral
angle not a multiple of 90◦) having orthogonal faces and that is homeomorphic
to a sphere? The answer to this question (posed in [BLS99]) turns out to be
no, as proved by Donoso and O’Rourke [DO01b]. The answer is yes, however,
if the polyhedron is allowed to have genus 6 or larger; on the other hand, the
answer remains no for genus up to 2 [BCD+02]. It remains open whether such
nonorthogonal polyhedra with orthogonal faces exist with genus 3, 4, or 5.

4.4 Continuously Folding Polyhedra

The results described so far for polyhedron folding and unfolding are essentially
about folded or unfolded states, and not about the continuous process of reach-
ing such states. In the context of paper folding, we saw in Section 3.3.3 that
these two notions are largely equivalent. In the context of linkages, we saw that
the two notions can differ, particularly in 3D. Relatively little has been studied
in the context of polyhedron folding.

One special case that has been explored is orthogonal polyhedra. Specif-
ically, Biedl, Lubiw, and Sun [BLS99, Sun99] have proved that there is an
edge-unfolding of an orthogonal polyhedron (which is an orthogonal net) that
cannot be folded into the orthogonal polyhedron by a continuous motion that
keeps the faces rigid and avoids self-intersection. The basis for their example is
the locked polygonal arc in 3D (Figure 10), converted into an orthogonal locked
polygonal arc in 3D, and then “thickened” into an orthogonal tube. A single
chain of faces in the unfolding is what prevents the continuous foldability.
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One would expect, analogous to the results described in Section 3.3.3 [DM01],
that collections of polygons hinged together into a tree can be folded into all
possible configurations if we allow additional creases during the motion. How-
ever, this extension (equivalent to a polygonal piece of paper) remains open. A
particularly interesting version of this question, posed in [BLS99], is whether a
finite number of additional creases suffice.

An interesting collection of open questions arise when we consider polyhe-
dron foldings with creases only at polyhedron edges. For example, do all convex
polyhedra have continuous edge-unfoldings? (This question may be easier to
answer negatively than the classic edge-unfolding problem.) Figure 25 shows a
simple example of such a folding, taken from a longer video [DDL+99a], based
on the simple rule of affinely interpolating each dihedral angle from start to
finish. Connelly, as reported in [MP03b], asked whether the source unfolding
can be continuously bloomed, i.e., unfolded so that all dihedral angles increase
monotonically. Although an affirmative answer to this question has just been
obtained [L+04], it remains open whether every general unfolding can be exe-
cuted continuously.

Figure 25: Folding the Latin cross into an octahedron, according to the crease
pattern in Figure 23(e), by affinely interpolating all dihedral angles. (Figure 2
of [DDL+99a].)

5 Conclusion and Higher Dimensions

Our goal has been to survey the results in the newly developing area of folding
and unfolding, which offers many beautiful mathematical and computational
problems. Much progress has been made recently in this area, but many impor-
tant problems remain open. For example, most aspects of unfolding polyhedra
remain unsolved, and we highlight two key problems in this context: can all con-
vex polyhedra be edge-unfolded, and can all polyhedra be generally unfolded?
Another exciting new direction is the developing connection between linkage
folding and protein folding.

Finally, higher dimensions are just beginning to be explored. We mentioned
in Section 2.4 that 1D (one-dimensional) linkages in higher dimensions have
been explored. But 2D “linkages” in 4D—and higher-dimensional analogs—
have received less attention. One model is 2D polygons hinged together at their
edges to form a chain. Such a hinged chain has fewer degrees of freedom than a
1D linkage in 3D; for example, a hinged chain can be forced to fold like a planar
linkage by extruding the linkage orthogonal to the plane. See Figure 26. Biedl,
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Figure 26: Extruding a linkage into an equivalent collection of polygons (rect-
angles) hinged together at their edges.

Lubiw, and Sun [BLS99, Sun99] showed that even hinged chains of rectangles do
not have connected configuration spaces, by considering an orthogonal version
of Figure 10. It would be interesting to explore these chains of rectangles in 4D.

Turning to the origami context, one natural open problem is a general-
ization of the fold-and-cut problem: given a polyhedral complex drawn on a
d-dimensional piece of paper, is it always possible to fold the paper flat (into d-
space) while mapping the (d−1)-dimensional facets of the complex to a common
(d−1)-dimensional hyperplane? What if our goal is to map all k-dimensional
faces to a common k-dimensional flat, for all k = 0, 1, . . . , d?

Salvador Dali’s famous painting (“Christ”) of Christ on an unfolded 4D hy-
percube suggests the possibilities for unfolding higher-dimensional polyhedra.
All of the unsolved problems related to unfolding 3D to 2D are equally unsolved
in their higher-dimensional analogs. We mentioned in Section 4.1 a rare excep-
tion: the vertex-unfolding algorithm generalizes to unfold simplicial manifolds
without overlap in arbitrary dimensions. It has recently been established by
Miller and Pak [MP03b] that the source unfolding generalizes to higher dimen-
sions to yield nonoverlapping unfoldings, but that the most natural general-
ization of the star unfolding does not even suffice to unfold, let alone without
overlap. Nevertheless, with one general unfolding available, the natural analog
of the edge-unfolding question remains: Does every convex d-polytope have a
ridge unfolding, a cutting of (d−2)-dimensional faces that unfolds the polytope
into R

d−1 without overlap?
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