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Abstract

We show that four of the five Platonic solids’ surfaces may be cut
open with a Hamiltonian path along edges and unfolded to a polygonal
net each of which can “zipper-refold” to a flat doubly covered parallelo-
gram, forming a rather compact representation of the surface. Thus these
regular polyhedra have particular flat “zipper pairs.” No such zipper pair
exists for a dodecahedron, whose Hamiltonian unfoldings are “zip-rigid.”
This report is primarily an inventory of the possibilities, and raises more
questions than it answers.

1 Introduction

It has been known since the time of Alexandrov—and it was certainly known
to him—that the surface of a polyhedron could sometimes be cut open to a net
and refolded to a doubly covered polygon, which we will henceforth call a flat
polyhedron. Such flat polyhedra are explicitly countenanced in Alexandrov’s
1941 gluing theorem.1 Perhaps the first specific example of this possibility
occurred in [LO96], which included the example illustrated in Figure 1: the
familiar Latin-cross unfolding of the cube may be refolded to a flat convex
quadrilateral polyhedron. This is one of the two flat convex polyhedron that
may be folded from the Latin cross [DO07, Fig. 25.32].

Let us say that two polyhedra Q1 and Q2 form a net pair if they may be
unfolded to a common polygonal net. In Figure 1, the cube is cut along edges
to unfold to the Latin cross polygon, but the flat quadrilateral must have face
cuts through the interior of its two faces to unfold to the same Latin cross.

In general there is little understanding of which polyhedra form net pairs.
See, for example, Open Problem 25.6 in [DO07]. Here we explore a narrow
question on net pairs, narrow enough to obtain a complete answer.

The cuts to unfold a convex polyhedron to a single polygon form a spanning
tree of the polyhedron’s vertices [DO07, Sec. 22.1.3]. Shephard explored the
special case where the spanning tree is a Hamiltonian path of the 1-skeleton
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1See [DO07, Sec. 23.3] and [Pak10, Sec. 37] for descriptions of this theorem.
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Figure 1: Folding the Latin cross cube net to a flat quadrilateral polyhedron.
Points with the same label in (a) are identified in the refolding (b).

of the polyhedron, i.e., all cuts are along polyhedron edges [She75]. The result
is a Hamiltonian unfolding of the polyhedron. (Note the cube unfolding that
produces Figure 1(a) is not a Hamiltonian unfolding: the cut tree has four
leaves.) Some combinatorial questions on Hamiltonian unfoldings were explored
in [DDLO02]; see [DO07, Fig. 25.59 ]. In particular, there are polyhedra that
have an exponential number of combinatorially distinct Hamiltonian unfoldings:
2Ω(n) for a polyhedron with n vertices.

Another variant is provided by the class of perimeter-halving foldings [DO07,
Sec. 25.1.2 ], which correspond to spanning cut paths that may employ face cuts
rather than solely following polyhedron edges. In [LDD+10] these paths were
memorably rechristened as zipper paths, producing zipper unfoldings. We will
adopt that nomenclature, including the verbs zip and unzip to mean folding and
unfolding (respectively) along zipper paths. We reserve Hamiltonian path to be
a zipper path along polyhedron edges. Finally, if two polyhedra each unzip to
a common polygonal net, we say they form a zipper pair.

The narrow question we explore is this:

Question: Does each of the Platonic solids form a zipper pair with
a flat convex polyhedron, with the zipper path on the regular poly-
hedron forming a Hamiltonian path of its edges?

We show that the tetrahedron,2 the cube, the octahedron, and the icosahe-
dron all form such zipper pairs with flat parallelogram polyhedra. The dodeca-
hedron has no such zipper mate. Note that it would be too restrictive to insist

2We drop the modifier “regular” to shorten the names of the five regular polyhedra.
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that both zippers are Hamiltonian paths of the 1-skeletons, because for a flat
polyhedron, the 1-skeleton is the single cycle bounding the polygon, and so a
Hamiltonian unfolding is just two copies of the convex polygon joined along one
edge.

2 Flat Zipper Pairs

2.1 Tetrahedron

The regular tetrahedron has only one Hamiltonian path (up to symmetries),
which unfolds to the 2 × 1 parallelogram shown in Figure 2(b) (in Fig. 2
in [LDD+10]). Because this net is a convex polygon, Thm. 25.1.4 in [DO07]
establishes that it has an infinite number of zippings to various convex polyhe-
dra. The zipping shown in Figure 2(c) folds it to a doubly covered rhombus.
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Figure 2: (a) The Hamiltonian cut path on a tetrahedron leads to the Hamilto-
nian unfolding (b), which zips from x to y (identifying the labeled points) to a
flat rhombus polyhedron of side length 1 (c).

2.2 Cube

The cube has three distinct Hamiltonian unfoldings (Fig. 1 in [LDD+10]): one
with the path endpoints at opposite cube corners, and two with the path end-
points at either end of a cube edge. One of the latter (shown in Figure 3)
produces a ‘T’-shape that has no zippings except back to the cube. We call
such a zipper unfolding zip-rigid. We defer an explanation of how it is known
that this unfolding is zip-rigid to Section 2.3 below.

3



(b)(a)

Figure 3: (a) The first Hamiltonian cut path leads to (b) a zip-rigid Hamiltonian
‘T’-unfolding of the cube.

The other two Hamiltonian unfoldings of the cube, which we call the ‘S’-
and the ‘Z’-unfoldings, both zip to the same doubly covered parallelogram, as
shown in Figures 4 and 5. An animation of the ‘S’-folding is shown in Figure 6.

2.3 A Zipping Algorithm

Let P be a polygon, the polygonal net corresponding to a zip-pair of polyhedra
Q1 and Q2. Each of the two zippings of P are perimeter-halving foldings,
with the endpoints of the zip path bisecting the perimeter. If we normalize the
perimeter of P to 1 and parametrize it from 0 to 1, we can view the two zippings
abstractly as in Figure 7. One of the zip-path endpoints are at 0 and 1

2 , and
the other zip-path endpoints are at x and y = x + 1

2 . We seek to find all the
locations x that determine a zipping to some convex polyhedron.

As previously mentioned, if P is convex, then every x determines a convex
polyhedron (Thm. 25.1.4 in [DO07]), so we henceforth exclude that case. If P
is not convex, it has at least one reflex vertex v with internal angle β > π. Now
there are only two options at v: (1) v can serve as x, so the zipping starts at
v = x; or (2) Some strictly convex vertex ui whose internal angle αi satisfies
αi + β ≤ 2π is glued to v. If more than one vertex is glued to v, then the
folding would not be a zipping, as v would then constitute a junction of degree
> 2 in the gluing tree ([DO07, Sec. 25.3]). Note that if ui glues to v, then x
is determined: halfway between ui and v along the perimeter of P . Thus we
only need try each ui in turn, and check that Alexandrov’s conditions hold for
the uniquely determined zipping [DO07, Thm. 23.3.1]). This incidentally shows
that any P with a reflex vertex admits only O(n) zippings.

For example, applying this algorithm to the cube ‘Z’-unfolding in Figure 5
results in six zippings: two copies of the one shown in that figure, two copies of
a tetrahedron, one 5-vertex and one 6-vertex polyhedron.

Although this provides a linear-time algorithm for determining all zippings
of P , it does not tell us which of these zippings lead to flat polyhedra. Although
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Figure 4: (a) The second Hamiltonian cut path on a cube. (b) The resulting
Hamiltonian ‘S’ unfolding. (c) Zipped according to the indicated point identifi-
cations to a parallelogram polyhedron of side lengths 1 and 3
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Figure 5: Snapshots from an animation folding the parallelogram in Fig-
ure 4(b,c).
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Figure 6: (a) The third Hamiltonian cut path on a cube. (b) The resulting
Hamiltonian ‘Z’ unfolding. (c) Zipped according to the indicated point identi-
fications to a parallelogram polyhedron of side lengths 1 and 3
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Figure 7: A zip-pair, abstractly. The perimeter has been normalized to 1.
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there is an O(n3) algorithm for deciding if an Alexandrov gluing is flat [O’R10],
this remains unimplemented. We resorted to manual folding of the zippings.

2.4 Octahedron

The octahedron also has three distinct Hamiltonian paths,3 one between the top
and bottom vertices (separated by distance 2 in the 1-skeleton), and two paths
between adjacent (distance-1) vertices. The first Hamiltonian unfolding both
zips to a rectangle as shown in Figure 8, and zips to a parallelogram, Figure 9.
I find the rectangle zipping especially surprising, as it derives from a shape all
of whose angles are multiples of π/3 = 60◦.
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Figure 8: (a) Hamiltonian cut path on an octahedron. (b) Its corresponding
Hamiltonian unfolding. (c) Zipping folds it to a flat doubly covered rectangle
of dimensions 1

2 × 2
√

3.

One of the other Hamiltonian unfoldings of the octahedron, shown in Fig-
ure 10, zips to a parallelogram. The other Hamiltonian unfolding does not have

3This is natural because the cube and octahedron are duals. However, it is shown
in [LDD+10, Fig. 4] that the dual of a Hamiltonian unfolding is not necessarily a Hamil-
tonian path through the faces of that unfolding.
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Figure 9: (a) Another zipping of the same unfolding from Figure 8 leads to (b) a
1×
√

3 parallelogram polyhedron.

a flat zipping, although it does have zippings, e.g., to a tetrahedron all four of
whose vertices have curvature π.

I cannot resist mentioning that this last net folds to a flat rectangular poly-
hedron, whose cut tree, however, is not a zipping: Figure 11.

2.5 Dodecahedron

Every Hamiltonian unfolding of the dodecahedron is zip-rigid, and therefore it
has no flat zip pair in the sense posed in our Question above. The reason is as
follows. Let x and y be the endpoints of the Hamiltonian path that unfolds the
dodecahedron. Then the reflex angle of the net at x and y is 3· 35π = 324◦, leaving
an external angle of 36◦ there. The smallest convex angle in any edge unfolding
of the dodecahedron is 3

5π = 108◦, so no vertex can glue into x or y. Therefore,
a zipping must zip at x and y, leading directly back to the dodecahedron.

We should mention that loosening the criteria posed in our Question leads to
a flat refolding of a Hamiltonian net for the dodecahedron. Figure 12 illustrates
one such, using the unfolding in Fig. 2 in [LDD+10]. Here the refolding in
Figure 12(c) is neither convex nor a zipper folding.
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Figure 10: (a) Hamiltonian cut path on an octahedron. (b) Its corresponding
Hamiltonian unfolding. (c) Zipping folds it to a flat doubly covered parallelo-
gram of dimensions 1× 2
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Figure 11: The same Hamiltonian unfolding from Figure 10 folds to a
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doubly covered rectangle, but this folding is not a zipping.
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Figure 12: (a) Hamiltonian cut path on a dodecahedron. (b) Its corresponding
Hamiltonian unfolding. (c) A non-zipper refolding to a doubly covered flat
nonconvex polygon. The cut tree has degree 3 at vertices a and b.

2.6 Icosahedron

For the tetrahedron, cube, and octahedron, it was easy to explore all the Hamil-
tonian unfoldings, because there are so few (1, 3, and 3 respectively). The icosa-
hedron, however, has hundreds of Hamiltonian unfoldings. At this writing, I do
not know precisely how many geometrically distinct Hamiltonian unfoldings it
possesses.

The diameter of the icosahedral graph is 3, so the end points of a Hamil-
tonian path are a distance 1, 2, or 3 apart. Fixing two vertices separated by
a distance d ∈ {1, 2, 3}, I found that there are, respectively, 512, 608, and 720
labeled Hamiltonian paths between them.4 Of course not all these labeled paths
are distinct geometric paths because of symmetries. However, I have not carried
out the more difficult enumeration of the number of geometrically distinct (in-
congruent as paths in R3) Hamiltonian paths on an icosahedron. But certainly
this number is less than 512 + 608 + 720 = 1840.

For each of these 1840 Hamiltonian unfoldings, I ran the zipping algorithm
in Section 2.3, which determined that 82 of the unfoldings had at least one
zipping, while all the others are zip-rigid (82 = 12 + 20 + 50 in the three classes,
respectively). By visual inspection, it appears that 21 of these Hamiltonian

4It is a curious fact that the number of labeled Hamiltonian cycles through any fixed edge
is 29 = 512. The simplicity of this expression suggests there might be a combinatorial expla-
nation, a question I asked on MathOverflow, http://mathoverflow.net/questions/37788/.
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unfoldings are distinct; they are displayed in Figure 13.

Figure 13: The 21 distinct Hamiltonian unfolding of the icosahedron that each
have at least one zipping to another convex polyhedron (Not all are displayed
to the same scale.)

At least one of these unfoldings (the leftmost in the first row) zips to a
parallelogram, as shown in Figure 14. At this writing we are uncertain if this is
the only zipping to a flat polyhedron among the 21 zipping unfoldings.

3 Future Work

As is evident from the foregoing, there is little theory behind the unfoldings
detailed here. The central open problem is to gain more insight into which
polyhedra are net pairs, or more specifically, zipper pairs. Perhaps intuition
can be strengthened by tackling specific subquestions that fall under this general
umbrella. It is easy to list such questions, all of are open because of the lack of
a general theory. For example, the Hamiltonian unfoldings of the Archimedean
solids detailed in [LDD+10] could be explored.

An interesting specific but tangential question raised by this work is to deter-
mine the exact number of geometrically distinct Hamiltonian paths on a regular
icosahedron.

Acknowledgments. I thank Stephanie Annessi and Katherine Lipow for help
in enumerating and folding the icosahedron Hamiltonian unfoldings.

References

[DDLO00] Erik D. Demaine, Martin L. Demaine, Anna Lubiw, and Joseph
O’Rourke. Examples, counterexamples, and enumeration re-

13



6

3

7

1

5

4

32

1

5
4

2

98

x

y

10

6

7 98 10

3

7

1

5

4

2

x

y

6

98

10

(b)

(a)

(c)

Figure 14: (a) Hamiltonian cut path on an icosahedron. (b) Its corresponding
Hamiltonian unfolding. (c) Rezipping folds it to a flat doubly covered parallel-
ogram of side lengths
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