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Vertex-Transplants on a Convex Polyhedron

Joseph O’Rourke

Abstract

Given any convex polyhedron P of sufficiently many ver-
tices n, and with no vertex’s curvature greater than π,
it is possible to cut out a vertex, and paste the excised
portion elsewhere along a vertex-to-vertex geodesic, cre-
ating a new convex polyhedron P ′. Although P ′ could
have, in degenerate situations, as many as 2 fewer ver-
tices, the generic situation is that P ′ has n + 2 ver-
tices. P ′ has the same surface area as P, and the same
total curvature but with some of that curvature redis-
tributed.

1 Introduction

The goal of this paper is to prove the following theorem:

Theorem 1 For any convex polyhedron P of n > N
vertices, none of which have curvature greater than π,
there is a vertex v0 that can be cut out along a digon
of geodesics, and the excised surface glued to a geodesic
on P connecting two vertices v1, v2. The result is a new
convex polyhedron P ′ with, generically, n + 2 vertices,
although in various degenerate situations it could have
{n−2, n−1, n, n+1} vertices. N = 16 suffices.

I conjecture that N can be reduced to 4 so that the
theorem holds for all convex polyhedra with the stated
curvature condition. Whether this curvature condition
is necessary is unclear.

I have no particular application of this result, but it
does raise several interesting questions (Sec. 8), includ-
ing: Which convex polyhedra can be transformed into
one another via a series of vertex-transplants?

2 Examples

Before detailing the proof, we provide several examples.
We rely on Alexandrov’s celebrated gluing theorem

[Ale05, p.100]: If one glues polygons together along their
boundaries1 to form a closed surface homeomorphic to
a sphere, such that no point has more than 2π incident
surface angle, then the result is a convex polyhedron,
uniquely determined up to rigid motions. Although we
use this theorem to guarantee that transplanting a ver-
tex on P creates a new convex polyhedron P ′, there is
as yet no effective procedure to actually construct P ′,

1To “glue” means to identify boundary points.

except when P ′ has only a few vertices or special sym-
metries.

In the examples below, we use some notation that will
not be fully explained until Sec. 3.

Cube. Fig. 1 shows excising a unit-cube corner v0 with
geodesics γ1 and γ2, each of length 1, and then sutur-
ing this digon into the edge v1v2. Although a paper
model reveals a clear 10-vertex polyhedron (points x
and y become vertices of P ′), I have not constructed it
numerically.
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Figure 1: Left: Digon xy surrounding v0. Right: v0
transplanted to v1v2; v0 is the apex of a doubly covered
triangle, the digon flattened. Hole to be sutured closed
to form P ′.

Regular Tetrahedron. Let the four vertices of a regu-
lar tetrahedron of unit edge length be v0, v1, v2 forming
the base, and apex v3. Place a point x on the edge v3v0,
close to v3. Then one can form a digon starting from x
and surrounding v0 with geodesics γ1 and γ2 to a point
y on the base, with |γ1| = |γ2| = 1. See Fig. 2. This
digon can then be cut out and pasted into edge v1v2,
forming an irregular 6-vertex polyhedron P ′.
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Figure 2: Unfolding of tetrahedron, apex v3. Digon γi
connect x to y, surrounding v0.
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Doubly Covered Square. Alexandrov’s theorem holds
for doubly covered, flat convex polygons, and vertex-
transplanting does as well. A simple example is cut-
ting off a corner of a doubly covered unit square with a
unit length diagonal, and pasting the digon onto another
edge. The result is another doubly covered polygon: see
Fig. 3.
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Figure 3: A doubly covered square P (front F , back K)
converted to a doubly covered hexagon P ′.

A more interesting example is shown in Fig. 4. The
indicated transplant produces a 6-vertex polyhedron
P ′—combinatorially an octahedron—whose symmetries
make exact reconstruction feasible. Vertices v0 and v3
retain their curvature π, and the remaining four vertices
of P ′, v1, v2, x, y, each have curvature π/2.
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Figure 4: Transplanting v0 to v1v2 on a doubly covered
square (from F , back K) leads to a non-flat polyhedron
P ′.

Doubly Covered Equilateral Triangle. The only poly-
hedron for which I am certain Theorem 1 (without re-
strictions) fails is the doubly covered, unit side-length
equilateral triangle. The diameter D = 1 is realized by
the endpoints of any of its three unit-length edges. Any
other shortest geodesic is strictly less than 1 in length,
as illustrated in Fig. 5. Thus there is no opportunity to
create a digon of length 1 surrounding a vertex.

3 Preliminaries

Let the vertices of P be vi, and let the curvature (angle
gap) at vi be ωi. We assume all vertices are corners in
the sense that ωi > 0. Let v0, v1, v2 be three vertices,

y
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Figure 5: Point x is on the front, y on the back. Three
images of y are shown, corresponding to the three paths
from x to y. The shortest of these paths is never ≥ 1
unless both x and y are (different) corners.

labeled so that ω0 is smallest, ≤ ω1, ω2. Let v1v2 be
the shortest geodesic on P connecting v1 and v2, with
|v1v2| = c its length. Often such a shortest geodesic
is called a segment. We will show that, with careful
choice of v0, v1, v2, we can cut out a digon X of length
c surrounding v0, and paste it into v1v2 slit open. (A
digon is a pair of shortest geodesics of the same length
connecting two points on P.)

The technique of gluing a triangle along a geodesic
v1v2 on P was introduced by [Ale05, p.240], and em-
ployed in [OV14] to merge vertices. Excising a digon
surrounding a vertex is used in [INV11, Lem.2]. What
seems to be new is excising from one place on P and
inserting elsewhere on P.

Let C(x) be the cut locus on P with respect to point
x ∈ P. (In some computer science literature, this is
called the ridge tree [AAOS97].) C(x) is the set of points
on P with at least two shortest paths from x. It is a
tree composed of shortest paths; in general, each vertex
of P is a degree-1 leaf of the closure of C(x).

We will need to exclude positions of x that are non-
generic in that C(x) includes one or more vertices. It
was shown in [AAOS97, Lem.] that the surface of P may
be partitioned into O(n4) ridge-free regions, determined
by overlaying the cut loci of all vertices:

⋃
i C(vi). Say

that x ∈ P is generic if it lies strictly inside a ridge-free
region. For later reference, we state this lemma:

Lemma 2 Within every neighborhood of any point x ∈
P, there is a generic y ∈ P .

Proof. This follows because ridge-free regions are
bounded by cut-loci arcs, each of which is a 1-
dimensional geodesic. �

For generic x, the cut locus in the neighborhood of a
vertex v0 consists of a geodesic segment s open at v0 and
continuing for some positive distance before reaching a
junction u of degree-3 or higher. Let δ(x, u) = δ be the
length of s; see Fig. 6.
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Figure 6: Geodesic segment s of C(x) (red) incident to
vertex v0. A pair of shortest geodesics from x to s are
shown (green).

4 Surgery Procedure

We start with and will describe the procedure for any
three vertices v0, v1, v2, but later (Sec. 5) we will chose
specific vertices.

Let x be a generic point on P and γ a shortest
geodesic to v0 with length |γ| = |v1v2| = c. The ex-
istence of such an x is deferred to Sec. 5. If we move
x along γ toward v0, γ splits into two geodesics γ1, γ2
connecting x to a point y ∈ C(x). If we move x a
small enough distance ε, then y will lie on the segment
s ⊂ C(x) as in Fig. 6. Because Lemma 2 allows us to
choose x to lie in a ridge-free region R, we can ensure
that s has a length |s| = δ > 0. Now γ1, γ2 form a
digon X surrounding v0. With sufficiently small ε, we
can ensure that X is empty of other vertices. During
the move of x along γ, we can at all times maintain that
|γ1| = |γ2| = c, as illustrated in Fig. 7.
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Figure 7: Sliding x along γ toward v0 while maintaining
length c constant.

Let the digon angles at x and at y be α and β respec-
tively. By Gauss-Bonnet, we have α+ β = ω0:

τ + ω0 = 2π = ((π − α) + (π − β)) + ω0 = 2π ,

where the turn angle τ is only non-zero at the endpoints
x and y. In particular, 0 < α, β < ω0. These inequali-
ties are strict because the digon wraps around v0 after
moving x toward v0, so α > 0.

Now we can suture-in the digon X to a slit along v1v2
because:

• The lengths match: |v1v2| = c and |γ1| = |γ2| = c.

• The curvatures at v1, v2 remain positive: α, β <
ω0 ≤ ω1, ω2, so ω1 − α > 0 and ω2 − β > 0.

We then close up the digon on the surface of P and in-
voke Alexandrov’s theorem to obtain P ′. We now detail
the curvature consequences at the five points involved
in the surgery: v0, v1, v2, x, y.

• v0 is unaltered, just moved, i.e, transplanted.

• If x and/or y were not vertices before the trans-
plant, they become vertices after the transplant, of
curvatures α and β respectively.

• If x and/or y were vertices, they remain vertices
with larger curvatures.

• Because α < ω0 ≤ ω1, the change at v1 cannot
flatten v1. So v1 remains a vertex, as does v2.

So the new polyhedron P ′ has n, n+1, or n+2 vertices,
depending on whether x and/or y was already a vertex.

We note that the condition that ω0 ≤ ω1, ω2 is in
fact more stringent that what is required to ensure that
the curvatures at v1, v2 remain non-negative. The latter
implies that ω0 ≤ ω1 + ω2, a considerably weaker con-
dition. And indeed, reversing the transplant may not
satisfy ω0 ≤ ω1, ω2. For example, in the cube-corner
transplant in Fig. 1, α = 41◦, β = 49◦, ω0 = 90◦. So
reversing, x, y play the roles of v1, v2, with curvatures
41◦, 49◦, both less than ω0. This shows that ω0 ≤ ω1, ω2

is not necessary; but with that condition, we can guar-
antee a transplant.

5 Existence of v0, v1, v2

In order to apply the procedure just detailed, we need
several conditions to be simultaneously satisfied:

(1) ω0 ≤ ω1, ω2.

(2) |v1v2| = |γ1| = |γ2| = c.

(3) v1v2 should not cross the digon X.

Although (1) is satisfied by any three vertices, just by
identifying v0 with the smallest curvature, the difficulty
is that if v1v2 is long—say, realizing the diameter of P—
then we need there to be an equally long geodesic from
x to v0, to satisfy (2). A solution is to choose v1 and
v2 to be the nearest neighbors on P, so that |v1v2| is
small. But then if ω1, ω2 are both small, we may not be
able to locate a v0 with a smaller ω0. We resolve these
tensions as follows:

1. We choose v0 to be a vertex with minimum curva-
ture, so automatically ω0 ≤ ω1, ω2 for any choices
for v1 and v2.

2. Several steps to achieve (2):
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(a) We choose v1, v2 to achieve the smallest
nearest-neighbor distance NNmin = r over all
pairs of vertices (excluding v0), so v1v2 is as
short as possible.

(b) We prove that the nearest neighbor distance r
satisfies r < 1

2D, where D is the diameter of
P.

(c) We prove that there is an x such that
d(x, v0) ≥ 1

2D.

Together these imply that we can achieve |v1v2| =
|γ1| = |γ2|.

3. We show that if v1v2 crosses X, then another point
point x may be found that avoids the crossing. This
last point is the only use of the assumption that
ωi ≤ π for all vertices vi.

The next section addresses items (1) and (2) above, and
Sec. 7 addresses item (3).

6 Relationship to Diameter D

The diameter D(P) of P is the length of the longest
shortest path between any two points. The lemma be-
low ensures we can find a long-enough geodesic γ = xv0.

Lemma 3 For any x ∈ P, the distance ρ to a point
f(x) furthest from x is at least 1

2D, where D = D(P)
is the diameter of P.

Proof. 2 Let points y, z ∈ P realize the diameter:
d(y, z) = D. For any x ∈ P,

D = d(y, z) ≤ d(y, x) + d(x, z)

by the triangle inequality on surfaces [Ale06, p.1]. Also
we have ρ ≤ d(x, y) and ρ ≤ d(x, z) because ρ is the fur-
thest distance. So D = d(y, z) ≤ 2ρ, which establishes
the claim. �

Next we establish that the smallest distance (via
a shortest geodesic) between a pair of vertices of P,
NNmin—the nearest neighbor distance—cannot be large
with respect to the diameter D = D(P).

6.1 Nearest-Neighbor Distance

Here our goal is to show that sufficiently many points
on P cannot all have large nearest-neighbor (NN) dis-
tances. First we provide two examples.

1. Let P be a regular tetrahedron with unit edge
lengths. D is determined by a point in the center of

the base connecting to the apex, soD = 4
3

√
3
2 = 2√

3
.

The NN-distance is 1 =
√
3
2 D = 0.866D.

2Proof suggested by Alexandre Eremenko. https://

mathoverflow.net/a/340056/6094. See also [IRV19].

2. Let P be a doubly covered regular hexagon, with
unit edge lengths. Then D = 2, connecting oppo-
site vertices, and the NN-distance is 1 = 1

2D.

Our goal is to ensure the NN distance is at most 1
2D,

which is not achieved by the regular tetrahedron but is
for the hexagon. We achieve this by insisting P have
many vertices.

Lemma 4 Let P be a polyhedron with diameter D. Let
S be a set of distinguished points on P, with |S| ≥ N .
Let r be the smallest NN-distance between any pair of
points of S. Then r < D/(

√
N/2). In particular, for

N = 16, r < 1
2D.

Proof.

1. Let a geodesic from x to y realize the diameter D
of P. Let U be the source unfolding of P from
source point x [DO07, Chap.24.1.1]. U does not
self-overlap, and fits inside a circle of radius D; see
Fig. 8. Thus the surface area of P is at most πD2.

2. Let r be the smallest NN-distance, the smallest sep-
aration between a pair of points in S. Then disks of
radius r/2 centered on points of S have disjoint in-
teriors. For suppose instead two disks overlapped.
Then they would be separated by less than r, a
contradiction.

3. N non-overlapping disks of radius r/2 cover an area
of Nπ(r/2)2, which must be less than3 the surface
area of P:

Nπ(r/2)2 < πD2 (1)

r <
D√
N/2

(2)

Thus, for N = 16, r < 1
2D.

�
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Figure 8: Source unfolding of a regular tetrahedron. xy
realizes D.

3Strictly less than because disk packings leave uncovered gaps.
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7 Crossing Avoidance

Although Lemma 3 ensures that we can find an x =
f(v0) far enough from v0 so that we can match |γ| with
|v1v2|, if γ crosses v1v2, the procedure in Sec. 4 fails.
We now detail a method to locate another x in this
circumstance. We partition crossings into several cases.

Recall that v0 was excluded from the NN calculation
of r, so v0 could be closer to v1 and/or v2 than r =
|v1v2|.

Case (1). Case: d(v0, vi) > r for either i = 1 or i = 2.
Assume d(v0, v2) > r. Then choose γ = v0v2. We can
locate x near v2 on γ to achieve |xv0| = r. See Fig. 9.
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Figure 9: Crossing avoided: d(v0, v2) > r (v0 is outside
v2’s r-disk).

Case (2). If d(v0, vi) ≤ r for i = 1, 2, then v0 is lo-
cated in the half-lune to the opposite side of (below)
v1v2 from f(v0). It is possible that with large curva-
tures ω1 and ω2 that there is no evident “room” below
v1v2 to locate an x far enough away so that d(x, v0) ≥ r.
However, with assumptions on the maximum curvature
per vertex, room can be found.

First we assume ωi ≤ π/2 for all i. As Fig. 10 il-
lustrates, it is possible to find a horizontal (parallel to
v1v2) segment xv0 either left or right of v0. In the fig-
ure, ω1 = ω2 = π/2, with segment (v0, f(v0)) slanting
to the right, which requires the angle gap to interfere
with connecting to v0 to the right. But then to the left
there is room for an x with |xv0| = r.

Case (3). For larger curvatures, there might not be
room either right or left for an x achieving |xv0| = r.4

Indeed, in the most extreme case, the situation could re-
semble a doubly covered equilateral triangle with ωi =

4I have not found an argument that finds such an x below v0.
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Figure 10: Curvatures ≤ π/2 allows room for xv0.

4
3π, which we saw in Sec. 2 violates Theorem 1. How-
ever, if we assume ωi ≤ π for all i, a long-enough γ to
v0 can be found.

Assume the worst case, ω1 = ω2 = π. As illustrated
in Fig. 11, there is neither “room” right nor left for a
segment of length r incident to v0, and with enough
twisting at v1 and v2, no room below either. However,
an r-long segment left of v0 re-enters above v1v2 (red),
and similarly right of v0 (green). In fact, it is easy to
see that the red and green segments above and below
have total length 2r, regardless of the orientation of the
semicircle bounding the angle-gap lines through v1 and
v2. So there is always enough room to locate x above
v1v2 connecting “horizontally” to v0 below.
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x

γ

Figure 11: Crossing avoided: Both the red and green
segments have total length r each.

8 Open Problems

1. Extend Theorem 1 to all convex polyhedra, i.e.,
lower N = 16 to N = 4, and remove the ωi ≤ π
restriction.

2. Establish conditions that allow more freedom in the
selection of the three vertices v0, v1, v2. Right now,
Thm. 1 requires following the restrictions detailed



32nd Canadian Conference on Computational Geometry, 2020

in Sec. 5, but as we observed, these restrictions are
not necessary for a successful transplant.

3. Study doubly covered convex polygons as a special
case. When does a vertex transplant on a dou-
bly covered polygon produce another doubly cov-
ered polygon? See again Sec. 2. (There is a pro-
cedure for identifying flat polyhedra [O’R10]; and
see [INV11, Lem.4].)

4. What happens under repeated vertex-
transplanting? Because the number of vertices
n does not diminish except in degenerate situ-
ations, the procedure usually can be repeated
indefinitely. Note that because α, β < ω0, new
smaller-curvature vertices are created at x and y.

5. Which convex polyhedra can be connected by a se-
ries of vertex-transplants? Recall that each vertex
transplant is reversible, so it seems possible to con-
nect two polyhedra P1,P2 via some canonical form
Pc, reversing the P2 transplants: P1 → Pc → P2.

6. Can Thm. 1 be generalized to transplant several
vertices within the same digon? For example, one
can excise both endpoints of an edge of a unit cube
with a digon of length

√
2 and suture that into a

face diagonal.

7. Does the transplant guaranteed by Thm. 1 always
increase the volume of P? Note that a transplant
flattens v1 and v2 by α and β, and creates new
smallest curvature vertices, α, β < ω0. So the over-
all effect seems to “round” P.
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Costin Vı̂lcu.
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