Vertex-Transplants on a Convex Polyhedron

Joseph O'Rourke

Abstract

Given any convex polyhedron \mathcal{P} of sufficiently many vertices n, and with no vertex's curvature greater than π , it is possible to cut out a vertex, and paste the excised portion elsewhere along a vertex-to-vertex geodesic, creating a new convex polyhedron \mathcal{P}' . Although \mathcal{P}' could have, in degenerate situations, as many as 2 fewer vertices, the generic situation is that \mathcal{P}' has n + 2 vertices. \mathcal{P}' has the same surface area as \mathcal{P} , and the same total curvature but with some of that curvature redistributed.

1 Introduction

The goal of this paper is to prove the following theorem:

Theorem 1 For any convex polyhedron \mathcal{P} of n > Nvertices, none of which have curvature greater than π , there is a vertex v_0 that can be cut out along a digon of geodesics, and the excised surface glued to a geodesic on \mathcal{P} connecting two vertices v_1, v_2 . The result is a new convex polyhedron \mathcal{P}' with, generically, n + 2 vertices, although in various degenerate situations it could have $\{n-2, n-1, n, n+1\}$ vertices. N = 16 suffices.

I conjecture that N can be reduced to 4 so that the theorem holds for all convex polyhedra with the stated curvature condition. Whether this curvature condition is necessary is unclear.

I have no particular application of this result, but it does raise several interesting questions (Sec. 8), including: Which convex polyhedra can be transformed into one another via a series of *vertex-transplants*?

2 Examples

Before detailing the proof, we provide several examples.

We rely on Alexandrov's celebrated gluing theorem [Ale05, p.100]: If one glues polygons together along their boundaries¹ to form a closed surface homeomorphic to a sphere, such that no point has more than 2π incident surface angle, then the result is a convex polyhedron, uniquely determined up to rigid motions. Although we use this theorem to guarantee that transplanting a vertex on \mathcal{P} creates a new convex polyhedron \mathcal{P}' , there is as yet no effective procedure to actually construct \mathcal{P}' ,

except when \mathcal{P}' has only a few vertices or special symmetries.

In the examples below, we use some notation that will not be fully explained until Sec. 3.

Cube. Fig. 1 shows excising a unit-cube corner v_0 with geodesics γ_1 and γ_2 , each of length 1, and then suturing this digon into the edge v_1v_2 . Although a paper model reveals a clear 10-vertex polyhedron (points x and y become vertices of \mathcal{P}'), I have not constructed it numerically.

Figure 1: Left: Digon xy surrounding v_0 . Right: v_0 transplanted to v_1v_2 ; v_0 is the apex of a doubly covered triangle, the digon flattened. Hole to be sutured closed to form \mathcal{P}' .

Regular Tetrahedron. Let the four vertices of a regular tetrahedron of unit edge length be v_0, v_1, v_2 forming the base, and apex v_3 . Place a point x on the edge v_3v_0 , close to v_3 . Then one can form a digon starting from x and surrounding v_0 with geodesics γ_1 and γ_2 to a point y on the base, with $|\gamma_1| = |\gamma_2| = 1$. See Fig. 2. This digon can then be cut out and pasted into edge v_1v_2 , forming an irregular 6-vertex polyhedron \mathcal{P}' .

Figure 2: Unfolding of tetrahedron, apex v_3 . Digon γ_i connect x to y, surrounding v_0 .

¹To "glue" means to identify boundary points.

Doubly Covered Square. Alexandrov's theorem holds for doubly covered, flat convex polygons, and vertextransplanting does as well. A simple example is cutting off a corner of a doubly covered unit square with a unit length diagonal, and pasting the digon onto another edge. The result is another doubly covered polygon: see Fig. 3.

Figure 3: A doubly covered square \mathcal{P} (front F, back K) converted to a doubly covered hexagon \mathcal{P}' .

A more interesting example is shown in Fig. 4. The indicated transplant produces a 6-vertex polyhedron \mathcal{P}' —combinatorially an octahedron—whose symmetries make exact reconstruction feasible. Vertices v_0 and v_3 retain their curvature π , and the remaining four vertices of \mathcal{P}' , v_1, v_2, x, y , each have curvature $\pi/2$.

Figure 4: Transplanting v_0 to v_1v_2 on a doubly covered square (from F, back K) leads to a non-flat polyhedron \mathcal{P}' .

Doubly Covered Equilateral Triangle. The only polyhedron for which I am certain Theorem 1 (without restrictions) fails is the doubly covered, unit side-length equilateral triangle. The diameter D = 1 is realized by the endpoints of any of its three unit-length edges. Any other shortest geodesic is strictly less than 1 in length, as illustrated in Fig. 5. Thus there is no opportunity to create a digon of length 1 surrounding a vertex.

3 Preliminaries

Let the vertices of \mathcal{P} be v_i , and let the curvature (angle gap) at v_i be ω_i . We assume all vertices are corners in the sense that $\omega_i > 0$. Let v_0, v_1, v_2 be three vertices,

Figure 5: Point x is on the front, y on the back. Three images of y are shown, corresponding to the three paths from x to y. The shortest of these paths is never ≥ 1 unless both x and y are (different) corners.

labeled so that ω_0 is smallest, $\leq \omega_1, \omega_2$. Let v_1v_2 be the shortest geodesic on \mathcal{P} connecting v_1 and v_2 , with $|v_1v_2| = c$ its length. Often such a shortest geodesic is called a *segment*. We will show that, with careful choice of v_0, v_1, v_2 , we can cut out a digon X of length c surrounding v_0 , and paste it into v_1v_2 slit open. (A *digon* is a pair of shortest geodesics of the same length connecting two points on \mathcal{P} .)

The technique of gluing a triangle along a geodesic v_1v_2 on \mathcal{P} was introduced by [Ale05, p.240], and employed in [OV14] to merge vertices. Excising a digon surrounding a vertex is used in [INV11, Lem.2]. What seems to be new is excising from one place on \mathcal{P} and inserting elsewhere on \mathcal{P} .

Let C(x) be the *cut locus* on \mathcal{P} with respect to point $x \in \mathcal{P}$. (In some computer science literature, this is called the *ridge tree* [AAOS97].) C(x) is the set of points on \mathcal{P} with at least two shortest paths from x. It is a tree composed of shortest paths; in general, each vertex of \mathcal{P} is a degree-1 leaf of the closure of C(x).

We will need to exclude positions of x that are nongeneric in that C(x) includes one or more vertices. It was shown in [AAOS97, Lem.] that the surface of \mathcal{P} may be partitioned into $O(n^4)$ ridge-free regions, determined by overlaying the cut loci of all vertices: $\bigcup_i C(v_i)$. Say that $x \in \mathcal{P}$ is generic if it lies strictly inside a ridge-free region. For later reference, we state this lemma:

Lemma 2 Within every neighborhood of any point $x \in \mathcal{P}$, there is a generic $y \in P$.

Proof. This follows because ridge-free regions are bounded by cut-loci arcs, each of which is a 1-dimensional geodesic. \Box

For generic x, the cut locus in the neighborhood of a vertex v_0 consists of a geodesic segment s open at v_0 and continuing for some positive distance before reaching a junction u of degree-3 or higher. Let $\delta(x, u) = \delta$ be the length of s; see Fig. 6.

Figure 6: Geodesic segment s of C(x) (red) incident to vertex v_0 . A pair of shortest geodesics from x to s are shown (green).

4 Surgery Procedure

We start with and will describe the procedure for any three vertices v_0, v_1, v_2 , but later (Sec. 5) we will chose specific vertices.

Let x be a generic point on \mathcal{P} and γ a shortest geodesic to v_0 with length $|\gamma| = |v_1v_2| = c$. The existence of such an x is deferred to Sec. 5. If we move x along γ toward v_0 , γ splits into two geodesics γ_1, γ_2 connecting x to a point $y \in C(x)$. If we move x a small enough distance ε , then y will lie on the segment $s \subset C(x)$ as in Fig. 6. Because Lemma 2 allows us to choose x to lie in a ridge-free region R, we can ensure that s has a length $|s| = \delta > 0$. Now γ_1, γ_2 form a digon X surrounding v_0 . With sufficiently small ε , we can ensure that X is empty of other vertices. During the move of x along γ , we can at all times maintain that $|\gamma_1| = |\gamma_2| = c$, as illustrated in Fig. 7.

Figure 7: Sliding x along γ toward v_0 while maintaining length c constant.

Let the digon angles at x and at y be α and β respectively. By Gauss-Bonnet, we have $\alpha + \beta = \omega_0$:

$$\tau + \omega_0 = 2\pi = ((\pi - \alpha) + (\pi - \beta)) + \omega_0 = 2\pi$$
,

where the turn angle τ is only non-zero at the endpoints x and y. In particular, $0 < \alpha, \beta < \omega_0$. These inequalities are strict because the digon wraps around v_0 after moving x toward v_0 , so $\alpha > 0$.

Now we can suture-in the digon X to a slit along v_1v_2 because:

- The lengths match: $|v_1v_2| = c$ and $|\gamma_1| = |\gamma_2| = c$.
- The curvatures at v_1, v_2 remain positive: $\alpha, \beta < \omega_0 \le \omega_1, \omega_2$, so $\omega_1 \alpha > 0$ and $\omega_2 \beta > 0$.

We then close up the digon on the surface of \mathcal{P} and invoke Alexandrov's theorem to obtain \mathcal{P}' . We now detail the curvature consequences at the five points involved in the surgery: v_0, v_1, v_2, x, y .

- v_0 is unaltered, just moved, i.e, transplanted.
- If x and/or y were not vertices before the transplant, they become vertices after the transplant, of curvatures α and β respectively.
- If x and/or y were vertices, they remain vertices with larger curvatures.
- Because $\alpha < \omega_0 \leq \omega_1$, the change at v_1 cannot flatten v_1 . So v_1 remains a vertex, as does v_2 .

So the new polyhedron \mathcal{P}' has n, n+1, or n+2 vertices, depending on whether x and/or y was already a vertex.

We note that the condition that $\omega_0 \leq \omega_1, \omega_2$ is in fact more stringent that what is required to ensure that the curvatures at v_1, v_2 remain non-negative. The latter implies that $\omega_0 \leq \omega_1 + \omega_2$, a considerably weaker condition. And indeed, reversing the transplant may not satisfy $\omega_0 \leq \omega_1, \omega_2$. For example, in the cube-corner transplant in Fig. 1, $\alpha = 41^{\circ}, \beta = 49^{\circ}, \omega_0 = 90^{\circ}$. So reversing, x, y play the roles of v_1, v_2 , with curvatures $41^{\circ}, 49^{\circ}$, both less than ω_0 . This shows that $\omega_0 \leq \omega_1, \omega_2$ is not necessary; but with that condition, we can guarantee a transplant.

5 Existence of v_0, v_1, v_2

In order to apply the procedure just detailed, we need several conditions to be simultaneously satisfied:

- (1) $\omega_0 \leq \omega_1, \omega_2$.
- (2) $|v_1v_2| = |\gamma_1| = |\gamma_2| = c.$
- (3) v_1v_2 should not cross the digon X.

Although (1) is satisfied by any three vertices, just by identifying v_0 with the smallest curvature, the difficulty is that if v_1v_2 is long—say, realizing the diameter of \mathcal{P} then we need there to be an equally long geodesic from x to v_0 , to satisfy (2). A solution is to choose v_1 and v_2 to be the nearest neighbors on \mathcal{P} , so that $|v_1v_2|$ is small. But then if ω_1, ω_2 are both small, we may not be able to locate a v_0 with a smaller ω_0 . We resolve these tensions as follows:

- 1. We choose v_0 to be a vertex with minimum curvature, so automatically $\omega_0 \leq \omega_1, \omega_2$ for any choices for v_1 and v_2 .
- 2. Several steps to achieve (2):

- (a) We choose v_1, v_2 to achieve the smallest nearest-neighbor distance $NN_{min} = r$ over all pairs of vertices (excluding v_0), so v_1v_2 is as short as possible.
- (b) We prove that the nearest neighbor distance r satisfies r < ¹/₂D, where D is the diameter of P.
- (c) We prove that there is an x such that $d(x, v_0) \ge \frac{1}{2}D$.

Together these imply that we can achieve $|v_1v_2| = |\gamma_1| = |\gamma_2|$.

3. We show that if v_1v_2 crosses X, then another point point x may be found that avoids the crossing. This last point is the only use of the assumption that $\omega_i \leq \pi$ for all vertices v_i .

The next section addresses items (1) and (2) above, and Sec. 7 addresses item (3).

6 Relationship to Diameter D

The diameter $D(\mathcal{P})$ of \mathcal{P} is the length of the longest shortest path between any two points. The lemma below ensures we can find a long-enough geodesic $\gamma = xv_0$.

Lemma 3 For any $x \in \mathcal{P}$, the distance ρ to a point f(x) furthest from x is at least $\frac{1}{2}D$, where $D = D(\mathcal{P})$ is the diameter of \mathcal{P} .

Proof. ² Let points $y, z \in \mathcal{P}$ realize the diameter: d(y, z) = D. For any $x \in \mathcal{P}$,

$$D = d(y, z) \le d(y, x) + d(x, z)$$

by the triangle inequality on surfaces [Ale06, p.1]. Also we have $\rho \leq d(x, y)$ and $\rho \leq d(x, z)$ because ρ is the furthest distance. So $D = d(y, z) \leq 2\rho$, which establishes the claim.

Next we establish that the smallest distance (via a shortest geodesic) between a pair of vertices of \mathcal{P} , NN_{min}—the *nearest neighbor distance*—cannot be large with respect to the diameter $D = D(\mathcal{P})$.

6.1 Nearest-Neighbor Distance

Here our goal is to show that sufficiently many points on P cannot all have large nearest-neighbor (NN) distances. First we provide two examples.

1. Let *P* be a regular tetrahedron with unit edge lengths. *D* is determined by a point in the center of the base connecting to the apex, so $D = \frac{4}{3} \frac{\sqrt{3}}{2} = \frac{2}{\sqrt{3}}$. The NN-distance is $1 = \frac{\sqrt{3}}{2}D = 0.866 D$. 2. Let P be a doubly covered regular hexagon, with unit edge lengths. Then D = 2, connecting opposite vertices, and the NN-distance is $1 = \frac{1}{2}D$.

Our goal is to ensure the NN distance is at most $\frac{1}{2}D$, which is not achieved by the regular tetrahedron but is for the hexagon. We achieve this by insisting \mathcal{P} have many vertices.

Lemma 4 Let \mathcal{P} be a polyhedron with diameter D. Let S be a set of distinguished points on \mathcal{P} , with $|S| \geq N$. Let r be the smallest NN-distance between any pair of points of S. Then $r < D/(\sqrt{N}/2)$. In particular, for $N = 16, r < \frac{1}{2}D$.

Proof.

- 1. Let a geodesic from x to y realize the diameter D of \mathcal{P} . Let U be the source unfolding of \mathcal{P} from source point x [DO07, Chap.24.1.1]. U does not self-overlap, and fits inside a circle of radius D; see Fig. 8. Thus the surface area of \mathcal{P} is at most πD^2 .
- 2. Let r be the smallest NN-distance, the smallest separation between a pair of points in S. Then disks of radius r/2 centered on points of S have disjoint interiors. For suppose instead two disks overlapped. Then they would be separated by less than r, a contradiction.
- 3. N non-overlapping disks of radius r/2 cover an area of $N\pi(r/2)^2$, which must be less than³ the surface area of \mathcal{P} :

$$N\pi(r/2)^2 < \pi D^2 \tag{1}$$

$$r < \frac{D}{\sqrt{N/2}} \tag{2}$$

Thus, for N = 16, $r < \frac{1}{2}D$.

Figure 8: Source unfolding of a regular tetrahedron. xy realizes D.

²Proof suggested by Alexandre Eremenko. https://mathoverflow.net/a/340056/6094. See also [IRV19].

³Strictly less than because disk packings leave uncovered gaps.

7 Crossing Avoidance

Although Lemma 3 ensures that we can find an $x = f(v_0)$ far enough from v_0 so that we can match $|\gamma|$ with $|v_1v_2|$, if γ crosses v_1v_2 , the procedure in Sec. 4 fails. We now detail a method to locate another x in this circumstance. We partition crossings into several cases.

Recall that v_0 was excluded from the NN calculation of r, so v_0 could be closer to v_1 and/or v_2 than $r = |v_1v_2|$.

Case (1). Case: $d(v_0, v_i) > r$ for either i = 1 or i = 2. Assume $d(v_0, v_2) > r$. Then choose $\gamma = v_0 v_2$. We can locate x near v_2 on γ to achieve $|xv_0| = r$. See Fig. 9.

Figure 9: Crossing avoided: $d(v_0, v_2) > r$ (v_0 is outside v_2 's r-disk).

Case (2). If $d(v_0, v_i) \leq r$ for i = 1, 2, then v_0 is located in the half-lune to the opposite side of (below) v_1v_2 from $f(v_0)$. It is possible that with large curvatures ω_1 and ω_2 that there is no evident "room" below v_1v_2 to locate an x far enough away so that $d(x, v_0) \geq r$. However, with assumptions on the maximum curvature per vertex, room can be found.

First we assume $\omega_i \leq \pi/2$ for all *i*. As Fig. 10 illustrates, it is possible to find a horizontal (parallel to v_1v_2) segment xv_0 either left or right of v_0 . In the figure, $\omega_1 = \omega_2 = \pi/2$, with segment $(v_0, f(v_0))$ slanting to the right, which requires the angle gap to interfere with connecting to v_0 to the right. But then to the left there is room for an x with $|xv_0| = r$.

Case (3). For larger curvatures, there might not be room either right or left for an x achieving $|xv_0| = r$.⁴ Indeed, in the most extreme case, the situation could resemble a doubly covered equilateral triangle with $\omega_i =$

Figure 10: Curvatures $\leq \pi/2$ allows room for xv_0 .

 $\frac{4}{3}\pi$, which we saw in Sec. 2 violates Theorem 1. However, if we assume $\omega_i \leq \pi$ for all *i*, a long-enough γ to v_0 can be found.

Assume the worst case, $\omega_1 = \omega_2 = \pi$. As illustrated in Fig. 11, there is neither "room" right nor left for a segment of length r incident to v_0 , and with enough twisting at v_1 and v_2 , no room below either. However, an r-long segment left of v_0 re-enters above v_1v_2 (red), and similarly right of v_0 (green). In fact, it is easy to see that the red and green segments above and below have total length 2r, regardless of the orientation of the semicircle bounding the angle-gap lines through v_1 and v_2 . So there is always enough room to locate x above v_1v_2 connecting "horizontally" to v_0 below.

Figure 11: Crossing avoided: Both the red and green segments have total length r each.

8 Open Problems

- 1. Extend Theorem 1 to all convex polyhedra, i.e., lower N = 16 to N = 4, and remove the $\omega_i \leq \pi$ restriction.
- 2. Establish conditions that allow more freedom in the selection of the three vertices v_0, v_1, v_2 . Right now, Thm. 1 requires following the restrictions detailed

⁴I have not found an argument that finds such an x below v_0 .

in Sec. 5, but as we observed, these restrictions are not necessary for a successful transplant.

- 3. Study doubly covered convex polygons as a special case. When does a vertex transplant on a doubly covered polygon produce another doubly covered polygon? See again Sec. 2. (There is a procedure for identifying flat polyhedra [O'R10]; and see [INV11, Lem.4].)
- 4. What happens under repeated vertextransplanting? Because the number of vertices n does not diminish except in degenerate situations, the procedure usually can be repeated indefinitely. Note that because $\alpha, \beta < \omega_0$, new smaller-curvature vertices are created at x and y.
- 5. Which convex polyhedra can be connected by a series of vertex-transplants? Recall that each vertex transplant is reversible, so it seems possible to connect two polyhedra $\mathcal{P}_1, \mathcal{P}_2$ via some canonical form \mathcal{P}_c , reversing the \mathcal{P}_2 transplants: $\mathcal{P}_1 \to \mathcal{P}_c \to \mathcal{P}_2$.
- 6. Can Thm. 1 be generalized to transplant several vertices within the same digon? For example, one can excise both endpoints of an edge of a unit cube with a digon of length $\sqrt{2}$ and suture that into a face diagonal.
- 7. Does the transplant guaranteed by Thm. 1 always increase the volume of \mathcal{P} ? Note that a transplant flattens v_1 and v_2 by α and β , and creates new smallest curvature vertices, $\alpha, \beta < \omega_0$. So the overall effect seems to "round" \mathcal{P} .

Acknowledgement. I benefitted from the advice of Costin Vîlcu.

References

- [AAOS97] Pankaj K. Agarwal, Boris Aronov, Joseph O'Rourke, and Catherine A. Schevon. Star unfolding of a polytope with applications. SIAM J. Comput., 26:1689–1713, 1997.
- [Ale05] Aleksandr D. Alexandrov. Convex Polyhedra. Springer-Verlag, Berlin, 2005. Monographs in Mathematics. Translation of the 1950 Russian edition by N. S. Dairbekov, S. S. Kutateladze, and A. B. Sossinsky.
- [Ale06] Aleksandr D. Alexandrov. Intrinsic geometry of convex surfaces. In S. S. Kutateladze, editor, A. D. Alexandrov: Selected Works: Part II, pages 1–426. Chapman & Hall, Boca Raton, 2006.

- [DO07] Erik D. Demaine and Joseph O'Rourke. Geometric Folding Algorithms: Linkages, Origami, Polyhedra. Cambridge University Press, 2007. http://www.gfalop.org.
- [INV11] Jin-ichi Itoh, Chie Nara, and Costin Vîlcu. Continuous flattening of convex polyhedra. In Centre de Recerca Matemàtica Documents, volume 8, pages 95–98, 2011. XIV Spanish Meeting on Computational Geometry.
- [IRV19] Jin-ichi Itoh, Jöel Rouyer, and Costin Vîlcu. Some inequalities for tetrahedra. https:// arxiv.org/abs/1906.11965, 2019.
- [O'R10] Joseph O'Rourke. On flat polyhedra deriving from Alexandrov's theorem. http://arxiv. org/abs/1007.2016v2, July 2010.
- [OV14] Joseph O'Rourke and Costin Vîlcu. Development of curves on polyhedra via conical existence. Comput. Geom.: Theory & Appl., 47:149–163, 2014.