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Unfolding Orthogonal Polyhedra

Joseph O’Rourke

Abstract. Recent progress is described on the unsolved problem of unfold-
ing the surface of an orthogonal polyhedron to a single non-overlapping planar
piece by cutting edges of the polyhedron. Although this is in general not
possible, partitioning the faces into the natural vertex-grid may render it al-
ways achievable. Advances that have been made on various weakenings of this
central problem are summarized here.

1. Introduction

Two unfolding problems have remained unsolved for many years [DO05b,

DO07]: (1) Can every convex polyhedron be edge-unfolded? (2) Can every
polyhedron be unfolded? An unfolding of a 3D object is an isometric mapping1 of
its surface to a single, connected planar piece, the “net” for the object, that avoids
overlap. An edge-unfolding achieves the unfolding by cutting edges of a polyhedron,
whereas a general unfolding places no restriction on the cuts. A net representation
of a polyhedron finds use in a variety of applications [O’R00]. For example, in
manufacturing parts from sheet metal [Wan97], a 3D part is approximated as a
polyhedron and its surface is mapped to a collection of 2D flat patterns. Each
pattern is cut from a sheet of metal and folded by a bending machine [KBGK98],
and the resulting pieces assembled to form the final part.

It is known that some nonconvex polyhedra cannot be edge-unfolded without
overlap. However, no example is known of a nonconvex polyhedron that cannot be
unfolded with unrestricted cuts. Advances on these problems have been made by
specializing the class of polyhedra, or easing the stringency of the unfolding criteria.
On one hand, it was established in [BDD+98] that certain subclasses of orthogonal
polyhedra—those whose faces meet at angles that are multiples of 90◦, and whose
edges are parallel to Cartesian axes—have an unfolding. In particular, the class of
orthostacks, stacks of extruded orthogonal polygons, was proved to have a general
unfolding. On the other hand, loosening the criteria of what constitutes a net to
permit connection through points/vertices, the so-called vertex-unfoldings, led to
an algorithm to vertex-unfold any triangulated manifold [DEE+03] (and indeed,
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any simplicial manifold in higher dimensions). A vertex unfolding maps the surface
to a single, connected piece P in the plane, but P may have “cut vertices” whose
removal disconnects P . Fig. 1(e) shows a vertex unfolding of the polyhedron in (a).

front

top

rightleft bottom

(a) (b)

(c) (d) (e)

a ca
b

d

a b c

d

b

ac d

front

back

bottom

top

front

top

right
a
b

cd

right

rightleft

top

left

back

Figure 1. (a) A 3×3×2 solid block with two unit cubes removed,
front-top center, and back-bottom right. (b) The same shape grid-
ded by coordinate planes through every vertex. (c) An edge unfold-
ing, with touching cuts but no interior overlap. (d) A grid-edge
unfolding of (b) with strict non-overlap. (e) A vertex unfolding
of (a), with rotations about circled vertices.

Here we survey the known results on unfolding orthogonal polyhedra, a shape
class close to those shapes often encountered in manufacturing applications (e.g.,
see [TLT04, LT07]). We explore both general unfoldings and vertex unfoldings.
Although edge unfoldings are not sufficient for orthogonal polyhedra, a second loos-
ening of the unfolding criteria is especially natural for orthogonal polyhedra. A grid
unfolding adds edges (which we will call grid edges) to the surface by intersecting
the polyhedron with planes parallel to Cartesian coordinate planes through every
vertex; see Fig. 1(b). For orthogonal polyhedra, a grid-edge unfolding is a nat-
ural median between edge-unfoldings and unrestricted unfoldings. However, even
finding a grid-edge unfolding of orthogonal polyhedra is unsolved, so attention has
turned to grid refinements. A k1×k2 refinement of a surface [DO05a] partitions
each face into a k1×k2 grid of faces (with the convention that a 1×1 refinement is
an unrefined grid unfolding).

Before detailing the results, three further scope distinctions are needed. First,
we will confine our attention to orthogonal polyhedra without holes, i.e., genus-zero
polyhedra; henceforth the term “orthogonal polyhedron” should be read with this
restriction. So little is known that it is premature to venture beyond genus-zero.2

Second, in general a non-overlapping unfolding permits the boundary of the unfold-
ing to touch as long as no interior points overlap. This corresponds to the physical

2The algorithm for orthotubes (Table 1(5)), however, does work for genus 1, simply by cutting
the tube cycle.
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model of cutting out the net from a sheet of material, with perhaps some cuts touch-
ing but not properly crossing other cuts. In general we will only require interior
non-overlap, so that the net is a weakly simple polygon, as in Fig. 1(c). However,
some early work insists on strict non-overlap, so that the unfolding is a simple poly-
gon, as in Fig. 1(d), as we will mention later. Third, we focus entirely on finding a
“final flat state” rather than the continuous unfolding motion achieving that state.
Indeed an example was constructed in [BLS05] that has a non-overlapping edge
unfolding but cannot reach that flat state without self-intersection if the faces are
treated as rigid plates.

2. Results and Status

Before describing the somewhat confusing partial results, we should state at the
outset that the goal of proving or disproving that every orthogonal polyhedron has a
(1×1) grid-edge unfolding remains unsolved. Indeed, even a slightly finer gridding
leaves matters unsolved. Define a polycube as an orthogonal polyhedron formed
by gluing identical (unit) cubes face-to-face. Polycubes are 3D generalizations of
polyominoes, whose edges available for cutting are a (sometimes proper) superset
of the grid edges. See Fig. 1(b). Indeed, one way of phrasing the question is this
(posed with George Hart in 2004):3

Is there any polycube P that cannot be edge-unfolded, where all cube edges
on the surface of P are considered edges available for cutting?

Despite this question and the (1×1) goal being unresolved, a number of spe-
cialized results have been achieved, as summarized in Table 1. We describe these
results briefly in Sec. 3 before turning to the algorithmic techniques employed.

# Polyhedra Edge/Vertex Refinement Reference

(1) orthostacks grid-edge 2×1 [BDD+98]
(2) grid-edge 1×1 —Open—
(3) grid-vertex 1×1 [DIL05]
(4) o-convex orthostacks grid-edge 1×1 [DM04]
(5) orthotubes grid-edge 1×1 [BDD+98]
(6) orthotrees grid-edge O(1)×O(1) —Open—
(7) well-sep. orthotrees grid-edge 1×1 [DFMO05]
(8) Manhattan towers grid-edge 5×4 [DFO05]
(9) grid-edge 1×1 —Open—
(10) general grid-vertex 1×1 [DFO06]

(11) grid-edge 2O(n)
×2O(n) [DFO07]

(12) grid-edge O(1)×O(1) —Open—
Table 1. Orthogonal polyhedra unfolding results. Abbreviations:
“o-convex” = orthogonally convex; “well-sep.” = well-separated.

In the table, grid edge and grid vertex refer to edges/vertices of the refined
grid (as opposed to those of the originating polyhedron). Various restricted classes
of shapes have been explored to give insight into “general” (unrestricted) orthogo-
nal polyhedra. An orthostack P is a stack of extruded orthogonal polygons, with

3See also http://cs.smith.edu/∼orourke/TOPP/P64.html#Problem.64.
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each pair of adjacent slabs of the stack intersecting in an orthogonal polygon. An
equivalent definition is that every intersection of the solid bound by P with a plane
orthogonal to the z-axis is either empty, or a single orthogonal polygon without
holes. (See Fig. 2.) Orthostacks were introduced and studied in [BDD+98], which
presented an algorithm that in the notation above achieves a (2×1) grid-edge un-
folding (Line (1) of Table 1). This algorithm includes several key ideas that have
found continued use. Although improving this to a (1×1) algorithm remains open
(2) (a much restricted version of the main unsolved problem), two even more special
cases have been resolved. First, the novel idea of exploring grid-vertex unfoldings
led to a (1×1) algorithm (3) in [DIL05], an algorithm we will discuss further be-
low in Sec. 3.1. Second, restricting the shape of each slab of the orthostack to
be orthogonally convex (meeting each horizontal and vertical line in at most one
component) led to a (1×1) grid-edge algorithm (4).

A second achievement of the early work [BDD+98] was a (1×1) grid-edge
algorithm for orthotubes (5). An orthotube is composed of rectangular bricks glued
face-to-face to form a path or a cycle, with a restriction on the gluing to ensure
“clean” corner turns that we will not detail.

These two classes of shapes—orthostacks and orthotubes—share a certain linear
structure that facilitated the non-overlapping layout. The remainder of the work
listed in Table 1 is aimed at more complex “nonlinear” structures. Orthotrees are
similar to orthotubes except with dual a tree rather than a path, and already no
O(1)×O(1) refinement algorithm is known (6). Only a special case we will not
define, “well-separated orthotrees,” has been settled (7). In another direction, a
class of shapes with a more controlled tree structure has led to results. A Manhattan
tower is an orthogonal polyhedron P with an orthogonal polygon base, and such
that, for h1 < h2, the intersection of the solid bound by P with plane z = h2 is
nested in (i.e., a subset of) the intersection with z = h1. Thus P can be viewed as
a collection of narrowing vertical towers, a natural generalization of a “Manhattan
skyline” polygon to 3D. Manhattan towers are monotone terrains in the sense that
they meet every z-vertical line in at most one component. For these shapes, a (5×4)
algorithm (8) is available [DFO05], but (1×1) remains open (9).

Most recently, two results on general polyhedra have been established: a (1×1)
grid-vertex algorithm (10) [DFO06], and a grid-edge algorithm (11) that needs
to refine faces with a grid beyond any constant density [DFO07]. This latter
algorithm is in a sense, then, one that makes arbitrary cuts, but always parallel to
polyhedron edges. For general polyhedra, not only is (1×1) open, even a constant
O(1)×O(1) grid-edge algorithm is unavailable (12) at this writing.

3. Algorithmic Techniques

Rather than repeat the algorithmic descriptions contained in the original pa-
pers, we highlight here instead the central algorithmic techniques or themes: stair-
cases, recursive staircases, helical peels, and nested helical peels.

3.1. Staircases. The first paper specifically on unfolding orthogonal polyhe-
dra was, as far as we know, that of Biedl et al. [BDD+98]. This paper established
that orthogonal polyhedra, and even orthostacks, cannot always be edge-unfolded,
and so set the stage for refined grid unfoldings. The orthostack algorithm in partic-
ular established several techniques employed by all subsequent algorithms. Orient
an orthostack polyhedron P so the slabs (extruded polygons) are stacked in the
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Figure 2. An orthostack of four extruded orthogonal polygons,
the first extruded from z = z0 to z = z1, etc.

z-direction, as in Fig. 2. Call a face orthogonal to the x-axis an x-face, and sim-
ilarly for y- and z-faces. Each slab is bounded by a band Bi composed of x- and
y-faces (and so parallel to the z-axis). The algorithm unfolds each band Bi to a
horizontal strip, and connects this strip to that for the next band up, Bi+1, via a
“connecting bridge” C∗

i . These strips form a staircase monotone with respect to
the horizontal x. However, to avoid overlap, the algorithm splits each Bi into two
halves, Li and Ri, which are (perhaps) staggered horizontally in the layout. Fig. 3
shows a schematic layout of the unfolding. The z-faces, both front (facing a viewer
at z = −∞) and back, are labeled Di, and will be placed into the regions so marked
in the figure. The connecting bridges C∗

i are subpieces of Di.
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Figure 3. Bands Bi = Li ∪ Ri unfold to a staircase. Based on
Fig. 3 in [BDD+98].

The z-faces Di are partitioned into pieces Pj , and arranged within the free
regions above and below the staircase, as depicted in Fig. 4.

As mentioned (Table 1(1)), this algorithm achieves a (2×1) grid-edge unfolding
of orthostacks, indeed a strictly nonoverlapping unfolding. However, the splitting
of the bands Bi that is responsible for the “2” in the “(2×1)” is essential to avoid
overlap in this algorithm, and no (1×1) grid-edge algorithm is known (Table 1(2)).

In [DIL05] this result was improved to a (1×1) unfolding, but using vertex
attachments at key junctures. The overall design of the algorithm is the same, re-
sulting in a staircase for the (now unsplit) bands, with pieces of the z-faces arranged
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Figure 4. The rectangles Pj assemble to form the z-face Di.
Based on Fig. 8 in [BDD+98].

above and below. But the freedom to rotate a piece around a vertex permits the
layout to avoid overlap without refinement.

3.2. Recursive Staircases. As mentioned, orthostacks lend themselves to
the techniques just described because of the linear structure resulting from the
stacking. To go beyond this requires a new technique. An idea introduced
in [DFO05] is best described through the later and more complex work [DFO06],
which extended the grid-vertex unfolding idea just described to handle general
polyhedra. The basic technique is to continue with a staircase built from unfolded
bands, connected by bridges, with above-and-below placements of other nonband
faces (as in Fig. 3), but to follow a recursive tree structure rather than the path
induced by a stacking. This requires completing the unfolding of the parts of the
polyhedron represented by a subtree once that subtree is entered by the algorithm.

Fig. 5(a) shows an example, with the bands composed of x- and z-faces (and
so parallel to the y-axis) in this different orientation. Although the example is
simple, the techniques extend to more complex polyhedra. Here we emphasize the
recursive structure leading to the staircase depicted in Fig. 5(b). The unfolding
of band A is interrupted at grid face a0 to access band B, which is recursively
unfolded before resuming work on A. The “return path” k1 encounters band C,
which is then unfolded, interrupted by C’s child D, whose unfolding is completed
before returning to C. The unfolding of C proceeds to face c4, at which point it is
again interrupted to unfold child band G, and then H . Finally the unfolding of C
is completed, returning back to A’s grid face a1 via k8 and k9. So the unfoldings
of D, and G/H , are embedded within the twice-interrupted unfolding of C, while
the unfoldings of B/C occur within the unfolding of A. Note the several vertex
hinges xb, . . . , xh, u3 at which the freedom of vertex unfolding is exploited. Vertical
y-faces are later “hung” above and below the horizontal staircase (according to
the “illumination” arrows in Fig. 5(a)) much as before. This algorithm results in
substantial cut-edge overlap in the unfolding.

3.3. Helical Peels. Without the hinging afforded by vertex unfolding, main-
taining the recursive staircase structure with grid-edge unfolding requires an addi-
tional idea. The problem encountered is that, without hinging, it seems impossible
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Figure 5. (a) An orthogonal polyhedron composed of bands
A, B, C, D, G, H. (b) The vertex-unfolding, with elisons indicated
by “...” The vertical “illuminated” faces marked by parallel arrows
in (a) are not shown hung above and below the staircase in (b).
Rotations about marked xi vertices are shown separated from their
left neighboring faces for clarity. Based on Fig. 12 in [DFO06].

to maintain the steady rightward unfolding of the staircase: after recursively unfold-
ing a band and its children, the staircase might reverse, which then obstructs the re-
gions hanging below and above the staircase. The technique introduced in [DFO05]
to surmount this problem is to unfold a subpiece of the polyhedron via a “helical
peel,” which, together with the Manhattan tower assumption used in that work, al-
lows a choice of suturing direction upon emerging from the recursive call. Fig. 6(ab)
shows a simple example where the peel starts at s, winds around leaving a gap,
turns around on the back face K via strip K0, and threads back through the gap to
return to t, adjacent to the starting point s. This permits reversing the direction
of the unfolding of an adjacent band (not shown in the figure) that touches s and
t: the unfolding could approach s, interrupt and spiral around the box, finish at t,
and resume unfolding in the reverse direction. Fig. 6(c) shows that the staircase
structure is maintained, and is poised to be interfaced to adjacent staircases, with s
at t extreme left and right respectively. Another, slightly more complicated helical
unfolding permits continuing an interrupted adjacent band unfolding in the same
direction.

These two unfoldings, together with the special structure of Manhattan-tower
polyhedra, permit this technique to unfold the polyhedron by spiraling around the
y-direction, and recursing on front and back children, as illustrated in Fig. 7. (As
in Figs. 5 and 6, the bands here are parallel to the y axis rather than parallel to the
z-axis as in the orthostack algorithms.) Here recursive calls encounter the labeled
“blocks” in the order r1, . . . , r7.

As mentioned, the helices must be joined or “sutured” at each parent-child arc
in the recursion tree. The reverse-direction suture, illustrated in Fig. 6, is used at
the r1/r2 junction and at the r2/r5 junction in Fig. 7, where the helix reverses its
cw/ccw turning at the join. This is most evident at the latter junction: the helix
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Figure 6. Reverse-direction unfolding of single box. (a) Front
view of box and mirror view of left, bottom, and back faces. (b)
All but front faces of box flattened out. (c) Staircase unfolding of
box, with front and back “illuminated” faces (marked by parallel
arrows) hung below. Fig. 6 in [DFO05].

enters back child r5 while heading right (+x) on the top of r2 but emerges, after r5,
heading left (−x). The same-direction suture is employed at all other junctions in
Fig. 7. For example, the helix on r2 enters front child r3 heading right, and emerges
again heading right (from which point it goes underneath r2 to the front child r4).
Each of the same-direction sutures employs vertical strips (such as I2 and I3) on
front faces to reach underneath, which is key to enabling same-direction emergence.

The necessity to wind around each band leads to a (4×5) refinement.

3.4. Nested Helical Peels. Although not evident from the sketches pre-
sented here, the shape restriction provided by the Manhattan tower permits the
vertical strips that allow the use of both same- and reverse-direction sutures. This
in turn allows traversal of the recursion tree in a natural order. This seems not
possible for general polyhedra.

Consider Fig. 5(a), which is not a Manhattan tower in the orientation shown.
For example, a line parallel to the z-axis could intersect P in three components
by passing through C, D, and B. This vertical stacking precludes the use of the
vertical strips needed for same-direction sutures. Forced to use reverse-direction
sutures at every juncture results in the peel sometimes heading “the wrong way”
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Figure 7. (a) The helices around the bands of a Manhattan Tower
polyhedron. (b) A sketch of the staircase unfolding. Fig. 12
in [DFO05].

after emerging from a recursive call. Accepting this situation as forced by a general
recursion leads to the necessity of retracing a previously traversed path, slightly
displaced, until one has returned adjacent to the starting point s. Fig. 8 hints at the
general idea, just on a one-layer example with root band b and children bi. The peel
starts at s, and then oscillates back and forth between the front children b1, . . . , b5,
reversing direction at each one and so forming a nested configuration of paths. The
path then visits the back children b6, . . . , b10 with a similar nested oscillation. As
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the path emerges from the last recursive call on b10 at point t10, it is “trapped”
deep inside the convoluted path, and can only reach t, adjacent to s, by retracing.
The recursive crisscrossing of a band leads to strips of thickness ε = 1/2Θ(n) for
a polyhedron of n vertices. To distinguish this from grid-edge unfolding, it was
named “epsilon unfolding.” It can be viewed as achieving a 2O(n)

×2O(n) refined
grid unfolding.

Figure 8. Helix enters b at s, visits the child blocks in the order
b, b1, . . . , b10, entering b10 at s10 and and emerging at t10. To return
back to t adjacent to s, the entire path must be retraced in reverse.
Based on Fig. 12 in [DFO07].

4. Prospects

In the absence of a counterexample to the boxed question in Sec. 2, one might
take as working hypothesis that a (1×1) grid-edge unfolding exists for any orthog-
onal polyhedron. There seems some hope of converting the epsilon-unfolding just
sketched to a O(1)×O(1) grid-edge unfolding, by more carefully organizing the re-
cursive structure.4 But without either shape restrictions or the flexibility afforded
by vertex unfolding, the gap between O(1)×O(1) and (1×1) seems formidable.
What has been glossed over here in our description of the (1×1) algorithms, par-
ticularly [DFO06], are the complications that arise when a single grid face needs
to be employed for several purposes in the algorithm. This sharing of duties often
can be resolved by refining the face into subfaces, one per task. But if the goal

4Personal communication from Erik Demaine, June 2006.
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is a (1×1) algorithm, instead conflicts must be resolved by careful ordering of the
recursive calls, and other techniques. Perhaps, then, the resolution of the (1×1)
question awaits a new algorithmic idea.

Acknowledgments. Much of this survey is drawn from joint work with Erik
Demaine, Mirela Damian, and Robin Flatland. I am grateful also for extensive and
useful comments by John Iacono.
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