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Abstract

On a convex polyhedron P , the cut locus C(x) with respect to a point
x is a tree of geodesic segments (shortest paths) on P that includes every
vertex. We say that P has a skeletal cut locus if there is some x ∈ P
such that C(x) ⊂ Sk(P ), where Sk(P ) is the 1-skeleton of P . At a first
glance, there seems to be very little relation between the cut locus and
the 1-skeleton, as the first one is an intrinsic geometry notion, and the
second one specifies the combinatorics of P .

In this paper we study skeletal cut loci, obtaining four main results.
First, given any combinatorial tree T , there exists a convex polyhedron
P and a point x in P with a cut locus that lies in Sk(P ), and whose
combinatorics match T . Second, any (non-degenerate) polyhedron P has
at most a finite number of points x for which C(x) ⊂ Sk(P ). Third, we
show that almost all polyhedra have no skeletal cut locus. Fourth, we
provide a combinatorial restriction to the existence of skeletal cut loci.

Because the source unfolding of P with respect to x is always a non-
overlapping net for P , and because the boundary of the source unfolding
is the (unfolded) cut locus, source unfoldings of polyhedra with skele-
tal cut loci are edge-unfoldings, and moreover “blooming,” avoiding self-
intersection during an unfolding process.

We also explore partially skeletal cut loci, leading to partial edge-
unfoldings; i.e., unfoldings obtained by cutting along some polyhedron
edges and cutting some non-edges.

1 Introduction

1.1 Background and Results

Our focus is the cut locus C(x) of a point x on a convex polyhedron P , and the
relationship of C(x) to the 1-skeleton of P— the graph of vertices and edges—
which we denote by Sk(P ).

The cut locus C(x) of x ∈ P is the closure of the set of points on P to which
there is more than one geodesic segment (shortest path) from x. C(x) is a tree

∗A preliminary version of this paper (excluding trees with degree-2 nodes and partially
skeletal cut loci) was presented at a conference [OV24b].
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whose leaves are vertices of P . Nodes of degree k ≥ 3 are ramification points
to which there are k distinct geodesic segments from x. Nodes v of degree 2 in
C(x) can also occur, if v is a vertex of P . For details, see Section 1.2.

The 1-skeleton of a non-degenerate polyhedron is a 3-connected planar graph
by Steinitz’s theorem. We call a doubly-covered convex polygon a degenerate
convex polyhedron, for which the 1-skeleton is a cycle.

We say that P has (or posesses) a skeletal cut locus if there is some x ∈ P
such that C(x) ⊂ Sk(P ). Such a polyhedron P is called cut locus amenable,
amenable for short.

The edges of C(x) are known to be geodesic segments [AAOS97], so it is
at least conceivable that an edge of C(x) lies along an edge of P . Theorem 1
shows that, for certain polyhedra P and points x ∈ P , all of C(x) lies in the
1-skeleton of P : C(x) ⊂ Sk(P ). As a simple example, we will see in Lemma 1
that the three edges incident to any vertex vi of a tetrahedron form C(x) for an
appropriate x, and are therefore a skeletal cut locus.

Although Theorems 2 and 3 will show that skeletal cut loci are “rare” in
senses we’ll make precise, Theorem 1 and its proof establish that uncountably
many polyhedra do admit skeletal cut loci, in a sense made quantitatively precise
by Proposition 1.

Theorem 4 characterizes those polyhedra every vertex of which has a skeletal
cut locus. Complementing its first part, Theorem 5 provides a simple combi-
natorial restriction to the existence of skeletal cut loci, connecting to a current
topic in graph theory.

Theorem 1 can also be viewed as a companion to the main result in [OV23],
that any length tree—a tree with specified edge lengths—can be realized as the
cut locus on some polyhedron. Here we only match the combinatorics of T , not
its metrical properties, but requiring additionally for T to be included in Sk(P ).

Connection to Unfolding. It has long been known that cutting the cut locus
C(x) and unfolding to the plane leads to the non-overlapping source unfolding :
If x is not itself at a vertex, then the unfolding arrays all the shortest paths
2π around x, with the image of the cut locus forming the boundary of the un-
folding [Mou85] [SS86]. For the polyhedra in Theorem 1, the source unfolding
is an edge-unfolding. This adds another infinite class of polyhedra (which we
call tapered in Section 11.4) that are known to have edge-unfolding nets. And
because it is known that the source unfolding can be bloomed—unfolded con-
tinuously from R3 to R2 without self-intersection [DDH+11]—Theorem 1 and
its companion Proposition 1 provide perhaps the first infinite class of examples
of blooming edge-unfoldings.

A central open problem asks for an accounting of all the polyhedra P that
support a skeletal cut locus. All of these enjoy the property that source unfold-
ings are also blooming edge-unfoldings.

In Section 8 we introduce and briefly explore partially skeletal cut loci, lead-
ing to partial edge-unfoldings; i.e., unfoldings obtained by cutting along some
polyhedron edges and cutting some non-edges.
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1.2 Cut Locus Preliminaries

For the readers convenience, we list next several basic properties of cut loci,
sometimes used implicitly in the following.

(i) C(x) is a tree drawn on the surface of P . Its leaves are vertices of P ,
and all vertices of P , excepting x (if it is a vertex) are included in C(x).
All points interior to C(x) of degree 3 or more are known as ramification
points of C(x). All vertices of P interior to C(x) are also considered as
ramification points, of degree at least 2; see e.g. Fig. 4.

(ii) Each point y in C(x) is joined to x by as many geodesic segments1 as the
number of connected components of C(x) \ y. For ramification points in
C(x), this is precisely their degree in the tree.

(iii) The edges of C(x) are geodesic segments on P .

(iv) Assume the distinct geodesic segments γ and γ′ from x to y ∈ C(x) bound
a domain D of P , which intersects no other geodesic segment from x to y.
Then there is an arc of C(x) at y which intersects D and bisects the angle
of D at y.

(v) The tree C(x) is reduced to a path if and only if the polyhedron is a
doubly-covered (planar) convex polygon, with x on the rim.

Further details and references can be found in [OV24a, Ch. 2].

2 Main Result and Examples

Our main result is the following theorem.

Theorem 1 Given any combinatorial tree T there is a convex polyhedron P
and a point x ∈ P such that the cut locus C(x) is entirely contained in Sk(P ),
and the combinatorics of C(x) match T .

The proof of Theorem 1 is quite long. It consists of a case analysis (Sec-
tion 11), a detailed construction for each (sub)case (Sections 9–10, 11.1, 11.2,
11.3, 11.4), and a concluding induction (Section 12). Rather than plunging
right into the proof, we instead continue by sketching the main proof idea, and
then presenting the consequences and implications of Theorem 1, postponing
the proof details to Sections 9–12.

We next illustrate the main idea of the construction, with the simple case
of a tree without degree-2 nodes. Suppose the given tree T is the 7-leaf tree
shown in Fig. 1. We select a degree-3 node as root a, which corresponds to the
apex of a regular tetrahedron av1v2v3. We fix x at the centroid of the base Q.

Fig. 2(a) show one possible construction of P . The edges incident to a are
clearly in C(x) with x at the centroid of the base triangle. All three base vertices

1We will sometimes abbreviate “geodesic segment” by geoseg, and “geodesic arc” by geoarc.
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a

Figure 1: Tree T with 7 leaves.

of the tetrahedron are then truncated, with the truncation of v1 truncated a
second time. Now T corresponds to all the non-base edges of P .

The truncations are not arbitrary: the truncation planes must have precise
tilts in order for the edges of each truncation to lie in C(x). Fig. 2(b) shows the
source unfolding of P , with a1, a2, a3 the three images of a. The red bisector
rays from x through the truncation vertices on the base Q suggest that indeed
any point p on a truncation edge is equidistant from x and therefore on C(x).

Returning to the need for precise tilts of the tuncation planes, let z be the
point on the edge av1 through which the truncation plane passes, creating a
truncation triangle zt1t2. As indicated in Fig. 3, the tilt is uniquely determined
by the location of z: the placement of z determines t1, t2, and the edge t1t2
determines z.

Vertex truncations naturally increase the degree of a polyhedron vertex,
matching the degree of a node of T . See, e.g., Fig. 12 in Section 10. One reason
the proof of Theorem 1 is so long is that a degree-2 node of T cannot be created
by the same basic truncation process. Instead we found it necessary to partition
the possible occurrences of degree-2 nodes into four subcases (Fig. 14).

3 Theorem 1 Discussion

We mentioned in Section 1 that Theorem 1 leads to an uncountable number of
skeletal polyhedra. This follows immediately from the freedom to place z at any
point interior to av1 in the construction detailed in Section 9. We can be more
quantitatively precise, as follows.

Assume that T is a cubic tree without degree-2 nodes, so it has n leaves

4
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Figure 2: (a) P is created from a regular tetrahedron by four vertex truncations.
C(x) consists of all non-base edges. (b) Source unfolding of P from x. Bisectors
shown red.

and n − 2 ramification points. Aside from one ramification point, which is
chosen as the apex of the starting tetrahedron, all others are free to vary on
their respective edges in our construction, which implies n− 3 free parameters.
Because C(x) is skeletal, each ramification point of T is a vertex of P , so P has
V = 2n − 2 vertices, and n = V/2 + 1. The space PV of all convex polyhedra
with V vertices, up to isometries, has dimension 3V −6 (see for example [LP22]),
hence the starting tetrahedron provides another 6 free parameters and we have
the next result.

Proposition 1 The set of convex polyhedra admitting skeletal cut loci—and
hence blooming edge-unfoldings—contains a subset of dimension ≥ V/2 + 4 in
the (3V−6)-dimensional space of all convex polyhedra with V vertices, up to
isometries.

Our construction for trees without degree-2 nodes in Theorem 1 (see Sec-
tions 2 and 9) results in a dome, a convex polyhedron P with a distinguished
base face Q, with every other face sharing an edge with Q. It was already
known that domes have edge-unfoldings [DO07, p. 325], although the proof of
non-overlapping for our domes is almost trivial—the source unfolding does not
overlap.

However, there are many other polyhedra with skeletal cut loci, see, e.g.,
Fig. 4, Theorem 4, Fig. 15, and Section 13. Which leaves us with this central
open problem: Characterize all convex polyhedra P which admit skeletal cut loci,

5



Figure 3: The tilt of the truncation plane is determined by the position of z on
av1.
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i.e., characterize the amenable convex polyhedra. The remainder of the paper,
before giving the main proof, addresses and partially answers this problem.

Several natural questions now suggest themselves:

(1) For a fixed P , how many distinct points x can lead to skeletal cut loci?
(Theorem 2).

(2) Can all of Sk(P ) for a given P be covered by several cut loci? (Proposi-
tion 2).

(3) How common / rare are skeletal cut loci in the space of all convex poly-
hedra? (Theorem 3).

(4) Are there restrictions for the existence of skeletal cut loci? (Proposition 2,
Theorems 2 and 5).

4 Existence of Several Skeletal Cut Loci

In the first two questions in the list above, degenerate P play a special role:

Proposition 2 (a) There exists infinitely many points x with C(x) ⊂ Sk(P )
if and only if P is degenerate.

(b) There exists two points x1, x2 on P whose cut loci together cover Sk(P ) if
and only if P is degenerate.

The finitness claim in Theorem 2 is then a corollary of claim (a). Before
arguing for a quantitative statement of this theorem, we make two observations.
First, for P degenerate, Sk(P ) is the rim of P , and for any x on the rim, C(x)
is a subset of Sk(P ). So one direction (a) of the proposition is trivial. Second,
a special case asks whether it could be that each vertex v of P leads to a
skeletal cut locus C(v). The answer is yes, realized, for example, by the regular
octahedron.

Theorem 2 For any non-degenerate P with E edges, there are at most 2
(
E
2

)
flat points x of P such that C(x) ⊂ Sk(P ).

Proof: Assume there exists a flat point x of P , such that C(x) ⊂ Sk(P ). Then
x belongs to one or two faces, x ∈ Fj , with j ∈ {1, 2}. Let F denote either F1

if j = 1, or the union F1 ∪ F2 if j = 2.
Denote by vi, i ≥ 3, the vertices of F , and by ei the edge of C(x) ⊂ Sk(P )

incident to vi and not included in F . Finally, denote by γi the geodesic segment
from x to vi.

Because ei ⊂ C(x), γi and ei together bisect the complete angle at vi, by the
bisection property (iv) of the cut locus. In other words, the straight extensions
Ei into F by all ei are concurrent: they intersect at the point x.

Now we count all the possible locations x over all edges of P . Consider
a pair of edges ei, ej . Each has possible edge extensions from each endpoint.

7



So the edge extensions are geodesic rays. Two such straight extensions could
intersect several times on P . However, only their first intersection beyond the
endpoints is a possible location for x. Each edge has two extensions, one from
each endpoint, and because there are E straight extensions of the E edges of P ,
there are at most 2

(
E
2

)
possible locations for x.

So this theorem settles the other direction of Proposition 2(a).
Now we prove Proposition 2(b), that only degenerate P allows covering Sk(p)

by only two cut loci.

Proof: If P is degenerate then any two points on its rim, but not on the same
edge, satisfy the conclusion.

Assume now that P is non-degenerate and x ∈ P such that C(x) ⊂ Sk(P ).
Then C(x) has at least one ramification point of degree d ≥ 3, as it is known
that only degenerate P support path cut loci. The d edges of C(x) lie in at least
3 faces of P . Then there exists a cycle in Sk(P ), formed by edges of those faces
which are not in C(x). But such a cycle cannot be covered by only one other
cut locus, which is a tree.

Example 1 Consider a regular dipyramid P over a convex 2m + 1-gon; see
Fig. 4. One can see that, for every midpoint x of a “base edge” e, C(x) is
included in Sk(P ). More precisely, C(x) contains all base edges other than e,
and the two “lateral edges” opposite to x. In particular, this provides 2m + 1
such points, for V = 2m+ 3 vertices.

x

Figure 4: P : pentagonal dipyramid. C(x): red and blue edges of Sk(P ).

5 Absence of Skeletal Cut Loci

The following lemma will explain a condition in Theorem 3 to follow.
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Lemma 1 Every tetrahedron T has four points x ∈ T such that C(x) ⊂ Sk(T ).

Proof: For each vertex vi, denote by xi the ramification point of C(vi). It
follows, from cut locus property (ii), that that vi is the ramification point of
C(xi). Then, by (i) and (iii), C(xi) consists of the three edges incident to vi.

The next theorem establishes the rarity of skeletal cut loci. In the statement,
by almost all we mean “all in an open and dense set” in PV .

Theorem 3 For almost all convex polyhedra P with V > 4 vertices, there exists
no point x ∈ P with C(x) ⊂ Sk(P ).

Note that Lemma 1 establishes the need for V > 4.

Proof: Notice first that almost all convex polyhedra P are non-degenerate.
Assume, for the simplicity of the exposition, that every face of P is a triangle

and Sk(P ) is a cubic graph.

Case 1. Assume there exists a flat point x interior to some face F of P , such
that C(x) ⊂ Sk(P ).

Repeating the notation in Theorem 2, denote by vi, i = 1, 2, 3, the vertices
of F , and by ei the edges of P incident to vi and not included in F .
Moreover, denote by γi the geodesic segment from x to vi.

As in Theorem 2, it follows that ei ⊂ C(x) so, together, γi and ei bisect
the complete angle at vi. In other words, the straight extensions Ei into
F by all the ei are concurrent: they all intersect at the same point.

Now we perturb the vertices of P to destroy this concurrence. If P were
a tetrahedron, then perturbing the apex would simultaneously move the
edges incident to it. But the assumption that V > 4 means that there
are at least two vertices outside the 3-vertex face F containing x. Per-
turbing these two vertices independently moves the edges incident to F
independently, breaking the concurrence at x.

Because there are at most finitely many such points x by Theorem 2, the
conclusion follows in this case.

Case 2. Assume there exists a flat point x interior to some edge e of P , such
that C(x) ⊂ Sk(P ). Denote by vi, i = 1, 2, the vertices of e, and by ei
the edges of P incident to vi included in C(x). As above, it follows that
the straight extensions of e1, e2 coincide with e. Now, small perturbations
of the vertices of P destroy this coincidence. Note that if e, e1, e2 form a
triangle, then e1, e2 will move together. But still, perturbations at other
vertices of P (not v1, v2, e1 ∩ e2) will destroy the concurrence.

Case 3. Assume finally there exists a vertex v of P , such that C(v) ⊂ Sk(P ).
Here we obtain again that the straight extensions of two edges contain
(other) edge-pair extensions, and small perturbations of the vertices of P
destroy this coincidence.
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We mentioned the simple fact that, for the regular octahedron, for every
vertex v, C(v) is skeletal. In the next section we detail the special conditions
such polyhedra must satisfy.

6 Every Vertex a Skeletal Source

By Theorem 3, few convex polyhedra P have a point x with C(x) ⊂ Sk(P ). So
assuming that every vertex of P has this property should yield some exceptional
polyhedra.

Theorem 4 Assume that every vertex of P has a skeletal cut locus. Then the
following statements hold.

1. Every face of P is a triangle.

2. Every vertex of P has even degree in Sk(P ).

3. The edges at every vertex v split the complete angle at v into evenly many
sub-angles, every two opposite such angles being congruent.

4. If, moreover, every vertex of P has degree 4 in Sk(P ) then P is an octa-
hedron:

• with three planar symmetries, and

• all faces of which are acute congruent (but not necessarily equilateral)
triangles.

Proof:

(1) Assume there exists a non-triangular face F of P , so there are non-adjacent
vertices u, v of F . Because v ∈ C(u) ⊂ Sk(P ), there exists an edge vw
of P with vw ⊂ C(u). Moreover, the diagonal uv of F and vw bisect the
complete angle at v.

Because vw is an edge, it is a geodesic segment from w to v. So v is a leaf
of C(w), and C(w) starts at v in the direction of the diagonal vu, hence
C(w) ̸⊂ Sk(P ).

(2) Consider now a vertex u of P of degree d in Sk(P ), and denote by
u1, . . . , ud its neighbors in Sk(P ).

For every ui, i = 1, . . . , d, u is a leaf of C(ui), so the edge uiu and the edge
of C(ui) ∩ Sk(P ) at u bisect the complete angle at u. Hence the edges at
u can be paired two-by-two, hence their number is even.

(3) Denote by e1, . . . , ek, ek+1, . . . , e2k the edges sharing the vertex u, indexed
circularly, and put αi = ∠(ei, ei+1), with index equality 2k + 1 = 1.

10



The bisecting property of cut loci implies that the edge e1 (as a geodesic
segment from vertex u1 to u) and the edge ek+1 (as the branch of C(u1)
at leaf u) bisect the complete angle at u:

k∑
i=1

αi =

k∑
i=1

αk+i.

Similarly,
k+1∑
i=2

αi =

k+1∑
i=2

αk+i.

Subtracting, we get α1 = αk+1.

Analogous reasoning implies the other equalities: αi = αk+i, with index
equality 2k + j = j.

(4) For the combinatorial part, denote by F,E, V the number of faces, edges,
and respectively vertices of P . Euler’s formula for convex polyhedra gives
F − E + V = 2. Our assumptions imply 3F = 2E, and 4V = 2E. These
equations yield V = 6 and F = 8, hence P is an octahedron.

Denote by u, v, a, b, c, d the vertices of P , with a, b, c, d neighbor to both u
and v.

Applying the hypothesis for a, b, c, d shows that the cycle C = abcda in
Sk(P ) is a bisecting polygon. Therefore, there exists a local isometry ι
of the ‘upper’ and ‘lower’ neighborhoods Nu, Nv of C. In particular, the
curvatures at u and v are equal, by Gauss-Bonnet.

It follows even more, that the local isometry ι extends to an intrinsic
isometry between the ‘upper’ and the ‘lower’ closed half-surfaces bounded
by C (regarding them as cones), hence it further extends to an isometry of
P fixing C. Therefore, C is planar and P is symetric with respect to the
respective plane, by the rigidity part of Alexandrov’s Gluing Theorem.

Repeating the reasoning for other pairs of ‘opposite’ vertices shows that
all faces of P are congruent triangles.

The four faces sharing the vertex u have congruent angles at u, hence
those angles are acute.

Example 2 Suitable dipyramids over convex 2m-gons, similar to Example 1,
provide non-octahedron polyhedra whose the cut loci of the vertices cover the
1-skeleton.

11



7 A Combinatorial Restriction

Already mentioned in the Abstract, at a first glance there seems to be very
little relation between the cut locus and the 1-skeleton, as the first one is an
intrinsic geometry notion, and the second one specifies the combinatorics of P .
A background connection between the two notions can however be established
in two steps: Alexandrov’s Gluing Theorem connects the intrinsic and the ex-
trinsic geometry of P , while Steinitz’s Theorem relates the combinatorics to the
extrinsic geometry.

In this section we provide an easy combinatorial restriction to the existence
of skeletal cut loci for cubic graphs, complementing the first part of Theorem 4.

In the literature, a spanning tree without degree-2 nodes is called a HIST.2

So every spanning tree of a HIST-free graph has a degree-2 node.

Theorem 5 A HIST-free cubic polyhedral graph cannot be realized with skeletal
cut loci.

Proof: Lemma 2.8 in [OV24a] shows that, at a vertex v of P of degree 3 in
Sk(P ), the sum of any two face angles is strictly larger than the third angle.
Therefore such a degree-3 v in the graph cannot be a degree-2 node in a cut
locus, because of Property (iv) of cut loci.

Open Problem 1 Theorem 5 provides a necessary condition for a cubic poly-
hedral graph to be realizable with a skeletal cut locus. Is it also sufficient?

Corollary 1 Among the Platonic solids, only the regular tetrahedron and the
regular octahedron have skeletal cut loci.

Proof: Notice first that all tetrahedra have skeletal cut loci (Lemma 1),
as does the regular octahedron, because it is a special case of Theorem 4 and
Example 2).

One can check straightforwardly that the cube and the dodecahedron graphs
are HIST-free, hence these polyhedra do not admit skeletal cut loci by Theo-
rem 5.

We clarify next the situation of the icosahedron I. By the proof of Theo-
rem 2, the only candidate source points x are the centers of the faces. Direct
considerations show that such a cut locus is not completely included in Sk(I),
see Fig. 5.

The cube example shows there exist convex polyhedra admitting edge-unfoldings,
but not skeletal cut loci.

2HIST abbreviates “homeomorphically irreducible spanning tree.” See, e.g., [GNRZ24]
and the references therein.

12



Figure 5: Source x is the center of the base face (blue). The six disjoint red
edges are included in C(x), but none of the other polyhedron edges are in C(x).
Therefore, C(x) must also include some non-edge geosegs to connect C(x) to a
tree.

13



8 Partially Skeletal Cut Loci

Theorem 3 states that almost all convex polyhedra P with V > 4 vertices have
no skeletal cut loci. This section is an attempt to roughly clarify “how far” are
those polyhedra from having such cut loci.

Remark 1 For every convex polyhedron P and each edge e of P , there are
infinitely many points x ∈ P such that e ⊂ C(x).

Proof: Consider an extremity v of e, and the geodesic segment γv starting
at v which, with e, bisects the complete angle at v. Also consider points x on
γv sufficiently close to v. Then, either the proof of Theorem 2, or Property (iv)
of cut loci in Section 1.2 on which it is based, directly implies e ⊂ C(x).

Fig. 5 indicates a point x on an icosahedron with 6 polyhedron edges in C(x),
but several edges of C(x) are not part of the 1-skeleton.

Fig. 6 presents a cut locus which fails to be skeletal by a single edge. In our
example the respective edge is internal, but minor changes show that it could
as well be external. (An arc of a tree is called external it it is incident to a leaf,
and internal otherwise.) We believe that Theorem 3 can be adapted to cover
this case as well.

Figure 6: A convex polyhedron of 7 vertices and a vertical symmetry plane,
obtained from a regular pyramid v2v4v5v6v7. The cut locus C(v1), drawn red,
has 4 polyhedral edges and one non-polyhedral edge, v4v6.

14



For a non-degenerate convex polyhedron P , define L(P ) ≥ 1 as the maximal
integer such that P admits a point x with L(P ) polyhedral edges in C(x). The
quantity L(P ) can be regarded as a measure of how close is P to having skeletal
a cut loci.

Direct considerations show that L(C) = 4 for the cube C, while L(I) = 6
for the icosahedron I (see again Fig. 5).

The proof of Theorem 1 can be easily adapted to provide examples of convex
polyhedra and cut loci missing an arbitrary number of their edges3 from being
skeletal.

A k-edge-unfolding is an unfolding whose cut tree contains precisely k edges.
A partial edge-unfolding is an unfolding whose cut tree contains at least one

edge, but it is not skeletal; so it is a k-edge-unfolding, for some k ≥ 1. These
unfoldings are obtained by cutting partially along edges and partially outside
edges, so the concept is a bridge between edge-unfoldings (whose cut trees are
composed by edges), and anycut-unfoldings (whose cut trees may contain no
edge).

Remark 1 shows that every convex polyhedron admits a 1-edge-unfolding.

The following two questions are now natural, and related to Dürer’s prob-
lem [O’R13]—whether or not every convex polyhedron has an edge-unfolding to
a net.

Open Problem 2 Find the maximal number LV ≥ 1 such that each non-
degenerate convex polyhedron with V ≥ 5 vertices4 has a point whose cut locus
contains LV edges.

In particular, does every convex polyhedron have a point with two edges in
its cut locus?

Open Problem 3 Find the maximal number KV ≥ 1 such that each non-
degenerate convex polyhedron with V vertices has a K(V ) edge-unfolding to a
net.

Clearly 1 ≤ LV ≤ KV , and Theorem 3 shows that, for V > 4, LV cannot
equal the number of edges of a spanning tree with n = V/2 + 1 leaves (see also
the second paragraph in Section 3).

The part of the paper presenting comments on, and consequences of, The-
orem 1 ends here. The remaining is devoted to the proof of Theorem 1, which
consists of a case analysis (Section 11), a detailed construction for each (sub)case
(Sections 9–10, 11.1, 11.2, 11.3, 11.4), and a concluding induction (Section 12).

3However, it doesn’t work as such if one asks for the precise position of the non-polyhedral
edges in the given tree.

4Notice that L4 = 3, by Lemma 1.
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9 Proof of Theorem 1, Case of no Degree-2Nodes

Throughout this section we assume T has no degree-2 nodes. Start with P a
pyramid with apex a centered over a regular n-gon base Q, with x the centroid
of Q. Label the vertices of Q as v1, . . . , vn.

The construction does not depend on the degree of apex a, so it is no loss of
generality to assume a has degree-3 so that P starts as a regular tetrahedron.
Let z be a node of T adjacent to a. (We will often use a and z and other
variables to both refer to a node of T and a corresponding vertex of P .) Let z
have degree k+2 in T . Truncation of k planes through z will create a vertex at
z of degree k + 2. E.g., if z is degree-3, k = 1 plane through z creates a vertex
of degree-3, as we’ve seen in Fig. 3.

We aim to understand how to truncate k ≥ 1 planes through z so that the
k+1 truncation edges incident to the base Q are part of C(x). We will illustrate
in detail the case k = 2 shown in Fig. 7. Looking ahead, if we know how to
construct k planes through z, then we can apply the same logic to construct j
planes through a child y of z. The j = 1 case is illustrated in Fig. 8, with the
red truncation triangle incident to y. Then the same construction technique can
be used to inductively create the full subtree rooted at z. We will show later
that the subtrees rooted at the other two children of a can be arranged to avoid
interfering with one another.

We express the construction as a multi-step algorithm, and later prove that
the truncation edges are in C(x). Fix k ≥ 1, and position z anywhere in the
interior of av1. The goal is to compute the truncation chain t1, t2, . . . , tk, tk+1

on base Q, where t1 ∈ v1vn and tk+1 ∈ v1v2 (e.g., t1, t2, t3 in Fig. 7). Each
truncation triangle is then ztiti+1.

The construction of the truncation chain is effected by first computingd the
unfolded positions zi, the images of z in the unfolding. It is perhaps coun-
terintuitive, but we can calculate zi without knowing titi+1; instead we use
zi to calculate titi+1. The next construction depends of our choice of several
parameters; we’ll see later that it provides a suitable polyhedron.

(1) z0 is the position of z unfolded with the left face of the tetrahedron, av3v1.
z0 can be determined by |v1z| = |v1z0|. Then zk+1 is the reflection of z0
across xv1.

(2) Set rz = |xz0| = |xzk+1|.

(3) All the zi’s are chosen to lie on the circle Cz centered on x of radius rz.

(4) Let A be the angle z0xzk+1. Partition A into k + 1 angles α. This is
another choice, to maximize the symmetry of the construction.

(5) The zi’s lie on rays from x separated by α. Together with Cz, this deter-
mines the location of the zi’s.

(6) Set Bi to bisect the angle at x between the zi−1, zi rays, i = 1, . . . , k + 1.
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Figure 7: k = 2 truncation planes through z.

Figure 8: k = 2, j = 1. The y-truncation cuts the zt2 edge in Fig. 7.
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(7) We determine t1 and tk+1 using the first and last bisector: t1 = v1vn∩B1,
tk+1 = v1v2 ∩Bk+1. The intermediate chain vertices t2, . . . , tk are not yet
determined.

(8) Let Πi be the mediator plane through zzi, the plane orthogonal to zzi
through its midpoint. It is these planes that determine ti, i = 2, . . . , k.

(9) Πi intersects the xy-plane in a line Li containing titi+1.

(10) ti = Li ∩Bi.

First note that the mediator plane construction of titi+1 guarantees that z
unfolds to zi. Second, the angles between edges tizi−1 and tizi are split by Bi

by construction. So any point p on the interior of edge zti unfolds to two images
in the plane equidistant from x.

Lemma 2 Each truncation edge zti is an edge of C(x).

Proof: We first prove that zt1 lies in C(x). Throughout refer to Fig. 9.
Before truncation, the segment zt1 lies on the face av3v1 of the polyhedron

P , which is a regular tetrahedron in this case.
Fix a point p ∈ zt1. The unique shortest path γ to p crosses edge v1v3. After

truncation, γ remains a geodesic arc. We aim to prove that it remains shortest,
and moreover there is another companion geodesic segment γ′, establishing that
p ∈ C(x).

Now we consider the situation after truncation. Let δ be a geodesic arc from
x to p, approaching p from the other side of zt1; see Fig. 9(b). If δ crosses the
edge t1t2, then we have |γ| = |δ| by construction, and we have found γ′ = δ.

Suppose instead that δ crosses edge titi+1 for i ≥ 2, and then crosses the
truncation triangles ztiti+1, zti−1ti, . . . , zt1t2 (right to left, i.e., clockwise, in
Fig. 9(a)) before reaching p. To simplify the discussion, we illustrate i = 2, so
δ crosses t2t3 and then triangles zt2t3 and zt1t2. See Fig. 9(b).

Let q2 be the quasigeodesic5 xt2z on P ′; it must be crossed by δ to reach p.
There are two triangles xt2z1 and xt2z2 bounding q2 to either side, congruent
by the construction. Thus the construction has local intrinsic symmetry about
q2.

Let s be the point at which δ crosses t2t3, {s} = δ ∩ t2t3. First assume that
s lies in the triangle xt2z2. Then δ remains in xt2z2 until it crosses q2. Then
there must be another geodesic arc δ′ symmetric with δ about q2, as illustrated
in (b). So δ and δ′ meet at a point of q2. Because δ and δ′ have the same length,
neither can be a shortest path beyond that point of intersection. Therefore δ
cannot reach p as a geodesic segment.

Second, if s instead lies in the triangle xt3z2, then it is clear from the planar
image in (a) of the figure that δ cannot cross the segment xz2 clockwise, which it
must to reach p from the right in the figures. So δ must head counterclockwise,
crossing q3 = xt3z. Then the same argument applies, based this time on the

5A quasigeodesic is a path with at most π surface to either side of every point.
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(b)

Figure 9: Proof that p ∈ zt1 is on C(x). (a) Quasigeodesic q2 = xt2z shown
purple and congruent triangles xt2z1 and xt2z2 shaded green. (b) Abstract
picture depicting geodesic segments γ, δ, δ′.
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local intrinsic symmetry about q3, and shows that δ cannot be a shortest path
beyond q3.

We have established that every point p on zt1 is on C(x), and so zt1 ⊂
C(x). The same argument applies to ztk+1, the rightmost truncation edge in
the figures.

So now we know that two geodesic segments from x to z cross t1t2 and tktk+1.
These two segments determine a digon D within which the remaining segments
of C(x) lie. But within D we have local intrinsic symmetry with respect to the
quasigeodesics qi = xtiz, because qi is surrounded by the congruent triangles
xtizi−1 and xtizi. Therefore, the previous argument shows that all the edges
zti are included on C(x).

We now return to the claim that the three subtrees descendant from a do
not interfere with one another.

Lemma 3 The truncations for one subtree descendant of apex a do not interfere
with another subtree descendant.

Proof: First, as k → ∞, t1 approaches the line xz0. This is evident in
Fig. 12 where k = 8. Thus the leftmost truncation triangle stays to the v1-side
of the midpoint of v1v3, say by ε. Second, subsequent truncations to all but the
extreme edges zt1 and ztk+1 stay inside the t1, . . . , tk chain. The only concern
would be that truncation of the zt1 edge crossed the midpoint of v1v3 (and
so possibly interfering with truncations of av3). However, as is evident in the
earlier Fig. 3, the position of t1 moves monotonically toward v1 as z moves down
av1. Thus we can widen ε to accommodate a truncation of zt1 (or of ztk+1).
So the entire subtree rooted at z stays between the midpoints of v1v3 and v1v2.

Further examples are shown in Section 10: k = 4 in Figs. 10 and 11, and k = 8
in Figs. 12 and 13.

Lemmas 2 and 3 together establish this case of Theorem 1: C(x) ⊂ Sk(P )
matches the given T .

In this section we proved Theorem 1 for trees T without degree-2 nodes. Our
construction can be viewed as realizing degree-2 nodes of T with flat “vertices”
on Sk(P )—points interior to edges of P . The passage from flat vertices to
positive curvature vertices is a long proof,6 accomplished in the following, after
giving a few more examples for the current construction in the next section.

10 Further Examples

In this section we illustrate the previous construction with more examples.

6In this respect, there is some similarity to the proof of Steinitz’s Theorem.
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Figure 10: k = 4.

Figure 11: k = 4, j = 3.
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Figure 12: k = 8.

Figure 13: k = 8, j = 1.
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11 Degree-2 Nodes: Four Cases

We turn now to degree-2 nodes. The overall plan is to start with a zero-curvature
degree-2 node u identified on an edge ab of C(x). Then conveniently bend the
edge at u by moving b so that u gains positive curvature, while maintaining that
C(x) includes au and ub.

The bending at u introduces two new polyhedron edges incident to u on
each side. Those two new edges could both end on the base, or one terminating
on the base and the other on a non-base vertex, or both edges terminating on
a non-base vertices. See Fig. 14 for examples of each case, and Fig. 15 for
a polyhedron falling in Case (d). Each case will be further described in the
appropriate section.

a a a

z

u u

v1 v2 v1 v2v3 v1 v2

u1 u2

vi vj

(a) (b) (c)

a

v1 v2

u1

v3

(d)

u2

u3

Figure 14: Examples of four cases. Red: C(x) edges. Blue: edges of P .

11.1 Case (a)

In both Case (a) and Case (b), a degree-2 vertex u is connected on both sides
to base vertices vi, vj . Case (a) occurs when u is a parent of a non-base vertex
z, whereas in Case (b), u is a parent of a base vertex. See Fig. 14(a,b).

In Case (a), the degree-2 vertex u can realized by modifying the construction
that achieves Lemma 2. It will suffice to show how to deal with a degree-2 node
u a child of apex a in the tree T , and z a child of u of degree ≥ 3. The
construction generalizes to arbitrary placements of such degree-2 nodes.

So let u be on edge av1 but z on edge uv′1, where v′1 ̸= v1 is on the line
segment xv1. See Fig. 16. Thus u is a degree-4 vertex of P , but we want to
arrange that two of its edges are not part of C(x). The two segments au and uz
are in C(x), as they lie on the vertical symmetry plane containing axv1.

Note that the triangle uzt1 is not coplanar with the left face v3t1ua. Still,
when we truncate through z, then cut the truncation edges and unfold, that
triangle uzt1 unfolds attached to the unfolding of the left face. We perform the
same calculations to truncate k times at z, and the same logic (bisectors Bi and
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Figure 15: Case (d): Cycles of degree-2 nodes.

t2

t1

z

u
a

z1

B1

B2

z2

z0

v'1

v3

Figure 16: Case (a). u is degree-2 node. k = 1 truncation at z.
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mediator planes Πi) leads to the conclusion that the truncation edges are part
of C(x).

The two side edges ut1 and ut2 are not part of C(x): a point p ∈ ut1 is closer
to x via a geodesic segment up the left face, closer than any other path from x
to p. So u has degree-4 in Sk(P ) but degree-2 in C(x).

11.2 Case (b)

In this case, a degree-2 node u is a parent of a leaf node v1, as illustrated in
Fig. 14(b). This requires the two non-C(x) edges incident to u to connect to
adjacent base vertices v2 and v3, and consequently to other branches of C(x).

We confine ourselves now to starting with a regular tetrahedron with x at
the centroid of the base and a the apex, as in Case (a). We first describe the
construction at a high level, concentrating on v3, with the understanding v2 will
be handled similarly.

For the regular tetrahedron, the surface angle incident to v3 can be parti-
tioned into two halves, to each side of the path q = xv3 ∪ v3a, α to the left of q,
with α = ∠xv3v2 +∠v2v3a, and β to the right of q, with β = ∠xv3v1 +∠v3v3a.
Because α = β, the edge v3a ⊂ C(x). Introducing u on the path auv1 modifies
the angle at v3 to the right, to β′ < β, breaking the bisection. So our goal is to
temporarily increase β′ by altering the path auv1, so that by further truncations
we could decrease it to α.

In particular, u will connect to v′′1 ̸= v1. (See ahead to Fig. 18.) The ver-
tices v2, v3, a and the source x remain unaltered, which ensures the changes are
localized, and that the construction generalizes beyond the regular tetrahedron.

Let v′1 be a point on the ray xv1, beyond but close to v1. (For now, this
slightly increases β′.) We’ll place u on the segment av′1. But first we locate
an auxiliary variable point y ∈ av′1 which will bound u to lie above y on the
segment ya. The construction will work for any u in that range.

Let y1 be the vertical projection of y onto xv′1. Now consider the polyhedron
P = conv{v2, v3, a, y, y1}. We examine the angle δ incident to v3 from the right
of the path q. Angle δ will serve as β′. It is composed of three angles: on the
base, the face including vertical edge y y1, and the face including a:

δ = ∠xv3y1 + ∠y1v3y + ∠yv3a .

See Fig. 17.
Next view y = y(t) as continuously varying on av′1, with y(0) = a and

y(1) = v′1. So δ = δ(t) is also varying continuously. We now argue that the
extreme values of δ are less than and respectively greater than the fixed angle
α.

• At t = 0, δ(0) = ∠xv3a because the first two angle terms are zero when
y y1 = ax. This angle δ(0) is smaller than α because it is smaller than
each of the two angles comprising α.
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a

x

v'1
v1

v3 y1

Figure 17: Case (b). The total angle at v3 is ∠xv3y1 + ∠y1v3y + ∠yv3a.
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• At t = 0, δ(1) = ∠xv3v′1 + ∠v′1v3a, because y = y1 = v′1. This angle δ(0)
is larger than α by the triangle inequality for spherical distances (see e.g.,
Lemma 2.8 in [OV24a]).

Therefore, there is some t such that δ(t) = α. We henceforth define y to be
that y(t). The resulting polyhedron P = P (t) achieves α = β. Thus if we place
u at y, we have achieved our goal of increasing β′ to β, and thus ensuring that
v3a ∈ C(x). However, for more complicated trees, we may need to truncate the
vertical edge y y1, so we would like choose u to slant to v′′1 .

We now claim that there is some v′′1 on xv′1 such that the three angles to the
right of q sum to exactly α. The analogous three angles are as in the δ argument
above; see Fig. 18.

∠xv3y1 + ∠y1v3u+ ∠uv3a < α .

∠xv3v
′
1 + ∠v′1v3u+ ∠uv3a > α .

Therefore there is some v′′1 ∈ y1v
′
1 so that the construction using the slanted

edge uv′′1 achieves α, guaranteeing that α = β and v3a ∈ C(x). (Note that v′′1
could be closer to x than v1, or further.)

As in Case (a), the two segments au and uv′′1 are in C(x), as they lie on the
vertical symmetry plane containing axv′′1 .

y
u

a

x

v'1v''1
v3

Figure 18: Case (b): Source unfolding after locating v′′1 ∈ y1v
′
1.

We note here that, if there are several nodes of degree-2 falling under Case (b)
in a cascade, they should be treated together by a similar procedure.
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11.3 Case (c)

It is characteristic of Case (c) that a chain C of degree-2 nodes, represented by
the single edge u1u2 in Fig. 14(c), connects to base vertices vi, vj , 1 ≤ i < j ≤ n,
on either end of C. In contrast, in Case (d) the chain closes to itself, as in Fig. 15.

The proof in Case (c) is quite involved and comprises several steps. Some
of those steps describe the construction, while the others give the necessary
argument for the construction to work. The proof falls roughly into two parts,
the distinction of which will be useful for Remark 2 at the end of the proof.
Part I (Item (1) to Item (11)) finds the points a13, u13, and then Part II
(Item (12) to Item (23)) finds the points a12, u12, y1, u21. These points will be
defined as they occur in the proof.

Part I.

(1) Start with the regular tetrahedron7 S = av1v2v3, and let x be the projec-
tion of a on the base plane Πb = v1v2v3.

Take v′3 ∈ [xv3].

This has two purposes. One is to destroy the chance of obtaining in the
end as a solution precisely the original tetrahedron S. The other one is
to assure the convexity of the resulting polyhedron R, and will become
apparent at Item (22).

Denote by T the tetrahedron av1v2v
′
3.

(2) Choose u1 ∈ [av1] and take u2 ∈ [av2] such that |au1| = |au2|.
Fig. 19 illustrates the setup so far. The vertices {v′3, a, u1, u2} will hence-
forth remain fixed. The plan is to move v1v2 parallel to itself toward x,
to y1y2. This will introduce a bend at u1 and u2. The remainder of the
argument aims to calculate y1y2 so that C(x) includes au1y1 and au2y2.

It may help to look ahead to the final construction: see Fig. 24. In some
sense, we are constructing the source unfolding of the “to-be-found” poly-
hedron.

Because of the symmetry of T , we will concentrate on the u1 side of T .

The triangle v′3au1 of T is now fixed; it will become a face of the final
polyhedron.

In the source unfolding, it will become v′3a13u13. A key is locating this
unfolded face, i.e., determining the position of a13.

(3) Let θ13, θ12 be the angles at the apex a:

θ13 = ∠u1av
′
3 and θ12 = ∠u1au2.

A key angle will be θ13−θ12/2. Assuming the construction is finished and
looking ahead, the argument will partition θ13 as follows; see Fig. 20.

7The proof works, with minor changes, for arbitrary regular pyramids.
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Figure 19: v3 has been moved to v′3. The unfolding of face v′3au1 is shown.

θ13 = ∠u1av
′
3

= ∠u13a13v
′
3

= ∠xa13v
′
3 + ∠xa13u13

= ∠xa13v
′
3 + ∠xa12u12

= ∠xa13v
′
3 + θ12/2

θ13 − θ12/2 = ∠xa13v
′
3

(4) Notice that the source unfolding of the target polyhedron R would produce
a point a13 (an image of a) in Πb with |a13v′3| = |av′3|. So we consider in
Πb the circle O centered at v′3 and radius |av′3|, and will determine a13 ∈ O
by Items (5) and (7).

Notice that x is inside O.

(5) Lemma 4 Consider a variable point z ∈ O. The extreme values of ϕ =
ϕ(z) = ∠xzv′3 are as follows.

The minimum value of ϕ is 0, achieved precisely for z, x, v′3 collinear.

The maximum ϕ0 of ϕ is obtained precisely for zx perpendicular to xv′3,
hence for two positions of z.

Moreover, on each of the four arcs of O determined by those extreme
values, ϕ(z) = ∠xzv′3 is a strictly monotone function on z.
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Figure 20: θ13 − θ12/2. The labeled points a, u1, u2 are above the base plane,
and all the other labeled points lie in the base plane.
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Proof: The “minimum” claim is clear: there are precisely two positions
of z ∈ O for which the mimimum value of ϕ is attained, say at the north
and the south poles of O.

To prove the rest, take the height from v′3 in the triangle v′3xz, and notice
that it is smaller than, or equal to, [xv′3]. Therefore, because sin is an in-
creasing function, we get the two positions z0 ∈ O of z obtaining maximal
value ϕ0 of ϕ: z0x ⊥ xv′3. One of them is in the left semi-circle of O and
another one in the right half-circle.

The monotonicity of the angular function ϕ(z) on each of the resulting
four arcs is elementary.

We will denote z0 by a0.

(6) Lemma 4 helps to prove the following.

Lemma 5 There exist precisely four positions z13 of the variable point
z ∈ O s.t.

∠xz13v
′
3 = θ13 − θ12/2.

We described above in Item (3) why the angle θ13−θ12/2 is the appropriate
choice to determine the position of a13 on O.

Proof: Notice that the variable ϕ defined in Lemma 4 clearly depends
continuously on z, and

0 < θ13 − θ12/2 < ϕ0, (1)

where 0 is the minimal value of ϕ, and ϕ0 is its maximal value given by
Lemma 4.

The first inequality follows for the regular tetrahedron from the numerical
values θ13 ≈ π/3 (for v′3 close to v3) and θ12 = π/3.8

To see that ϕ0 > θ13 − θ12/2, consider a0 ∈ O such that a0x ⊥ xv′3. The
triangles a0xv

′
3 and axv′3 are congruent, because x is the projection of a

on Πb.

Next we show that

∠xav3 > ∠v1av3/2 = ∠v1av3 − θ12/2.

To see this, let xp ⊥ v3v1, with p ∈ v3v1. The theorem of the three
perpendiculars implies ap ⊥ v3v1, hence

sin(∠v1av3/2) = sin∠pav3 = |pv3|/|av3| < |xv3|/|av3| = sin∠xav3.

For v′3 close enough to v3 we have ∠xav′3 ≈ ∠xav3, so we still have9

ϕ0 = ∠xav′3 > ∠v1av3/2 = ∠v1av3 − θ12/2 > θ13 − θ12/2.

8If, instead of the regular tetrahedron, we would start with an arbitrary regular pyramid,
we would use Lm.2.8 in [OV24a] to derive the conclusion.

9This argument is valid for arbitrary regular pyramids.
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By the continuity of ϕ and the inequalities (1), there are precisely four
intermediate positions of z ∈ O for which ∠xz13v′3 = θ13 − θ12/2. In the
left semi-circle of O, one is below and one is above the point z0 realizing
the maximum of ϕ (i.e., z0 ∈ O, z0x ⊥ xv′3).

(7) Fig. 21 shows the position of z13 we choose for (i.e., denote by) a13: the
left one above z0. This choice will be important at Item (9).

(8) Construct the triangle v′3a13u13 congruent to v′3au1, with u13 inside the
angle ∠xv′3a13.

(9) Rotate the triangle v′3av1 about v′3v1 until it lies in the base plane, and
denote by a′ the resulting image of a farthest from v2, so a′ clearly lies in
the left half-circle of O.

It follows that a′ is above a13; i.e., a13 lies between a0 and a′, on the
left half of O. This is a direct consequence of Items (6), (7), (10), and
Lemma 6.

a

x

v'3a13

a'

u13

u1 u2

v1 v2

O

a0

Figure 21: The four ϕ solutions (red), and a13 between (green) points a0 below
and a′ above. The labeled points a, u1, u2 are above the base plane, and all the
other labeled points lie in the base plane.

(10) Lemma 6 ∠v′3a
′x < θ13 − θ12/2.

Proof: Notice that the claimed inequality is equivalent to θ12/2 < θ13 −
∠v′3ax = ∠xav1.
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Figure 22: xm ⊥ v1v
′
3 and xm′ ⊥ v1v3. The geoseg xma (red) on T is shorter

than xm′a (blue) on S.
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Let m ∈ v1v
′
3 such that xm ⊥ v1v

′
3. See Fig. 22.

By the theorem of the three perpendiculars, am ⊥ v1v
′
3, so the path xma

is a geodesic segment. Therefore, ∠xav1 > ∠mav1.

In the tetrahedron S = av1v2v3, let m′ ∈ v1v3 such that xm′ ⊥ v1v3.
Then, again by the theorem of the three perpendiculars, am′ ⊥ v1v3, so
the path xm′a is a geodesic segment on S. Therefore, θ12/2 = ∠v3av1/2 =
∠m′av1.

So the claimed inequality is reduced to ∠mav1 > ∠m′av1. This follows
from ∠mv1a < ∠m′v1a, which is a direct consequence of the choice of v′3
between x and v3.

(11) The above argument also shows that |xm| < |xm′| and |ma| < |m′a|,
hence |xm|+ |ma| < |xm′|+ |m′a|. I.e., the distance from x to a is shorter
on T than on S.

Moreover, because a13 lies between a0 and a′, on the left half of A, |xa13| <
|xa′|. Therefore, |xa13| is shorter than the distance from x to a on S.

This concludes identifying the points a13, u13.

Part II

(12) Now we begin the second part of the proof, identifying the points a12, u12, y1, u21.

On the ray at x orthogonal to v1v2, take the point a12 determined by
|xa13| = |xa12|.

(13) Construct, inside ∠a12xa13, the triangle a12xu12 congruent to a13xu13.
We illustrated this step earlier in Fig. 20.

Clearly, the triangle a13xu13 lies inside ∠v3xv1, hence the triangle a12xu12

lies inside ∠v2xv1. Therefore, the triangles a12xu12 and a13xu13 share only
the point x.

(14) The mediator plane Π13 of u1, u13 intersects the plane Πb under the line
L13 through v′3.

The point y1 we are constructing should be at equal distances from u1, u13,
and from u12. That |y1u1| = |y1u13| is achieved by Π13, and that these
distances equal |y1u12 is achieved by Π12.

Consider u′ ∈ a′v1 such that |a′u′| = |au1|. Moving continuously v3 to v′3
would move continuously several objects: a′ to a13; u

′ to u13; the mediator
plane Π′

1 of u1, u
′ to Π13; and the intersection line v′3v1 = Π′

1 ∩Πb to L13.

Therefore, because a13 lies between a0 and a′ (see Item (9)), L13 enters
at v′3 the triangle v′3v1v2 and consequently it intersects the edge v1v2.

(15) The mediator plane Π12 of u1, u12 intersects the plane Πb under the line
L12. Because of Item (11), L12 separates x from v1v2.

Denote by y1 the intersection point of L13 and L12.

Then, by Item (14), y1 lies inside the triangle v1v1v
′
3.
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(16) It follows that ∠u1v
′
3y1 = ∠u13v

′
3y1, hence the triangle y1v

′
3u13 folds to

the face y1v
′
3u1.

(17) Furthermore, by Item (8), the triangle v′3u13a13 folds to the face v′3u1a.

(18) Proceed similarly for u2, to obtain the points a23 ∈ O, u23, u21 and y2.
The construction is symmetric with respect to the plane axv′3 ⊥ v1v2.

(19) Notice that the triangles au1u2 and a12u12u21 are congruent, as they have
congruent sides from a resp. a12, au1 ≡ a13u13 ≡ a12u12 (by Items (8)
and (13)), and congruent angles between those sides (by the choice of a13
at Item (7) and the consecquent costruction). So |u1u2| = |u12u21|.

(20) Because we have |u12y1| = |u1y1| = |u13y1| (see Items (14)-(15)) and sim-
ilarly for u21, and by |u1u2| = |u12u21|, the isosceles trapezoids u1u2y2y1
and u12u21y2y1 are congruent.

Therefore, the pentagon a12u12y1y2u21 folds to the faces au1u2 and u1u2y2y1.

Moreover, because u1u2 ∥ v1v2, L12 is also parallel to v1v2.

(21) Because |y1u13| = |y1u1| = |y1u12|, we have ∠xy1u13 = ∠xy1u12. There-
fore, the edge y1u1 is in C(x), by the bisecting property of C(x) at y1.
By construction, we have that ∠a13u13y1 = ∠a12u12y1, hence the edge
au1 is also in C(x).

(22) Finally, notice that the resulting polyhedron is convex, because y1 and y2
lie inside the base v1v2v

′
3 (Items (15) and (18)).

(23) We next argue that the angles incident to u1 from either side—α to the
left and β to the right—are equal, proving that C(x) bisects at u1. It will
be easiest to work with angles in the source unfolding. So

α = ∠y1u13a13

β = ∠y1u12a12

Now re-interpret these angles from x: see Fig. 23:

α = ∠xu13a13 + ∠xu13y1

β = ∠xu12a12 + ∠xu12y1

By construction (Item (13))

∠xu13a13 = ∠xu12a12

and the triangles xu13y1 and xu12y1 are congruent as all their respective
edges are congruent. Therefore α = β.
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Figure 23: Overhead view. α = β.
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Fig. 24 shows the completed construction for u1 = 0.7a + 0.3v1. Note that
y1 = L13 ∩ L12 does not necessarily lie on xv1. And note that L12 is parallel
to v1v2, but L13 is not parallel to v1v3. These details may be more evident in
Fig. 25, when u1 = 0.4a+0.6v1. In a sense, this lack of “symmetry” reflects the
fact that in Case (c), the polyhedron edges left and right of u1 have different
destinations: to one side terminating on the base, to the other side terminating
at u2.

Figure 24: Final construction. u1, u2 at 70% of av1

Remark 2 Assume that, in Fig. 14(c), instead of only one blue edge u1u2, there
is a chain C of several blue (horizontal) edges between u1 and u2, separated by
red branches of C(x). Then the above construction still works: we first apply
it for the two blue edges incident to u1: a slanted one and a horizontal one;
afterward we iterate only its second part, starting with Item (12).

11.4 Case (d)

Recall that Case (d) occurs when a chain of degree-2 nodes, connected by poly-
hedron edges (blue in Fig. 14(d)), closes to itself, as in the polyhedron in Fig. 15.
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Figure 25: u1, u2 lower: 40% of av1.

For simplicity of the exposition, we start with a tetrahedron T = av1v2v3
and with the point x ∈ v1v2v3 realizing a skeletal cut locus C(x). (The case of
arbitrary pyramids is analogous.)

Our goal is to modify T by adding several nodes of degree-2 on “consecutive”
branches of C(x), consecutive in the sense that they end at consecutive leaves
vi.

Step 1. First we show how to modify T in order to obtain a degree-2 node
u1, and later (Step 2) we explain how these modifications are compatible with
modifications necessary to obtain other degree-2 nodes, on other branches of
the given tree. (Step (1) shares some similarity to Case (b), Section 11.2.)

1. We focus on the edge av1 ⊂ C(x). Denote by δ the distance on T from x
to a, which is realized by three geosegs, each crossing one lateral face.

2. Consider a point y1 on the line segment xv1, close to v1. Construct through
y1 the lines L12 ∥ v1v2 and L13 ∥ v1v3. See Fig. 26.

3. Consider a point u′
1 on the edge av1. Construct through u′

1 the lines
L′
12 ∥ v1v2 and L′

13 ∥ v1v3.

4. Truncate T with the two planes determined by L12∪L′
12, and by L13∪L′

13.
Denote by P ′ the resulting polyhedron.

Clearly, there are two geoarcs on P ′ from x to a, a “right” one and a “left”
one. Because L12, L13 are inside T , both those geoarcs are smaller than δ.

5. Now the plan is (informally) to move L′
12 rightward until the modified

right faces increase the right geoarc’s distance from x to a to match δ,
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Figure 26: P ′: T truncated by planes through (green) lines: L12 ∪ L′
12, and

L13 ∪ L′
13.

and then to move L′
13 leftward to achieve the same distance δ for the left

geoarc.

6. Consider a variable line ∆z displacing continuously by a horizontal offset
z from its initial position L′

12 toward the exterior of P ′, maintaining at all
times ∆z ∥ L12.

Denote by δz the length of the shortest path from x to a which crosses
L12 and ∆z. Clearly, δz increases continuously from some value < δ to
arbitrarily large values. Therefore, there exists a position of Dz for which
δz = δ. Denote by ∆12 this position. See Fig. 27.

7. Move continuously a variable point u along ∆12, and consider the line
∆u ∥ L13 through u.

The starting position of u is when ∆u is the supporting line of P ′ closer
to L13. The point u displaces toward the exterior of P ′, maintaining at
all times ∆z ∥ L13.

Denote by δu the length of the shortest path from x to a which crosses
L13 and ∆u. Clearly, δu increases continuously from some value < δ to
arbitrarily large values. Therefore, there exists a position of Du for which
δu = δ. Denote by ∆13 this position. Note that the right faces of P ′ are
unaltered by the movement of ∆u, so δz = δ still holds. See Fig. 28.
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Figure 27: L′
12 (green) → ∆12 (red), when δz = δ. The geoseg from x to a

across ∆12 unfolds to straight segment xaR in the base plane.
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x
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u'2
u'3
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Figure 28: u1 = ∆12 ∩∆13.
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8. Let u1 denote the intersection point of ∆12 and ∆13. Let B be the plane
containing the back face av2v3 of T .

Put {u′
2} = ∆12∩B, {u′

3} = ∆13∩B, {y′2} = L12∩B, {y′3} = ∆13∩B. See
Fig. 29. Denote by P the convex polyhedron with vertices a, u1, u

′
2, u

′
3, y1, y

′
2, y

′
3.

y1

u1

x

a

aR

aL

u'2u'3

u1R
u1L

y'2y'3

Figure 29: P = conv(a, u1, u
′
2, u

′
3, y1, y

′
2, y

′
3). Unfolded images of xa and xu1

shown dashed.

Notice that P converges to T if y1 converges to v1.

Let distQ(x, p) be the distance from x to point p on polyhedron Q. To this
stage of the argument, we have established that the point u1 is exterior
to T such that, on P :

• distP (x, a) is equal to the distance δ on T from x to a—distT (x, a)—
and

• distP (x, a) is obtained by three geosegs: one crossing ∆12, one cross-
ing ∆13, and one up the back face B, which derives from T and has
remained unaltered by all previous changes.

We thus have shown that a ∈ C(x).

9. Unfolding T and P in the base plane gives the same images aL, aR of a,
by the choice of u1. See Fig. 29. We next turn to showing that u1y1 is in
C(x), by considering the source-unfolding images u1R, u1L.

10. The planar triangles xv1aR and xv1aL are congruent (all sides equal),
hence ∠y1xaR = ∠y1xaL.

11. Therefore the triangles y1xaR and y1xaL are congruent, hence |y1aR| =
|y1aL| and ∠xy1aR = ∠xy1aL.
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12. Therefore, the triangles y1uRaR and y1uLaL are congruent (all sides equal).
So ∠aRy1uR = ∠aLy1uL.

13. From 11 and 12 we have ∠xy1uR = ∠xy1uL. Therefore, y1u1 is contained
in C(x) on P .

14. Therefore, on P , |xuR| = |xuL|. Because a ∈ C(x) on P , au1 ⊂ C(x) on
P .

This completes Step 1: both au1 and u1y1 are in C(x), and u1 is of degree-2
in C(x).

Step 2. We now discuss the compatibility of the above changes around v1/y1
with other changes.

We take {y2} = L12∩xv2, and we iterate the above construction from Item 7
onward. So we identify the point u2 ∈ ∆12 and the line ∆23.

Finally, we take {y3} = L23 ∩ xv3, and we iterate the above construction
from Item 7 onward. This identifies the point u3 ∈ ∆23.

It remains to prove that, by the above mentioned iterations, we close the
chain of base edges joining yi and horizontal edges joining ui (as in Fig. 15).

First we show that the chain of base edges joining yi closes. This follows
directly from the next two pairs of similar triangles, with the same similarity
ratio: xv1v2 and xy1y2, xv2v3 and xy2y3. Consequently, the triangles xv1v3 and
xy1y3 are also similar with the above similarity ratio.

Now we see that the chain of horizontal edges joining ui closes. This follows
from the fact that the lengths of the geosegs on the resulting polyhedron, from
x to a and crossing the respective edges, are all equal to δ.

The proof for Case (d) is thus complete.

Call the polyhedra obtained by successively applying a finite sequence of our
constructions tapered polyhedra.

12 Induction Proof

With the four degree-2 cases settled, we can prove our main theorem.

Theorem 1 Given any combinatorial tree T there is a convex polyhedron P
and a point x ∈ P such that the cut locus C(x) is entirely contained in Sk(P ),
and the combinatorics of C(x) match T .

Proof: If all nodes of T have degree-2 then it can be realized on a doubly
covered polygon, see e.g. [OV24a, Lem.2.2].

So we may assume that T has at least one node of degree ≥ 3, say a. Fix
the root of T at a; this will become the apex of the realizing polyhedron.

The proof is constructive, by induction over the discrete distance (i.e., the
number of edges) to a in T . Precisely, denote by Tk the subtree of T consisting
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of all nodes at distance at most k from a, together with all edges joining them
in T . We show by induction that all Tk can be realized as cut loci.

For k = 1, T1 has one internal node a and as many leaves as the degree of
a in T . Assume, for the simplicity of the exposition, that deg a = 3. (The case
k > 3 can be treated analogously. See Fig. 31 for an abstract example).

We realize T1 on a regular tetrahedron P1, with a the top apex and x the
center of the base v1v2v3.

Assume now that we have realized Tk as a cut locus on a tapered polyhedron
Pk with a the top apex and x the center of the base v1v2vm, wherem is number of
leaves of Tk. By the induction hypothesis, Pk is obtained from P1 by successive
modifications detailed by our case constructions.

We must manage the interactions between the newly added edges to create
degree-2 and degree 3 nodes. Therefore, we start with the creation of degree-2
nodes. We illustrate some cases in Fig. 30.

(1) If all branches have nodes of level k, and at least one of them is of degree-
2, then we start by applying Case (d). (This occurs with nodes 2, 3, 4
in Fig. 30(a), when Case (d) is applied). This will create the necessary
degree-2 nodes; moreover, all nodes to become of degree ≥ 3 are now
degree-2 nodes. After that we apply other necessary changes, to transform
some of the nodes of degree 2 into nodes of higher degree, by appropriate
truncations described in Section 9.

(2) Otherwise, if at least one branch has no node of level k and there are
nodes of degree-2, we apply Cases (a)-(c) whichever ones are appropriate
(This occurs with nodes 5, 6 in Fig. 30(a), when Case (a) is applied). And
finally,

(3) If all branches have nodes of level k and degree ≥ 3 we apply the respective
construction.

This completes the induction proof and establishes Theorem 1.

We also illustrate the induction steps in a second example, shown in Fig. 31.
The steps in this example are as follows:

(a) The introduction of nodes 2 and 3 creates an instance of Case (c), because
node 2 is degree-2.

(b) Node 4 creates an instance of the construction in Section 9.

(c) Node 5 creates an instance of Case (b).

(d) Nodes 6 and 7 constitute an instance of Case (c).

As our goal has been proving Theorem 1, we have focussed on the existence
of a realizing polyhedron P for any given tree T . We have not addressed the
algorithmic question of actually constructing P from T . However, because all
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Figure 30: (a) Tree T . Blue edges are non-C(x) polyhedron edges. Case (d) is
applied to nodes 1, 2, 3, 4. Case (a) is applied to nodes 5, 6. (b) The first and
last induction steps.
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Figure 31: Example of induction construction. Two nodes 2, 3 are added in the
transition from T1 to T2, degree-2 and degree-4 respectively. Four nodes are
added in the transition from T2 to T3: 4 of degree-3 and 5, 6, 7 of degree-2.
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of our constructions are explicit (and have been individually implemented), the
proof in some sense already constitutes an algorithm. Without analyzing it
carefully, we expect that the complexity of the algorithm is proportional to the
number of nodes in T , with some data-structure overhead. We leave establishing
this formally to future work.

13 The Class of Tapered Polyhedra

As we noted in the Introduction, a polyhedron with a skeletal cut locus leads
directly to an edge-unfolding to a net (a nonoverlapping polygon in the plane).
This is because the source unfolding from x, which is known to be a net, is
achieved by cutting the cut locus C(x), which maps to the outer boundary of
the unfolding. Despite considerable effort by researchers to resolve Dürer’s prob-
lem [O’R13]—whether or not every convex polyhedron has an edge-unfolding to
a net—there are only a few infinite classes of polyhedra known to edge-unfold
to a net. One class is the domes, polyhedra with a distinguished base face B
such that every other face shares an edge with B [DO07, Sec. 25.5.2]. A slight
extension to g-domes (generalized domes) allows a face to share just a vertex
with B [OV24a, Sec. 3.1].

The main theorem of this paper leads to what we call tapered polyhedra, a
class that properly includes some g-domes (and therefore domes). It is therefore
of interest to list a few geometric characteristics of tapered polyhedra:

• Every non-base vertex projects orthogonally to be strictly inside the base.10

• Case (a) in Fig. 14 already goes beyond domes, to g-domes: Two triangle
faces share just a vertex with the base.

• A tempered polyhedron is partitioned into zero or more “level rings” of
nodes deriving from Case (d), connected in a cycle of vertices, as (for
example) in Fig. 15. These rings take us beyond domes and g-domes,
and so the tapered polyhedra constitute a new class of polyhedra with
edge-unfoldings to nets.

We do not yet know a complete geometric characterization of tapered polyhedra.
We mention here that the order of assembling the cases to prove (by induc-

tion) Theorem 1 may differ. What we proposed in Section 12 is just one viable
way, among perhaps several others. And the order of assembling the cases may
result in different subclasses of polyhedra, within the class of tapered polyhedra.

We conclude by repeating this central open problem from Section 1.

Open Problem 4 Characterize all the polyhedra P that support a skeletal cut
locus, i.e., characterize the cut locus amenable polyhedra.

10Basically, this was our choice to simplify the reasoning; see for example Section 9 and
Fig. 3. Avoiding this choice would lead to technical difficulties we have not addressed.
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