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Abstract

In this paper, we study unfoldings of orthogonal polyhedra. More precisely, we define two
special classes of orthogonal polyhedra, orthostacks and orthotubes, and show how to generate
unfoldings, i.e., how to cut along edges and across faces so that we can then flatten the surface
into a single simple polygon.

1 Introduction

An old question in computational geometry is whether every convex polyhedron has a cutting along
the edges of the polyhedron such that the surface of the polyhedron can be folded flat without
overlap. (See Section 2 for precise definitions.) The answer to this question was always assumed to
be “yes,” and for example Albrecht Diirer (1471-1528) gives such cuttings for the regular solids and
the Achimedian solids in the fourth book of his painter’s manual [Dur25]. The question was stated
explicitly first in [She75], and to this day an answer remains to be found. Interest in this problem
was revived recently by K. Fukuda; and his web page [Fuk97] states a number of conjectures how
to find such an unfolding, and counter-examples to the same conjectures. If the problem is relaxed
in the sense that cuts are allowed not only along edges but also across faces, then there are at least
two different methods for finding an unfolding of a given convex polyhedron [AO92].

Unfolding nonconvex polyhedra seems relatively unexplored. To advance this area, we examine
in this paper the case of an orthogonal polyhedron, i.e., a simple three-dimensional polyhedron each
face of which is perpendicular to one of the coordinate axes. Any orthogonal polygon that is not
an axis-parallel box is nonconvex.

We will look at two classes of orthogonal polyhedra, “orthostacks” and “orthotubes,” defined
formally in Sections 3 and 4. Intuitively, they can be viewed as what are called generalized cylinders
in the computer graphics community: a curve along which a cross-section is swept. This curve gives
these polyhedra a somewhat “linear” nature, which is what we exploit in our unfoldings.

In the case of orthotubes, the curve of the generalized cylinder is an arbitrary non-self-intersecting
orthogonal curve, and the cross-section is a rectangle that changes only near bends of the curve.
Orthotubes can “corkscrew” through space, and, because we allow the curve to be closed, they can
even form cycles and knots. See Figure 10. Still, we can show that an unfolding always exists, even
for closed knots.
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Orthostacks, on the other hand, are much more restricted in the choice of the curve, but much
more general in the choice of the cross-section. For an orthostack, the curve is parallel to the
z-axis. The cross-section can be any simple orthogonal polygon that changes only finitely many
times, though not so as to disconnect the orthostack. In other words, orthostacks are formed by
“stacking up” extrusions of simple orthogonal polygons. In particular, they contain the class of all
orthogonally convex polyhedra.

We prove that all orthostacks and all orthotubes can be unfolded. Our cuts to achieve this
unfolding are not always along edges; indeed, we will provide examples where this is not possible.

2 Definitions

A k-D set is a set of points in k-dimensional space, i.e. a set S C R¥. As a writing convention, we
will use calligraphic letters for 3-D sets, bold-face letters for 3-D sets the interior of which is empty
(such as the boundary of a 3-D set), and non-bold letters for 2-D sets.

[Need to define “projection”, or whatever we want to call it, here or for the orthostacks.]

2.1 Polygons and Polyhedra

A (closed) polygonal curve is a set of n line-segments (called edges) (v;,vit1),4=0,...,n—1 in the
plane such that v, = vg. The points vy, ..., v, are called vertices of the polygonal curve. A simple
polygon is a closed bounded 2-D set whose interior is connected and whose boundary is a polygonal
curve. A polygon (possibly with holes) is a closed bounded 2-D set whose interior is connected, and
whose boundary is the union of finitely many disjoint polygonal curves. A 3-D set that lies entirely
within a plane will be called a 3-D polygon if its projection onto that plane is a polygon. An open
polygon is a set the closure of which is a polygon.
A polyhedron is a bounded 3-D set P such that the following conditions hold:*

e The surface P is the union of finitely many 3-D polygons called faces.
o If two faces intersect, then only in line segments that are edges for both faces.

e An edge of the polyhedron, i.e., an edge of one of the faces, belongs to exactly two faces of
the polyhedron.

e If v is a vertex of the polyhedron, i.e., a vertex of one of the faces, then the faces incident to
v can be sorted into one circuit. More precisely, if F;,...,F;, _, are the faces for which v is
a vertex, then (after suitable renaming) for j = 0,...,k — 1 the intersection of F;, and F
contains an edge of P with one endpoint at v.
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A polyhedron P is called without cavities if the surface of P is connected. In this paper, we will
only study polyhedra without cavities.

A polyhedral surface P is a 3D-set that is a subset of the surface of some polyhedron P; it is
called closed if P = 0P, and open otherwise. A vertex/edge/face of a polyhedral surface P is a
point/line segment/3D-polygon contained in P that is a vertex/edge/face of some polyhedron P
with P C 0P.

In fact, many different definitions of polyhedra exist in the community. Our definition is based on Coxeter
[Cox63].




2.2 Cuttings and Unfoldings

Intuitively, an unfolding of a polyhedron is a simple polygon that is obtained by cutting the surface
of the polyhedron in a suitable way, and then flattening it. A more precise definition is given in
the following.

A cutting of a polyhedral surface P is a finite set of closed line segments that lie in 0P. The
pieces of the cutting are the connected components of P\ (U2, e; U Ule 1;), where ey, ..., ey, are
the edges of P, and 1y,. .., are the line segments of the cutting. We use these pieces (which are
open 3-D polygons) to define the polygon that results from flattening the cut surface in a precise
way.

We say that two pieces P;, P; of the cutting are adjacent if P; N P, contains a positive-length
line segment that is not part of a line segment of the cutting. A cutting is called a tree cutting if
the adjacency relationships between pieces of the cutting form a tree. Given a tree cutting of P,
we flatten P as follows: Start with an arbitrary piece P of the cutting, and translate and rotate
it into the zy-plane, with the side of P; that was on the outside of P looking towards +z. We
call this polygon in the zy-plane the polygon P corresponding to P1. As long as not all pieces
have been added, find one missing piece P; that is adjacent to one piece P; that has been added
already; such a P; exists, and only one P; can exist for P; because the adjacencies form a tree.
Let P;, P; be the polygons corresponding to P;, P; in the zy-plane. Translate and rotate P; such
that the intersection of P; and P; corresponds exactly to the intersection of P; and P;. Note that
it is possible that two pieces of the cutting may overlap in this flattening. We are interested in
obtaining flattenings where this is not the case, and therefore proceed to our main definition:

Definition 1 An unfolding of a polyhedral surface P is a polygon that is the flattening of some
tree cutting {l1,...,1x} of P. The line segments 11,...,1; are called the cuts of the unfolding. An
unfolding of a polyhedron P is an unfolding of OP.

There are two aspects to finding an unfolding of a polyhedron. The first aspect is to find the
cuts. The second aspect is to find an algorithm how, given the cuts, one should proceed in actually
flattening the surface without separating the pieces first and reattaching them again. The problem
here is that in applications the surface of the polyhedron is typically made from stiff material that
should not be bent or intersect itself while being flattened. This second problem, which we refer to
as a rigid unfolding, is a generalization of the problem of straightening linkages without intersection.
It is known that not all linkages in 3D can be straightened [BDD*99], and it is conjectured that
the decision problem of whether a linkage in 3D can be straightened is NP-complete.

In this paper, we study only the first aspect, i.e., we give algorithms to find for some classes of
polyhedra a tree cutting such that the flattening is a simple polygon.

2.3 Orthogonality

An orthogonal polygon is a polygon in which each pair of adjacent edges form an angle that is
a multiple of 7/2. An orthogonal polyhedron is one in which any pair of edges with a common
endpoint meet at an angle that is a multiple of /2.

We use the term z-plane to denote a plane orthogonal to the z-axis. An z-face is a face lying in
an z-plane. An z-line is a line parallel to the z-axis. An z-edge is an edge contained in an z-line,
and an z-cut is a cut lying in an z-line. The terms are defined analogously for “y-” and “z-”. An
orthogonal cut is a cut that is either an z-cut, y-cut or z-cut, and an orthogonal plane is a plane
that is either an z-plane, y-plane or z-plane.



3 Unfolding Orthostacks

3.1 Definitions

Informally, orthostacks are stacks of extrusions of orthogonal polygons. The precise definition is as
follows:

Let zp < ... < zg be arbitrary numbers. Let S1,...,Ss be orthogonal polygons without holes
such that for ¢ = 1,...,s — 1 the intersection of S; and S;; is non-empty and non-degenerate, i.e.,
if I = S;NS;;1 then I # () and the closure of the interior of T is again I. For 1 = 1,...,s, let
E; be the extrusion of S; between z;_1 and z;, i.e., B; = {(z,y,2) : (z,y) € Si,zi-1 < z < z}.
The orthostack with respect to Si,...,Ss and 2, ..., 2, is then [J;.; E;. Another way to look at an
orthostack is to view it as an orthogonal polyhedron every intersection of which with a z-plane is
at most one orthogonal polygon without holes.

The ith band B; is the extrusion of 0S; between z;_; and z;. See Figure 1. Band B; thus consists
of the z-faces and the y-faces of E;, and therefore |J;_; B; is exactly the union of all z-faces and
y-faces of the orthostack.

x

Figure 1: The left picture shows an orthostack, with the visible parts of By shaded. The right
picture shows a polyhedron that is not an orthostack, because the intersection with the indicated
plane consists of two polygons.

3.2 Outline of the Unfolding

Let an orthostack defined by Si,...,Ss and 25 < ... < z; be given. We assume that s is minimal,
ie., S; # Sip1 fori=1,...,s — 1. For later ease of notation, define S = S;11 = 0.
The basic idea for unfolding the orthostack is to cut its surface into the bands Bi,....B;

defined above, cut each band to make a strip, and to spread these strips out in the plane in
order of increasing z-coordinate. Since the bands cover all z-faces and all y-faces, only the z-faces
are missing, and we attach these faces between the strips in such a way that everything remains
overlap-free and connected.

As we will see, the place to cut the ith band B; depends both on the previous band B; 1 and on
the next band B;y; for 1 < 7 < s. Because we cannot necessarily meet the requirements imposed
by the previous and the next band simultaneously, we will first cut B; in two halves with a z-plane.
More precisely, for 1 < i < n, let L; be the extrusion of 35; between z; 1 and %(zi,l + z;), and let
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R, be the extrusion of 0S; between %(zi_l + z;) and z;. We call L; and R; half-bands; note that
L; UR; = B;. For later ease of notation, define Ry = Lsy; = (). We will unfold each half-band
separately, and reattach the half-bands appropriately later.

For the part of the unfolding that contains the z-faces, we need the following definitions illus-
trated in Figure 2: For 0 <1 < s, let DZT" be the closure of S; — S; 11, and let DZT" be the projection
of D into the (2 = 2;)-plane. Thus, D; is the union of all z-faces with coordinate z; that look
“away from the viewer” (i.e., toward +z). For 0 < i < s, let D;” be the closure of S;;; —.S;, and
let D, be the projection of D; into the (z = z;)-plane. Thus, D; is the union of all z-faces with
coordinate z; that look “towards the viewer” (i.e., toward —z). Define D; = D;" UD; ; which thus
is the projection of the symmetric difference of S; and S;;1 into the (z = z;)-plane. Note that D;
has a non-empty interior, because s was minimal, and therefore S; # S; ;.

L
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Figure 2: Dy in the example of Figure 1; DJ is marked by y-lines, D, is marked by z-lines. In the
right picture, we show the projection onto the zy-plane. The shaded area marks So N S3.
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Note that Jj_q(R;UD;UL; 1) is exactly the union of all faces of the orthostack. Thus, to unfold
the surface of an orthostack, we proceed as follows: (1) For ¢ =0,...,s, we unfold R; UD; UL;1,
1 = 0,...,s, by cutting each half-band into a rectangular strip, connecting the strips directly or
using a rectangle C; from D;, cutting the remainder of D; into rectangles, and attaching these
rectangles without overlap at appropriate places on the strips. (2) For i = 0,...,s, we show how
to reattach the unfoldings of Rj U D; UL;;; to each other without overlap.

Details of these two steps will be given in the next two subsections. Figure 3 gives an overview
of the final unfolding.

3.3 Attaching D; to R, and L,

In this section, we study how to unfold R; UD; U L;;; for one fixed i # 0,s. (The treatment is
similar, and even easier, if i € {0, s}, because then one of R; and L;; is empty.) The problem here
is where to cut the bands R; and L;,; to guarantee that they can be connected. This connection
will be done using a piece C* of D;, or directly if R; and L;;; are connected to each other. That
this is always possible is shown in the following lemma.

Lemma 3.1 If 0 < i < s, then there exists an open rectangle C in D; such that one x-edge of C
belongs to R; and the other x-edge of C belongs to L;. More precisely, there exist values x1 < xo
and y1 < yo such that C = {(z,y,2;) : 11 < x < T2,y1 <y < y2} C Dy, and such that
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Figure 3: Overview of the unfolding.

o e1 ={(z,y1) : 11 <z < x2} C IS}, e2 = {(z,y2) : 1 < x < x93} C 8Sj41, or
o e1 ={(z,y1) 171 <z <z} CISiy1, e2 = {(z,y2) 1 1 < x <z} C IS;.

Proof: Let I be the intersection of S; and S;1; this intersection is non-empty and non-degenerate
by definition of an orthostack. Let y; be the largest y-coordinate of a point in I, and let e be an
z-edge of I which has y-coordinate y;. In Figure 4, we have y; = 7 and e is the edge between
endpoints (3,7) and (6, 7).

Edge e belongs to 0S; or 0S;11 or both. We apply one of two methods to find z1,xs,yo,
depending on whether e belongs to both boundaries or only one. If, as in Figure 4, part of e
belongs to both boundaries, and part of e belongs to only one boundary, then either of the following
methods can be employed.

Method (1): If part of e belongs to both 35; and 9S;1, then let [z1, z2] be a maximal interval
of eN085; N 0841, i.e., a maximal interval of overlap between 0S; and 0S;4;1 within e. In Figure 4,
which illustrates this method, we have z1 = 5 and 9 = 6. Also, set yo = y1. Note that in this case
C is empty. Also, e; = eg C 35; N 3Si+1, so the claim holds.

Method (2): If some part of e belongs to only one of 0S; and 0S;;1, then let (zg,z2) be
a maximal open interval of e N (05;\05;+1 U 8S;+1\0S;), i.e., a maximal interval of non-overlap
between 0S; and 0S;41 within e. In Figure 5, which illustrates this method, we have o = 3 and
xo = 5. Let j € {i,7 + 1} be such that e belongs to 05}, and let k be such that {j, k} = {4, + 1}.

Let z; be minimal with zg < z; < z9 such that no y-edge of S; or S;+1 has z-coordinate in
the interval (z1,z2); o1 exists because there are only finitely many y-edges. In Figure 5, we have
I, = 4.

Fix an arbitrary value z* € (z1,z2). Let y2 > y1 be the smallest value such that (z*, y2) belongs
to 0S; U 0S;11. This exists because (z*,y1) € I, and because (z*,y;) belongs to 0S; but not to
0Sk. Also, yo is independent of the choice of z*, because the y-coordinate of the next boundary
can change only if there is a y-edge of S; or S;;1, but no such edge exists in the interval (z1, z2).
We observe the following:

e The points {(z*,y) : y > y1} do not belong to I by definition of y;.

e Because (z*,y1) belongs to I, and belongs to dS; but not to Sk, the points {(z*,y) : y1 <
y < y2} belong to Sk\S;. In particular therefore, the points {(z*,y,2;) : y1 <y < y2} belong
to Dz



e Point (z*,12) cannot belong to to 0S5}, because otherwise (z*,y2) € I, which contradicts the
definition of y;.

e Therefore, (z*,y2) € 0Sk by definition of ys.

Since these claims hold for any 77 < z* < z9, it follows that all points in C belong to D;. Also,
e1 belongs to dS; and ez belongs to 9Sj, which proves the claim. O

Let C* be the rectangle {(z,v,2;) : 71 < z < 29,71 < y < y2}. Note that C* is possibly
degenerate, i.e., a z-segment, if y; = yo. Also, either the (y = y1)-edge of C* belongs to R; and the
(y = y2)-edge of C* belongs to L;1, or vice versa. If C* is non-degenerate, then it is the closure of
set C of the previous lemma, and therefore belongs to D; because D; is closed. In either case, we
call rectangle C* the connecting bridge, because it will be used to connect the two half-bands R;
and L;;1 (or, if the rectangle is degenerate, the two half-bands will directly attach to each other).

This connecting bridge determines where the half-bands R; and L; 1 are cut into strips. Specif-
ically, we cut R; by extending the (x = z1)-edge of C*, and L;;; by extending the (z = z2)-edge
of C*. More precisely, if j € {1,2} is such that {(z,y;) : 1 < z < x2} C 0S;, then add the
z-segment {(z1,v;,2) : 3(zi—1 + 2) < 2z < z} to the cutting; this segment is on R;. If k is such
that {j,k} = {1,2}, then by Lemma 3.1 {(z,yx) : z1 < z < 22} C 9Si+1, and we add the z-
segment {(z2, Yk, 2) : zi <z < 5(2i + z+1)} to the cutting; this segment is on L;; . These cuts are
demonstrated in Figures 4 and 5.
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Figure 4: How to find a connecting bridge (shown darkly shaded) with Method (1), i.e., if the edge
belongs to both 9S; and 0S;+1. In this case, the connecting bridge is degenerate, which means that
the two half-bands directly attach to each other. We also show how to extend the boundaries of
the connecting bridge into cuts for the two half-bands.

Now we turn to the issue of how to attach the missing z-faces, i.e., the faces in D;\C*. We cut
D;\C* into a collection of rectangles P, ..., P;, by extending every y-edge of D; in both directions
until it hits an z-edge. These rectangles Py,...,P; lie in the (z = z;)-plane. See Figure 6.

For j =1,...,1, we add to the cutting all edges of P; except the top (+y) edge. The top edge
of P; remains attached to one of the half-bands R; and L;;;. If C* is non-degenerate, then we
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Figure 5: How to find a connecting bridge (shown darkly shaded) with Method (2), i.e., if the edge
e belongs to only one of 35; and 3S;11 (shown here is e € 9S3). In this case, the connecting bridge
is non-degenerate and belongs to D;. We also show how to extend the boundaries of the connecting
bridge into cuts for the two half-bands.
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Figure 6: D;\C* is partitioned into rectangles Py,...,P; by cutting along extensions of y-edges.
We show the splitting of rectangles both when C* is degenerate and when it is non-degenerate.

also add to the cutting the two y-edges, but not the z-edges, of C*. Finally, we add to the cutting
all line segments that are common to R; and L;;; and that do not belong to C*.

The resulting cutting is a tree-cutting of R; U D; U L; 1, because the adjacencies of the half-
bands form paths, these paths are adjacent to each other if C* is degenerate and both adjacent to
C* otherwise, and the rectangles Py, ..., P; attach to exactly one face of a half-band. The complete
set of cuts for R; UD; UL;y; is shown in Figure 7.
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Figure 7: The cutting of R; UD; U L; 1, both when C* is degenerate and when it is not.

We have to show that the flattening of this tree-cutting does not overlap itself. Consider Figure 8
and study first R;, the flattening of R;. This is obtained by flattening a path of rectangular faces,
all of them of the same width in z-dimension, and connected to each other at their z-edges. Thus,
R; is a rectangular strip; place this strip in the zy-plane such that the inside of the strip points
towards the +z-direction. Similarly, the flattening L;; of L;;; is a strip, and we place it in the
same fashion.

Recall that rectangle C* consisted of the points {(z,y, z;) : 1 <z < z2,y1 <y < y2}. Translate
L;,1 such that C*, interpreted as a 2D-polygon C*, can be connected to both R; and L;;1; thus
shift L;11 such that the bottom (—y) end of L;; is exactly y2 — y1 above the top (+y) end of R;;1,
and the right (+z) end of L;;; is exactly zo — z1 to the right of the left (—z) end of R;;1. Then
C* fits exactly between R; and L; 1.

The half-infinite rectangle above R; and the half-infinite rectangle below L;,; will be used to
place all other pieces of D;. More precisely, each rectangle P, ..., P; attaches to one half-band at
its top edge. The half-infinite rectangle from both half-bands is empty and each piece is a rectangle,
therefore no intersections are possible. See Figure 8.

Thus, we have shown how to unfold R; UD; UL;y1, 0 < 7 < s. We can handle Dy U L; and
R UD; similarly. We cut Ly by extending the cut of R1, cut Dy into rectangles, and attach these
rectangles in the half-infinite rectangle below L;. We cut R, by extending the cut of L, cut Dy
into rectangles, and attach these rectangles in the half-infinite rectangle above Ry.

3.4 Connecting the layouts of R; UD; UL;,

All that remains to show is how to attach half-band L; to half-band R;, 7 = 0, ..., s. The half-bands
L; and R,; have been cut at possibly different places to form strips. If the cuts are actually at the
same place, then the strips can simply be rejoined. If the cuts are at different places, there are
two ways to rejoin the strips, with R; staggered to the left or to the right of L;, respectively. We
choose the former for all 1 = 1,...,s, lining up the top of the strip R; with the appropriate place
in strip L;. See Figure 3, particularly the two middle pair of strips. The flattenings of all triplets
thus combined do not intersect.
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Figure 8: Splitting D; into rectangles and attaching them to the strips. We show this for a
degenerate connecting bridge on the top, and for a non-degenerate connecting bridge on the bottom.

3.5 Complexity of the unfolding

Thus we have found an unfolding of the orthostack. To estimate the complexity of this unfolding,
we would like to obtain a bound on the number of vertices in the resulting polygon relative to
the number of vertices of the orthostack. Every symmetric difference D; is non-empty and thus
contains at least one rectangle (which is possibly the connecting bridge). So we can charge the up
to 8 vertices of R; U L;41 to one rectangle of D;, and the number of vertices of the unfolded polygon
is O(r), where r is the total number of rectangles obtained from Dy,...,D,. All the rectangles
obtained by partitioning D; lie in the (z = z;)-plane, and each rectangle Py, is incident to at least
one vertex v of the orthostack in the (z = z;)-plane, because Py’s y-edges are obtained by extending
y-edges of the orthostack. Charge each rectangle Py to one of the vertices v on the boundary of Py.
No vertex v can be incident to more than two rectangles (cf. Figure 6), and so no vertex receives
more than two charges. Thus the number of rectangles from D; is O(n;), where n; is the number
of vertices of the orthostack in the (z = z;)-plane. The total number of vertices of the polygon
therefore is O(r) = Y_; O(n;) = O(n).
Thus, we have proved the following theorem:

Theorem 1 Any orthostack of n vertices has an unfolding with O(n) vertices such that all cuts
are orthogonal.

It would be a reasonable restriction to require that all cuts lie in an orthogonal plane that
contains at least one vertex of the polyhedron. However, our construction splits band B; into
half-bands L; and R; with a cut that violates this restriction. We leave as an open problem finding
an unfolding under this more stringent condition.

3.6 Unfolding with edge cuts is impossible

In our construction, we used cuts that are not edge cuts, i.e., that are not along an edge of the
polyhedron (at least not if we represent the polyhedron with the minimal possible number of faces).
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We now show that this is necessary for the orthostacks in Figure 9, which by Theorem 1 can be
unfolded if we allow cuts across faces.

i
7 =
v

Figure 9: Two orthostacks that cannot be unfolded with edge cuts.

First, consider the left polyhedron of Figure 9. In any cutting with only edge cuts, all faces are
left intact, i.e., are pieces of the cutting. Therefore, the unfolding of the little cube must lie inside
the hole of the annulus that is the top face of the big box. This is impossible, because the small
cube’s surface area exceeds the area of the hole. Hence, there is no unfolding with edge cuts only.

A more intriguing example is the right polyhedron of Figure 9, which is a cube with small “bites”
taken out of every edge. Here, every face is an orthogonal polygon without holes. Nevertheless,
this polyhedron has no unfolding with edge cuts only. For assume there exists a tree cutting with
only edge cuts such that the flattening is a simple polygon. The pieces of this cutting are the faces.
Consider two of the large faces that are closest in the tree of adjacencies of the cutting. They must
either be joined directly, or via the faces of the bite between them. The first possibility does not
leave enough area for the faces of the bite, and the second one either leads to overlap between faces
or again leaves insufficient area for the bite. So both possibilities are ruled out, or in other words,
there is no unfolding with edge cuts.

An even more interesting example would be an orthogonal polyhedron where all faces are
orthogonally convex, and nevertheless there is no unfolding with only edge cuts. Very recently,
it was shown that there exists a (non-orthogonal) non-convex polyhedron with convex faces that
has no unfolding with only edge cuts [BDEK99]. No generalization of this result to orthogonal
polyhedra is apparent, and we leave this as an open problem.

4 Unfolding Orthotubes

In the previous section, we showed how to unfold any orthostack. The class of orthostacks contains
a wide variety of orthogonal polyhedra, but there are also many orthogonal polyhedra which are
not orthostacks. Our next step therefore was to search for orthogonal polyhedra that are not
orthostacks and either to show that they cannot be unfolded or to find unfolding algorithms.

It remains open whether there exists an orthogonal polyhedron that cannot be unfolded, but
our search for such a polyhedron led us to consider the orthogonalized trefoil knot (see the right
picture of Figure 10), because the trefoil knot has been used for other impossibility results as well
[BDD"99]. As it turns out, the orthogonalized trefoil knot can be unfolded, and the algorithm
to find this unfolding led us to a large class of orthogonal polyhedra, the orthotubes, that can be
unfolded, and that are radically different from orthostacks.

Informally, an orthotube is the union of blocks (i.e., axis-parallel rectangular boxes) By, ..., Bx 1
such that B; attaches to B;;1 for i = 0,...,k — 2 (this will be made more precisely below). We
have two types of orthotubes: cyclic orthotubes for which By_; attaches in turn to By, and acyclic
orthotubes, for which this is not the case. To define an orthotube precisely, set B_1 = B = 0 to
obtain an acyclic orthotube, and B_1 = Bi_1, B = By to obtain a cyclic orthotube.
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The precise definition is then as follows: An orthotube is the union of blocks By, ..., Bi_1 such
that for: = 0,...,k—1, B;NB;1 is a 2-dimensional face of both B; and B;11, and such that B; N 5;,
j#1—1,i+ 1, is either empty, or a vertex or an edge of B; N B;_1 or B; N B;;+1. See Figure 10 for
some examples of cyclic orthotubes, neither of which is an orthostack. As we will show now, any
orthotube has an unfolding.

tube block

= /

Figure 10: Examples of orthotubes.

Consider an orthotube P consisting of the blocks By, ..., Br_1. We assume that the blocks are
chosen maximally, i.e., P cannot be described using less than k£ blocks. We also assume for now
that the orthotube is cyclic; the other case will be treated later. In the following, all additions
are modulo k. Let the wrapping B; of a block B; be B; N 0P, i.e., the union of all faces of B; that
are on the surface of P. Notice that the union of the wrappings of all blocks is the surface of the
orthotube.

The wrapping B; of block B; is the surface of B; with two faces missing, namely, the faces that
correspond to B; N B;_1 and B; N B;11. We call these missing faces the holes of B;. There are two
classes of blocks: the tube blocks, where the two holes are parallel, and the corner blocks, where this
is not the case. See Figure 10 for an example. Abusing notation, we will use the words hole, tube
block and corner block also for the wrapping B; of a block B; when they really apply to B;.

We explain in the following first the options for unfolding one wrapping B;, and then show how
to combine these unfoldings. If B; is a tube block, then we unfold it by cutting along an edge of
B; that is incident to a hole of B;. There are four such edges, and the choice between them is
arbitrary. For this cut, the wrapping then unfolds into a rectangle, see Figure 11.

e a,

to B;—1 d¢ to Bit1

hole to B;_1 7 11y g

b 7
f 4 hole to B;41

Y L
Figure 11: The unfolding of the wrapping of a tube block B;. Edges that are shared with B; 1 or
B;+1 are shown with underlying dots. The cut is shown with a thick line.

x
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If B, is the wrapping of a corner block, then we use one of two possible unfoldings for B;. There
are four edges of B; for which exactly one endpoint is incident to a hole of B;. Of these four edges,
we cut along two edges that are not parallel. This gives two possible cuts, and the choice between
them is not arbitrary, but depends on the unfolding of B;_; as will be explained below. With either
sets of cuts, B; then unfolds to a simple polygon; see Figure 12.

to Bi11
f e
hole to B;_1
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2
2 2,4
s Pl —
v e 4 d
irndosrach S s to B;
a f : VAR i+1
%
1/ hole to B;41
e b d
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to B;_1
x
to B;—1
a
a
hole to B;_1 to Biy1
c
T PO > to B;_1
// ///\ d
or s s —
A A Oy d b
al f 1 7 >~
17 hole to B;11
e
c d

Y
to Bi+1

xz

Figure 12: The unfolding of the wrapping of a corner block B;. Edges that are shared with B;_; or
B;+1 are shown with underlying dots. The cuts are shown with thick lines.

For later use, we note that after a suitable rotation, the unfoldings of a corner block have the
following properties: (1) For each unfolding, there are two edges common to B; and B;_1 on the
leftmost (—z) boundary of the unfolding, and two edges common to B; and B;;1 on the rightmost
(4+x) boundary of the unfolding. (2) Any edge common to B; and B;_1 is on the leftmost boundary
of at least one of the two unfoldings.

Now we show by induction on ¢ how U;':o B, can be unfolded. We maintain the induction
hypothesis that at least two edges common to B;_; and B; are on the rightmost (+z) boundary of
the unfolding of By U ... UB;_1.

We start with an unfolding By of By, choosing an arbitrary one if By is a corner block. Rotate
By such that at least two edges common to By and B; are on the right (+z) side of By; this is
always possible as demonstrated in Figures 11 and 12. The induction hypothesis is then satisfied.

Now assume that By U ... U B;_; has been unfolded, and the rightmost (4+z) boundary of its
unfolding P contains two edges ej, es that are common to B; 1 and B;. At least one of these edges,
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say eq, is also an edge of B;, because the only edge of B; that could fail to be an edge of B; is the
edge of a corner block that is incident to both holes; there is at most one such edge.

If B; is a tube block, then create an unfolding B; of B; as described above. Rotate B; such
that the edges common to B; and B;_; are on the left (—z) side of B;; see Figure 11. In particular
therefore e; is on the left side of B;, and all four edges common to B; and B;11 are on the right
side of B;.

If B; is a corner block, then among the two possible unfoldings of B; described above, choose an
unfolding B; such that after suitable rotation e; is on the leftmost boundary of B; and two edges
common to B; and B;;1 are on the rightmost boundary of B;; this is always possible as observed
above.

In either case, attach B; to the unfolding P of Bo U...UB;_; using edge e;. In other words,
translate B; such that the two locations of e; in P and B; coincide. This will not result in overlap,
because e; is on the leftmost boundary of B; and on the rightmost boundary of P. At least two
edges common to B; and B;y; are on the rightmost boundary of B;, and so now on the rightmost
boundary of P U B;, and the induction hypothesis is satisfied.

This proves that any cyclic orthotube can be unfolded, so all that remains to show is how to
handle an acyclic orthotube. In this case, the first block By and the last block By_; have only one
hole each. Let Fy be the face opposite to the hole of By and let F;_; be the face opposite to the
hole of Bi_1. Then Bo\Fy and By_1\F;_1 are the wrappings of tube blocks, thus we can unfold
Uf;ol B;\Fo\F;_1 as described before. Denote this unfolding by P. The edges of F( are on the
leftmost (—z) boundary of P by construction, hence we can attach Fy, interpreted as a 2D-polygon,
at any of these edges to P without creating overlap. The edges of F;_; are on the rightmost (+z)
boundary of P by construction, hence we can attach Fy_1, interpreted as a 2D-polygon, at any of
these edges to P without creating overlap. Thus we obtain an unfolding of an acyclic orthotube.

In Figure 13, we show the complete example of an orthotube and its unfolding.

B4 0
10
8 | .
. 57 6
5 3
4 g
0
ti2|¥pB

By
BO Bl B2 B3 B4
Figure 13: An orthotube and its unfolding. The edges used for connecting blocks are shown with
underlying thick dots.

Each cut in the unfolding of an orthotube is along the edge of a block. Unfortunately, an edge
of a block is not necessarily an edge of the orthotube, so this is not an unfolding with edge cuts
only. But on the positive side, because we chose the minimum possible number of blocks to describe
the orthotube, every face of a block is incident to a vertex of the orthotube. Every cut therefore
lies in an orthogonal plane containing a vertex of the orthotube. Also, every face of a block has
4 edges, and every vertex of the orthotube is incident to at most 6 faces of blocks, which implies
that the number of cuts, and hence the complexity of the unfolding, is proportional to the number
of vertices of the orthotube.

Theorem 2 Any orthotube with n vertices has an unfolding with O(n) vertices such that all cuts
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are in an orthogonal plane containing a vertex of the orthotube.

Our unfoldings of orthotubes have another interesting property: In the origami-community,
one distinguishes between mountain-folds, which are folds that bend the two pieces attached to
it “away” from the viewer, and walley-folds, which are folds that bend to two pieces attached to
it “toward” the viewer. Studying the unfoldings of a tube block and a corner block reveals that,
presuming the outside of the block is turned “toward” the viewer, we have only mountain-folds.
Because the edges used to glue together the blocks together are not folds, this implies that our
unfoldings of orthotubes have only mountain-folds.

5 Conclusion

In this paper, we studied the problem of finding unfoldings of two classes of orthogonal polyhedra,
orthostacks and orthotubes. We showed that any such orthogonal polyhedron has an unfolding.
Moreover, the complexity of the unfolding is proportional to the complexity of the orthogonal poly-
hedron. To our knowledge, this is the first result on unfolding any class of non-convex polyhedra.

Several open problems have been pointed out throughout the paper. The most important ones
are the following:

1. Does every orthogonal polyhedron have an unfolding?

We suspect that the answer to this question is no. We have discovered an open orthogonal
polyhedral surface that cannot be unfolded. However, a generalization of this construction to
a closed polyhedral surface remains to be found.

2. What other classes of orthogonal polyhedra have an unfolding?

We found a super-class to orthostacks and orthotubes, called orthocylinders, that can be
unfolded. An orthocylinder is an orthotube where each tube block is replaced by an orthostack
such that the leftmost and rightmost face of the orthostack are exactly the holes of the tube
block. Such an orthocylinder can be unfolded by unfolding each orthostack separately, and
combining these unfoldings with the unfoldings of the corner blocks as for orthotubes.

For which other classes can we find unfoldings? For example, a natural extension to an
orthotube, which is a path or cycle of blocks, is an orthotree, i.e., a tree of blocks. Can all
orthotrees be unfolded?

3. Define a rigid unfolding as one that permits flattening while (a) keeping all faces of the
cutting rigid and (b) avoiding self intersection of the faces. It was shown that our cutting
of the orthogonalized trefoil knot has no rigid unfolding [BLS99]. Does our cutting of an
orthostack have a rigid unfolding? If not, is there a different cutting of an orthostack the
flattening of which is simple, and that has a rigid unfolding?

Finally, unfoldings of other classes of nonconvex polyhedra remain to be investigated.
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