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Abstract22

We study the possible moves and reachable space by rolling a 3D convex polyhedron on a 2D periodic23

tessellation in the xy-plane, where at every step a face of the polyhedron must coincide exactly with24

a tile of the tessellation it rests upon. We topple the polyhedron around one of the edges of the25

grounded face toward a neighboring face until it hits the xy-plane on a neighboring tile, only if the26

new face and the new tile also coincide. We observe the space that can be reached by succession of27

such rolling moves. If the whole plane can be reached, we call the polyhedron a plane roller for28

the given tessellation. We further classify polyhedra that only reach a limited strip or a bounded29

area on given tessellations as band rollers and bounded rollers respectively. We present a30

polynomial-time algorithm to determine the set of tiles reachable from a given starting position,31

which in particular determines the roller type of the given polyhedron and periodic tessellation.32

Using this algorithm, we compute the reachability for every regular-faced convex polyhedron on any33

regular-tiled (≤ 4)-uniform tessellation. Finally, we suggest how to employ these findings in puzzle34

games.35
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5:2 Rolling Polyhedra on Tessellations

1
43

1 Introduction44

When it comes to rolling a polyhedron, the cube has a monopoly in term of shape representation.45

Dice rolling puzzles feature a cube rolling around on the square grid. The goal is often to46

match a given face with a given tile. They were popularized by Martin Gardner [g-mgsb-71,47

g-mc-77, g-tt-88], but have seldom been generalized to other polyhedra on other grids, even48

though some pairings were known (see Figure 3). For perspective, rolling cubes on square49

grids are featured in a variety of computer games, such as Korodice (Gameboy, 1990), Super50

Mario 64 (Nintendo 64, 1996), Devil Dice (Playstation, 1998), Legacy of Kain: Soul Reaver51

(Playstation, 1999), Legend of Zelda Oracle of Ages (Gameboy Color, 2001), Bombastic52

(Playstation 2, 2002), Legend of Zelda Spirit Tracks (Nintendo DS, 2009), Rubek (Windows,53

2016), Roll The Box (Mobile, 2021), and The Last Cube (Windows, 2022); see Figure 1.54

HyperRogue (Windows, 2015) on the other hand involves hexagonal and heptagonal tiles in a55

hyperbolic space, and in its 2021 update, rolling tetrahedron, octahedron, or icosahedron56

dice on a triangular lattice. With various constraints, these puzzles can be NP-complete57

[buchin2007rolling, j-dice]; when rolling more shapes, they can be PSPACE-complete58

[buchin2012rolling, holzer2012complexity].59

We formalize the concept of rolling any convex regular-faced 3D polyhedron P on any60

regular-tiled periodic tessellation T , which we imagine as lying in the (horizontal) xy-plane.61

Recall that a regular-faced convex polyhedron has regular polygons as faces, and that a62

plane tessellation is a partition of the plane into a collection T of polygons called tiles63

[Grunbaum-1987]. A regular-tiled tessellation has regular polygons as tiles. When a tile64

of T is congruent to a face of P , we call them compatible.65

To start, we place the polyhedron P on the tessellation so that one of its faces rests (i.e.,66

coincides exactly) with a compatible tile. In a rolling step, we rotate the polyhedron about67

one of the edges of its resting face, until another face rests on the tessellation. For the roll to68

be valid, we insist that, at the end of the motion, the adjacent face of P across the rolling69

edge rests on another (adjacent) compatible tile. See Figure 4 for an example.70

Valid sequences of rolls form paths in the rolling graph of possible configurations. If the71

rolling graph contains a connected component that includes every tile of T , then we call the72

polyhedron a plane roller for that tessellation and starting position, as it can eventually roll73

to cover the entire plane.74

1 Screenshot from https://polyhedra.veille-attitude.com/, a 3D rolling visualisation program made
on the subject of this article by Rachel Aouad Albashara, Luca Insisa, Quentin Magron, Dan Ngongo,
Dang Phi L Pham and Simon Yousfi for the ULB Comupter Sciences Bachelor Printemps des Sciences
showcase.

https://polyhedra.veille-attitude.com/
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(a) Korodice (1990) (b) Zelda Oracle of
Ages (2001)

(c) Devil Dice (1998)
[screenshot: thebobble] (d) Rubek (2016) (e) HyperRogue (2015) Dice Reserve update

(2021)

Figure 1 Cube and dice-rolling puzzles in video games.

(a) Pyramid with
its net made of
regular polygons.

(b) The snub squares tiling
made of regular triangles and
squares.

(c) Pyramid sitting on a
compatible (congruent) tile
on the tiling.

Figure 2 A polyhedron and a compatible tessellation are required for rolling.

1.1 Our results.75

In this paper, we develop a polynomial-time algorithm to identify if a polyhedron with a76

periodic tessellation on a starting location is a plane roller. We essentially take advantage of77

Figure 3 Tiling/polyhedron pairs
considered suitable for games by Buchin et
al. [buchin2007rolling]

Figure 4 Valid and invalid rolls.
Invalid rolls are forbidden moves.

FUN 2022
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(a) hexagonal antiprism on (36; 34x6)2 (b) J87 on (36; 33x42)2

Figure 5 Examples of reachable area patterns generated by plane rollers (full cover).

(a) snub cube on (32x4x3x4) (b) snub dodecahedron on (36; 34x6)2

Figure 6 Examples of reachable area patterns generated by hollow-plane rollers which leave
holes in the plane.

the periodicity of the tessellations, coupled with the structure of the polyhedron, to prove78

that the resulting rolling graph also has a periodic structure that we can exploit.79

We then apply this algorithm to completely categorize a natural finite set of interesting80

special cases; see Figure 11. For polyhedra, we consider the regular-faced convex polyhedra:81

the 5 Platonic solids [euclid300BCE_elements], 13 Archimedean solids [field1997rediscovering],82

92 Johnson solids and their chiral variations [grunbaum1965faces, johnson1966convex,83

zalgaller1967convex], and n-prisms and n-antiprisms where n ∈ {3, 4, 6, 8, 10, 12}, as84

higher-sided polygons cannot be used to tile the plane [Grunbaum-1987]. For plane85

tessellations, we consider all k-uniform tilings for k ≥ 4, as listed in [chavey1989tilingscatalog]86

and defined below. Including chiral variations, this makes 129 polyhedron nets to test on 13187

tilings. For each case, we characterize the polyhedron rolling on the tessellation as plane88

rollers which cover the whole plane, hollow-plane rollers which cover a plane while leaving89

holes, band rollers which cover an infinite band, and bounded rollers which are confined90

to a finite area; see Figures 5,6,7,8 for several examples and Table 1 for a condensed view of91

the results. The most important result is the list of 145 plane roller pairs that we have found,92

which have uses in rolling puzzle games as alternatives to the classical cube-and-square-tiling93

pairing.94

https://en.wikipedia.org/wiki/Hexagonal_antiprism
https://akirabaes.com/polyrolly/resulttable/t/2u02.png
https://en.wikipedia.org/wiki/Johnson_solid?solid=J87#Others
https://akirabaes.com/polyrolly/resulttable/t/2u04.png
https://en.wikipedia.org/wiki/Snub_cube
https://akirabaes.com/polyrolly/resulttable/t/1u06.png
https://en.wikipedia.org/wiki/Snub_dodecahedron
https://akirabaes.com/polyrolly/resulttable/t/2u02.png
https://drive.google.com/file/d/1ZPywQJwmHNHCy99JFQqg5gZLZ5fKTDR5/view?usp=sharing
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(a) J90 on (33x42; 32x4x3x4)1 (b) snub cube on (33x42; 32x4x3x4)2

Figure 7 Examples of reachable areas patterns generated by band rollers which is stuck in an
infinite band extending from the starting position.

(a) J44 on (33x42; 32x4x3x4)1 (b) J22 on (36; 34x6)2

Figure 8 Examples of reachable area patterns generated by bounded rollers where the
polyhedron is stuck in its starting area.

1.2 Definitions95

As we require descriptions of regular-tiled tessellations to work with, recall that k-uniform96

tilings can be defined as follows. A tiling whose polygons are aligned edge-to-edge can be97

seen as a primary graph whose vertices are the points where tile corners join, and whose98

edges are the shared edges between pairs of tiles. A vertex type is the clockwise cyclic order99

of type of tiles (polygon shape) that surround a vertex [chavey1989tilingscatalog]. A100

tiling that contains k orbits of vertex types that transitively describe all of its tiles through101

k symmetry groups is a k-isogonal tiling. If a k-isogonal tiling uses regular polygons as tiles,102

then it is called k-uniform. Vertex types of k-uniform tessellations can be written as the103

list of the number of sides of the regular polygons of the tiles surrounding the vertices. See104

Figure 9. It is thus conventional to simply name unique k-uniform tilings by the list of their105

vertex types, and overlapping names are differentiated through a subscript.106

Working with vertex types can be unwieldy, so we also describe the tilings as explorable107

graphs. All k-uniform tessellations are periodic on their vertices and on their faces, according108

to two translational symmetries and a fundamental domain called a “supertile.” See Figure 10109

for an example. A k-isogonal tiling is also n-isohedral for some n ≥ k [chavey1989tilingscatalog]110

FUN 2022

https://en.wikipedia.org/wiki/Johnson_solid?solid=J90#Others
https://akirabaes.com/polyrolly/resulttable/t/2u09.png
https://en.wikipedia.org/wiki/Snub_cube
https://akirabaes.com/polyrolly/resulttable/t/2u10.png
https://en.wikipedia.org/wiki/Johnson_solid?solid=J44#Gyroelongated_bicupolae,_cupola-rotundas,_and_birotundas
https://akirabaes.com/polyrolly/resulttable/t/2u09.png
https://en.wikipedia.org/wiki/Johnson_solid?solid=J22#Elongated_and_gyroelongated_cupolae_and_rotundas
https://akirabaes.com/polyrolly/resulttable/t/2u02.png
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(a) (32 ∗ 4 ∗ 3 ∗ 4)
1-uniform tiling
(archimedean)

(b) (36; 32 ∗ 4 ∗ 3 ∗ 4)
2-uniform tiling

(c) (36; 34 ∗ 6; 3 ∗ 6 ∗ 3 ∗ 6)
3-uniform tiling

Figure 9 Examples of the naming convention of uniform tilings in the standardized “isogonal
vertex type" notation, each point belonging to an orbit describing vertex types around it.

Figure 10 The same tiling as Figure 9b (36; 32 ∗ 4 ∗ 3 ∗ 4) in its supertile tiling representation.

meaning that, in the dual graph of the tiling whose nodes are tiles and edges define neighbors,111

there are n orbits of tiles that transitively describe all of its tiles through k symmetry112

groups [chavey1989tilingscatalog]. This means our k-uniform tessellations are formed by113

n ≥ k transitive classes of translations, rotations, and mirror symmetries that can tile the114

plane by copies of their starting tile, called prototiles. We can merge the prototile with its115

mirror symmetry if there is one, and merge with all of its rotations if there is rotational116

symmetry. (In a k-uniform tessellation, there are at most 12-wise rotations of 30◦ because117

of the limitations of regular polygons.) The result is a parallelogon supertile that has two118

translation symmetries (only) defining the tessellation [Grunbaum-1987]. In our case,119

it was quicker to describe the supertiles of each tiling by hand in a homemade periodic120

tessellation drawing tool, as we had no automated algorithm on hand to convert vertex-type121

orbits (isohedral, edges) notations to dual-graph supertile (isogonal, tiles) notations, but we122

had access to a list of n-uniform tessellation drawings on which we applied the above method.123

This is why we limited ourselves to (≤ 4)-uniform tilings, which still cover 131 of the most124

commonly found periodic tilings.125

1.3 Related work126

Rolling a polyhedron to cover the space in some form has been explored in [chitour1997rolling],127

in term of reachability in space in [bicchi2004reachability]. We are specifically interested128

in work that used the faces of the polyhedron as a base for a tessellation. Akiyama129

[akiyama2007tile] defined a frame-stamper as a regular polyhedron that covers the whole130

plane with a tiling by rolling in arbitrary directions stamping its face on the plane, and a131

tile-maker as a polyhedron whose net developments all generate a tiling pattern. A more132

relaxed definition in [akiyama2010determination] determines all tessellation polyhedra —133

regular-faced convex polyhedra that have at least one net development that can be used to134

tile the plane.135

136
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Polyhedrons that Roll on a Plane on a given tessellation: (42 results for 145 pairings)
tetrahedron with (36) – cube with (44) – octahedron with (36) – icosahedron with (36)
– truncated tetrahedron with (36; 32.62) – cuboctahedron with (32.4.3.4), (36; 32.4.3.4),
(33.42; 32.4.3.4)1, (36; 32.4.3.4; 32.4.3.4) – j1 with (32.4.3.4), (36; 32.4.3.4), (33.42; 32.4.3.4)1,
(36; 33.42; 32.4.3.4), (36; 32.4.3.4; 32.4.3.4) – j3 with (36; 32.4.3.3.4; 3.42.6), (36; 32.4.3.4; 3.42.6; 3.4.6.4)
– j8 with (44), (36; 33.42; 44)1, (36; 33.42; 44)3, (36; 33.42; 32.4.3.4; 44) – j10 with (36), (36; 33.42)1,
(36; 33.42)2, (36; 32.4.3.4), (36; 33.42; 32.4.3.4), (36; 36; 33.42)1, (36; 36; 33.42)2, (36; 33.42; 32.4.3.4; 44) –
j11 with (36) – j12 with (36) – j13 with (36) – j14 with (36; 33.42)1 – j15 with (36; 33.42)1 – j16 with
(36; 33.42)1 – j17 with (36) – j22 with (36; 34.6)1, (36; 34.6; 3.6.3.6)2, (36; 34.6; 3.6.3.6)3, (36; 36; 34.62)
– j26 with (32.4.3.4), (33.42; 32.4.3.4)2, (36; 32.4.3.4; 32.4.3.4) – j27 with (33.42), (33.42; 32.4.3.4)1,
(36; 33.42; 32.4.3.4), (33.42; 32.4.3.4; 32.4.3.4) – j28 with (33.42), (33.42; 44; 44)1 – j29 with
(32.4.3.4), (36; 32.4.3.4; 32.4.3.4) – j30 with (33.42) – j31 with (32.4.3.4), (36; 32.4.3.4; 32.4.3.4)
– j37 with (44) – j44 with (36; 32.4.3.4; 32.4.3.4), (33.42; 32.4.3.4; 32.4.3.4) – j44 chiral with
(36; 32.4.3.4; 32.4.3.4) – j50 with (36), (36; 33.42)1, (36; 33.42)2, (36; 32.4.3.4), (36; 36; 33.42)1,
(36; 36; 33.42)2, (36; 33.42; 32.4.3.4; 44) – j51 with (36) – j54 with (3.4.6.4) – j56 with (3.4.6.4) – j62
with (36) – j65 with (3.6.3.6) – j84 with (36) – j85 with (36), (36; 33.42)1, (36; 33.42)2, (36; 32.4.3.4),
(36; 36; 33.42)1, (36; 36; 33.42)2, (36; 33.42; 33.42)1, (36; 33.42; 33.42)2, (36; 33.42; 32.4.3.4; 44) –
j86 with (36), (36; 33.42)1, (36; 33.42)2, (36; 32.4.3.4), (36; 33.42; 32.4.3.4), (36; 33.42; 44)1,
(36; 33.42; 44)2, (36; 36; 33.42)1, (36; 36; 33.42)2, (36; 33.42; 32.4.3.4; 44) – j87 with (36), (36; 33.42)1,
(36; 33.42)2, (36; 32.4.3.4), (36; 36; 33.42)1, (36; 36; 33.42)2, (36; 33.42; 32.4.3.4; 44) – j88 with
(36), (36; 33.42)1, (36; 33.42)2, (36; 33.42; 32.4.3.4), (36; 33.42; 44)1, (36; 33.42; 44)2, (36; 36; 33.42)1,
(36; 36; 33.42)2, (36; 33.42; 33.42)1, (36; 33.42; 33.42)2 – j89 with (36), (36; 33.42)1, (36; 33.42)2,
(36; 32.4.3.4), (36; 33.42; 32.4.3.4), (36; 33.42; 44)3, (36; 33.42; 44)4, (36; 36; 33.42)1, (36; 36; 33.42)2,
(36; 33.42; 33.42)1, (36; 33.42; 33.42)2 – j90 with (36), (36; 33.42)1, (36; 33.42)2, (36; 32.4.3.4),
(36; 33.42; 32.4.3.4), (36; 33.42; 44)1, (36; 33.42; 44)2, (36; 36; 33.42)1, (36; 36; 33.42)2, (36; 33.42; 33.42)1,
(36; 33.42; 33.42)2, (36; 32.4.3.4; 32.4.3.4), (36; 33.42; 32.4.3.4; 44) – square antiprism with (33.42)
– hexagonal antiprism with (34.6), (36; 34.6)1, (36; 34.6)2, (34.6; 32.62), (36; 34.6; 32.62)2,
(36; 34.6; 3.6.3.6)1, (36; 34.6; 3.6.3.6)2, (36; 34.6; 3.6.3.6)3, (36; 36; 34.62), (36; 34.6; 34.6),
(34.6; 34.6; 3.6.3.6)1, (34.6; 34.6; 3.6.3.6)2, (36; 34.6; 32.62; 3.6.3.6), (34.6; 32.62; 32.62; 3.6.3.6)

Polyhedrons that Roll on a Hollow plane on a given tessellation: (76 results for 588 pairings)
tetrahedron (x7) - octahedron (x7) - icosahedron (x7) - truncated tetrahedron (x12) -
cuboctahedron (x4) - truncated cube - truncated octahedron (x10) - rhombicuboctahedron (x8) -
truncated cuboctahedron (x6) - snub cube (x13) - snub cube chiral (x12) - truncated icosahedron (x4)
- rhombicosidodecahedron (x4) - truncated icosidodecahedron (x5) - snub dodecahedron (x5) -
snub dodecahedron chiral (x4) - j1 (x6) - j3 (x8) - j7 (x5) - j8 - j10 (x15) - j11 (x6) - j12 (x7) -
j13 (x7) - j14 (x15) - j15 (x15) - j16 (x15) - j17 (x7) - j18 (x7) - j19 (x4) - j22 - j26 (x2) - j27 (x13)
- j28 (x8) - j29 (x2) - j30 (x6) - j31 - j35 (x11) - j37 (x3) - j38 (x7) - j44 (x6) - j44 chiral (x5)
- j45 (x2) - j45 chiral (x2) - j49 (x8) - j50 (x16) - j51 (x7) - j53 (x6) - j54 (x14) - j55 (x10) -
j56 (x16) - j57 (x14) - j62 (x4) - j65 (x3) - j66 - j72 (x4) - j74 (x10) - j75 (x6) - j76 (x4) - j78 (x4) -
j79 (x6) - j81 (x4) - j84 (x7) - j85 (x16) - j86 (x16) - j87 (x18) - j88 (x18) - j89 (x20) - j90 (x16)
- triangular prism (x12) - hexagonal prism (x18) - octagonal prism - dodecagonal prism (x4) -
square antiprism (x5) - hexagonal antiprism (x2) - dodecagonal antiprism (x2)

Polyhedrons that Roll on a Band on a given tessellation: (94 results for 2623 pairings)

FUN 2022
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https://en.wikipedia.org/wiki/Johnson_solid?solid=J57#Augmented_prisms
https://en.wikipedia.org/wiki/Johnson_solid?solid=J62#Diminished_and_augmented_diminished_icosahedra
https://en.wikipedia.org/wiki/Johnson_solid?solid=J65#Augmented_Archimedean_solids
https://en.wikipedia.org/wiki/Johnson_solid?solid=J66#Augmented_Archimedean_solids
https://en.wikipedia.org/wiki/Johnson_solid?solid=J72#Gyrate_and_diminished_rhombicosidodecahedra
https://en.wikipedia.org/wiki/Johnson_solid?solid=J74#Gyrate_and_diminished_rhombicosidodecahedra
https://en.wikipedia.org/wiki/Johnson_solid?solid=J75#Gyrate_and_diminished_rhombicosidodecahedra
https://en.wikipedia.org/wiki/Johnson_solid?solid=J76#Gyrate_and_diminished_rhombicosidodecahedra
https://en.wikipedia.org/wiki/Johnson_solid?solid=J78#Gyrate_and_diminished_rhombicosidodecahedra
https://en.wikipedia.org/wiki/Johnson_solid?solid=J79#Gyrate_and_diminished_rhombicosidodecahedra
https://en.wikipedia.org/wiki/Johnson_solid?solid=J81#Gyrate_and_diminished_rhombicosidodecahedra
https://en.wikipedia.org/wiki/Johnson_solid?solid=J84#Snub_antiprisms
https://en.wikipedia.org/wiki/Johnson_solid?solid=J85#Snub_antiprisms
https://en.wikipedia.org/wiki/Johnson_solid?solid=J86#Others
https://en.wikipedia.org/wiki/Johnson_solid?solid=J87#Others
https://en.wikipedia.org/wiki/Johnson_solid?solid=J88#Others
https://en.wikipedia.org/wiki/Johnson_solid?solid=J89#Others
https://en.wikipedia.org/wiki/Johnson_solid?solid=J90#Others
https://en.wikipedia.org/wiki/triangular_prism
https://en.wikipedia.org/wiki/hexagonal_prism
https://en.wikipedia.org/wiki/octagonal_prism
https://en.wikipedia.org/wiki/dodecagonal_prism
https://en.wikipedia.org/wiki/square_antiprism
https://en.wikipedia.org/wiki/hexagonal_antiprism
https://en.wikipedia.org/wiki/dodecagonal_antiprism
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tetrahedron (x35) - cube (x41) - octahedron (x35) - icosahedron (x35) - truncated tetrahedron (x34)
- cuboctahedron (x3) - truncated octahedron (x15) - rhombicuboctahedron (x43) - snub cube (x7)
- snub cube chiral (x8) - truncated icosahedron (x13) - rhombicosidodecahedron (x2) -
snub dodecahedron (x7) - snub dodecahedron chiral (x7) - j1 (x7) - j3 (x2) - j7 (x43) - j8 (x39) -
j9 (x42) - j10 (x29) - j11 (x31) - j12 (x35) - j13 (x35) - j14 (x42) - j15 (x42) - j16 (x42) - j17 (x35) -
j18 (x43) - j19 (x41) - j20 (x42) - j21 (x42) - j22 (x30) - j23 (x30) - j24 (x30) - j25 (x30) - j26 (x7) -
j27 (x17) - j28 (x46) - j29 (x4) - j30 (x15) - j31 (x3) - j35 (x44) - j36 (x49) - j37 (x46) - j38 (x44) -
j39 (x47) - j40 (x42) - j41 (x42) - j42 (x42) - j43 (x42) - j44 (x32) - j44 chiral (x33) - j45 (x31) -
j45 chiral (x32) - j46 (x32) - j46 chiral (x32) - j47 (x30) - j47 chiral (x30) - j48 (x30) - j48 chiral (x30)
- j49 (x20) - j50 (x27) - j51 (x35) - j54 (x8) - j55 (x10) - j56 (x15) - j57 (x11) - j62 (x17) - j65 (x25) -
j67 - j72 - j73 (x5) - j76 - j77 (x5) - j80 (x5) - j84 (x35) - j85 (x32) - j86 (x27) - j87 (x28) - j88 (x23)
- j89 (x21) - j90 (x25) - triangular prism (x45) - pentagonal prism (x42) - hexagonal prism (x36) -
octagonal prism (x42) - decagonal prism (x42) - dodecagonal prism (x43) - square antiprism (x37)
- pentagonal antiprism (x30) - hexagonal antiprism (x40) - octagonal antiprism (x30) -
decagonal antiprism (x30) - dodecagonal antiprism (x30)

Table 1 Polyhedrons found in each Roller classification with impacted Tessellations pairing count.

Figure 11 Screenshot of the rolling pair reachable areas classification clickable web-table available
at https://akirabaes.com/polyrolly/resulttable/ in full.

2 Classification algorithm137

General outline:138

We describe a polyhedron as a dual graph (net of faces). We describe a tiling as an infinite139

dual graph (tiles). We focus on periodic tilings that can be described as a repeated structure140

(supertile) and a set of two coordinates. We create a looping multigraph from the supertile,141

and we keep track of (i,j) the supertile coordinates when leaving its boundaries. This allows142

us to more easily explore the plane. We join the polyhedron’s net graph and the tessellation’s143

multigraph while keeping track of their relative orientation. We describe a state (f, t, o)144

of the rolling graph as a face in the polyhedron’s graph, a tile in the supertile graph and145

their relative orientation. A position in the rolling graph is < (i, j), (f, t, o) >. We explore a146
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(a) The periodic tiling and the
supertile described on it.

(b) The supertile
graph.

(c) Skewed
coordinates system
over supertiles.

Figure 12 Infinite tiling to supertile multigraph

Figure 13 Tiling where a
multigraph is necessary.
See tiles 3 and 2.

limited amount of steps away in a connected component of the rolling graph to find repeated147

states of the connected component through the pigeonhole principle. From this as a basis,148

we find the linearly independent symmetry vectors of the periodic structure of the connected149

component over the rolling graph.150

We can determine that the polyhedron/tessellation pairing is not a plane roller if we151

find only zero or one linearly independent symmetry vectors. If the reachable area has two152

symmetry vectors, we can determine that it is a periodic graph.153

In a second step, we can describe the rolling graph’s connected component’s graph as a154

repeated structure (representative area) framed by the symmetry vectors to create a smaller155

looping rolling graph. We exhaustively explore the tiles of this closed graph to prove whether156

or not every tile in the tessellation can be reached by rolling.157

2.1 Tilings158

There is an uncountable infinity of tilings, even when using only unit square tiles. We159

restrict our attention to periodic tilings. These have two linearly independent translational160

symmetries (say, ~a and ~b) and can be described by a fundamental domain for the action of161

these symmetries. The fundamental domain is a connected subset of the tiles (one for each162

orbit), which glued together form a supertile S. We denote by |S| the number of tiles in163

the supertile. The supertile (and the tiles that compose it) can be repeated by the action164

of the two translations to obtain the original tiling. As S tiles the plane isohedrally by165

translation, its boundary can be decomposed into six pieces, denoted by A, B, C, Ā, B̄, C̄,166

counterclockwise, where Ā, B̄, and C̄ are translations of A by the action of ~a, B by the167

action of ~b, and C by the action of ~b− ~a, respectively.168

A copy of the supertile can be identified by its integer coordinates in the basis formed by169

the translation vectors ~a and ~b. That is, the copy (i, j) corresponds to the application of the170

translation i~a + j~b to S. An individual tile t of the tiling T can then be uniquely identified171

by 〈(i, j), s〉: the coordinates (i, j) of the copy of S it is located in and its representative tile172

s within S.173

A tiling T can also be represented by its (infinite) dual graph2 GT , where each tile is174

a vertex of GT , and two vertices are connected by an edge if the two corresponding tiles175

are adjacent. When T is a periodic tiling, it is represented by the dual multigraph GS of176

its supertile S. For tiles touching the boundary of S, we connect them to the tiles to which177

they are adjacent in the other copy or copies of the supertile, and mark the dual edges by178

A,B,C,Ā,B̄, or C̄ depending on the portion of the boundary they cross. The graph GS is the179

2 This can be a multigraph, with parallel edges when two tiles are adjacent on more than one edge.
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Figure 14 Dual graph of a
pyramid with information about the
relative orientations of its faces.

X ( )

Figure 15 The rolling graph is composed of
< (i, j), (tile, face, orientation) >

quotient of GT by the action of the symmetries ~a and ~b (also denoted GT /{~a,~b}). The graph180

GS can be used to navigate the tiling T or the graph GT by updating the representation181

〈(i, j), s〉 when moving to an adjacent tile. The tile s is updated to the adjacent tile s′ in182

GS , and the coordinates (i, j) need to be updated when crossing a boundary of the supertile183

S, using the edge marks.184

2.2 Rolling graphs185

Let P be a convex polyhedron in R3. We denote by |P | the number of faces of P . The face186

structure of P can be represented by its dual graph GP where each face of P is a vertex in187

GP and two vertices are connected by an edge if the two corresponding faces of P share an188

edge (Figure 14).189

For a face f ∈ P or a tile t ∈ T , denote by |f | and |t| its number of edges. We number190

the edges of every face f of polyhedron P counter-clockwise starting from one arbitrary edge191

that will serve as the reference edge. We do the same for every tile t of the supertile S (and192

the corresponding tessellation T ), with one edge being the reference edge, and the next edges193

being numbered in clockwise order. A face f ∈ P is compatible with t ∈ T in the orientation194

o if |f | = |t| and the counter-clockwise sequence of edge lengths and angles in f starting195

at edge number o matches exactly the clockwise sequence of edge lengths and angles in t196

starting from the reference edge. This means that f can be placed in the plane with edge197

number o overlapping with the reference edge of t so that the two polygons overlap perfectly.198

We say polyhedron P sits on the tile t in the tessellation T with its face f at orientation199

o if f and t completely overlap and the edge number o of f overlaps the reference edge of t.200

The position of P is then represented by the tuple 〈t, f, o〉. When T is a periodic tiling with201

supertile S, and t = 〈(i, j), s〉 for s ∈ S, then this position can be written as 〈(i, j), s, f, o〉.202

The state associated with this position is the tuple 〈s, f, o〉.203

The rolling graph GP,T for P and T is an infinite graph whose vertex set is the set of all204

possible positions 〈t, f, o〉, and two nodes are connected by an edge if there is a valid roll205

between them. The positions adjacent to 〈t, f, o〉 can be easily explored by using the dual206

graphs of P and T . We write 〈t, f, o〉 ∼ 〈t′, f ′, o′〉 if the two positions are connected by a207

path in the rolling graph. In that case, we say that the two positions are reachable from one208

another.209

2.3 Symmetries of rolling graphs210

In this section, we show that any large connected subgraph of the rolling graph GP,T has a211

translational symmetry. We start by bounding the number N of possible states 〈s, f, o〉 of a212
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Figure 16 By finding the symmetry vectors in a connected component, we can describe a compact
representation of the connected component’s periodic graph (over the rolling graph).

rolling graph.213

N =
∑
s∈S

∑
f∈P

(number of compatible orientations between f and s)214

≤
∑
s∈S

∑
f∈P

|f | ≤ 6|S||P |.215

216

Note that the rolling graph in itself has the same translational symmetries as the tiling217

T , because the validity conditions are the same in both positions.218

I Fact 1. If 〈(i, j), s0, f0, o0〉 has a valid roll to 〈(i+i1, j+j1), s1, f1, o1〉, then 〈(i′, j′), s0, f0, o0〉219

has a valid roll to 〈(i′ + i0, j′ + j0), s1, f1, o1〉 for all i′, j′ ∈ Z.220

This however does not mean that the same symmetries apply to the connected components221

of the rolling graph, that is, 〈(i, j), s0, f0, o0〉 and 〈(i′, j′), s0, f0, o0〉 might not be reachable,222

even if the connected components are infinite. However, the following lemma shows that if223

two distinct reachable positions have the same state, then we obtain a translational symmetry224

on their connected components in the rolling graph.225

I Lemma 1. If 〈(i, j), s, f, o〉 ∼ 〈(i + u, j + v), s, f, o〉 then226

∀〈(i′, j′), s′, f ′, o′〉 ∼ 〈(i, j), s, f, o〉, 〈(i′, j′), s′f ′, o′〉 ∼ 〈(i′ + u, j′ + v), s′, f ′, o′〉.227

That is, u~a + v~b defines a translational symmetry on the connected component of228

〈(i, j), s, f, o〉 in the rolling graph.229

Proof. Write the path from 〈(i′, j′), s′, f ′, o′〉 to 〈(i, j), s, f, o〉 in the rolling graph as 〈(i, j), s, f, o〉 =230

〈(i + i0, j + j0), s0, f0, o0〉, . . . , 〈(i + ik, j + jk), sk, fk, ok〉 = 〈(i′, j′), s′, f ′, o′〉. Since, by Fact 1,231

〈(i + u + i`, j + u + j`), s`, f`, o`〉 to 〈(i + u + i`+1, j + u + j`+1), s`+1, f`+1, o`+1〉 is a valid232

roll, we can construct the path 〈(i′, j′), s′, f ′, o′〉 = 〈(i + ik, j + jk), sk, fk, ok〉, . . . , 〈(i + i0, j +233

j0), s0, f0, o0〉 = 〈(i, j), s, f, o〉 ∼ 〈(i+u, j+v), s, f, o〉 = 〈(i+u+i0, j+v+j0), s0, f0, o0〉, . . . 〈(i+234

u + ik, j + v + jk), sk, fk, ok〉 = 〈(i′ + u, j′ + v), f ′, o′〉 J235

I Lemma 2. There is an algorithm which, in O(|P ||S|) time either finds a base of the236

translational symmetries of the connected component of the rolling graph containing a given237

position 〈(i, j), s, f, o〉, or decides that the connected component is of finite size.238

Proof. Run a depth first search on the rolling graph starting from 〈(i, j), s, f, o〉, for N steps.239

If the depth first search stops, then the connected component containing 〈(i, j), s, f, o〉 in240
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the rolling graph is of finite size. Otherwise, by the pigeonhole principle, we have found two241

positions with the same state. By Lemma 1, we obtain a translational symmetry u~a + v~b of242

the connected component.243

Next, factor the rolling graph by this symmetry vector, that is, GP,T /{u~a + v~b} identifies244

any pair of positions 〈(i, j), s, f, o〉 and 〈(i + ku, j + kv), s, f, o〉 for all k ∈ Z. Run again a245

depth first search in GP,T /{u~a + v~b} starting from 〈(i, j), s, f, o〉, for N steps. If the depth246

first search stops, then there are only a finite number of orbits for this symmetry vector, and247

so only one translational symmetry in this connected component. Otherwise, again by the248

pigeonhole principle and Lemma 1, we have found a second linearly independent translational249

symmetry u′~a + v′~b for this connected component. J250

The algorithm in the above lemma finds a basis of two, one or zero translational symmetries251

in the connected component. We can factor the rolling graph by those symmetries by252

identifying symmetric tiles. As the symmetries are multiples of the supertile symmetries, this253

is easily done by performing a coordinate change from the (i, j) coordinates to coordinates254

in the new basis, and a modulus operation. When there is no symmetry, the algorithm255

identifies a bounded connected component in GP,T . When there is one symmetry vector,256

the algorithm finds a finite number of orbits for this symmetry. Finally, when there are two257

symmetry vectors in the basis, the factored rolling graph GP,T /{u~a + v~b, u′~a + v′~b} is of size258

polynomial in N and the connected component can be explored completely by depth first259

search. In all three cases, a compact representation of the connected component has been260

found. In the two latter cases, it takes the form of a polynomially-sized fundamental domain261

and one or two translational symmetry vectors.262

2.3.1 Results on reachability263

The arguments above show how to identify the connected components in the rolling graph.264

In order to find the set of tiles that can be reached from a starting position, we only need to265

look at the first part (i, j), s of the positions in the connected component. Because this is a266

projection, it preserves the symmetry vectors. We obtain the following classification for the267

reachable area.268

Figure 17 No vector, one vector, two vectors but fail to cover, two vectors and full cover.

If the rolling graph does not have symmetry vectors, the reachable area is bounded and269

P on T starting at 〈t, f, o〉, is a bounded roller.270

If the rolling graph only has one linearly independent vector, the reachable area is a band271

and P on T starting at 〈t, f, o〉 is a band roller.272

If the rolling graph has two linearly independent vectors, the reachable area extends273

infinitely in all directions. If not every tile t is present in the reachable supertiles, the274

reachable tiles forms a plane with holes and P on T starting at 〈t, f, o〉 is a hollow-plane275

roller.276
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If every tile t is present in the reachable supertiles, the reachable tiles cover the entire277

plane and P on T starting at 〈t, f, o〉 is a plane roller.278

3 Considerations for usage in puzzles279

To make a rolling puzzle game, we need at least: a playing area with obstacles and paths; a280

polyhedron that will navigate that space; departing from a starting point; and arriving at a281

goal point. The goal is often matching a specific face with a specific tile. After selecting a282

polyhedron and a tessellation that have a useable reachable area pattern, we identify several283

additional properties that should be tracked to facilitate puzzle design.284

3.1 Useful properties285

Unused tiles in the playing area.286

This is determined by the reachable area of the roller. The puzzle designer should287

not put interactive elements on tiles that cannot be reached. The puzzle designer would use288

the representative area and its symmetries to map out the playing space.289

Unused faces on the polyhedron.290

For face-matching puzzles, determining which faces of the polyhedron are usable in the puzzle291

is also important. Some faces might not be compatible with the tiling, while others might292

not appear in the connected rolling graph despite being compatible. For example, puzzle293

designers should avoid putting an objective marker on a polyhedron face that cannot be294

rolled on. Which face was used or not is additional information that should be tracked when295

computing the reachable area.296

Guaranteed starting point: stability.297

In order to use a plane roller, we must know one state corresponding to the connected part298

of the rolling graph that covers the plane. By starting from the wrong state (wrong face or299

orientation), we might not be in a component that is connected to the one that covers the300

whole plane. For some rollers, some tiles are guaranteed to belong to the largest component301

for every compatible state on which we start. We can track and mark those tiles while302

computing the reachable area, as those tiles can serve as starting positions to ensure that our303

polyhedron will roll the plane. We call this property tile stability. Puzzle designers should304

put the starting position of the polyhedron on a stable tile to guarantee plane coverage.305

I Definition 3. A plane roller pair (P, T ) is stable on a tile t ∈ T if306

∀f ∈ P s.t. |f | = |t|, ∀o ∈ f : P, T on 〈t, f, o〉 is a roller. (1)307

I Definition 4. The reachable area RA for a rolling pair P, T is stable on a tile t ∈ T if308

∀f ∈ P s.t. |f | = |t|, ∀o ∈ f : ∀ti ∈ RA : ∃fi, oi s.t. 〈t, f, o〉 ∼ 〈ti, fi, oi〉 (2)309

Which face reaches which tile: face-completeness.310

In a face-matching rolling puzzle game, the objective is to reach a specific tile with a specific311

face on the polyhedron (often marked by a different color). In some cases, not every face of a312

particular shape can reach every tile. When using a polyhedron/tiling pair in a puzzle game,313
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it can help to know which face can reach which tile. We can track specific tiles that can be314

reached by every compatible face during our computations. We call those tiles face-complete315

tiles. Refer to Figure 18.316

I Definition 5 (face-complete tile). A roller for P on T at 〈t0, f0, o0〉 has a face-complete317

tile t ∈ T iff all compatible faces of the polyhedron can roll on t with some orientation, that318

is, ∀f s.t. |t| = |f | : ∃o s.t. 〈t, f, o〉 ∼ 〈t0, f0, o0〉.319

I Definition 6 (face-orientation-complete tile). A face-orientation-complete tile is one that320

can be visited with all compatible faces in every orientation within a connected component.321

3.2 Puzzlemaker’s reference image322

We combined all the above results in one image as a reference point for puzzlemakers. This323

allows to select a tessellation/polyhedron pair very easily depending on the puzzle’s needs.324

Figure 18 Left: face-completeness graph. In brown: face-complete tiles. In red: face-orientation-
complete. Right: Stability graph with stable tiles in grey.
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4 Implementation325

The algorithm was implemented in Python 3.8 and is available on GitHub at https://github.326

com/akirbaes/RollingPolyhedron/blob/master/RollingProof.py. It uses NumPy and327

SymPy for creating a minimal linearly independent base, and pygame to produce images.328

The implemented version performs further manipulations, such as aggregating connected329

rolling graph states grouped by supertile into superstates, to lower processing time and avoid330

dealing with individual tile positions calculations by only looking at the supertile cartesian331

coordinates.332

The result table can be consulted at https://akirabaes.com/polyrolly/resulttable/.333

5 Limitations334

It is left to prove for the 87 polyhedrons out of the 129 considered that did not generate335

a plane roller with the 131 considered tilings, if there doesn’t exist a tiling on which they336

would be able to roll on the 2D plane.337

dodecahedron, truncated cube, truncated octahedron, rhombicuboctahedron,
truncated cuboctahedron, snub cube, snub cube c, icosidodecahedron, truncated dodecahedron,
truncated icosahedron, rhombicosidodecahedron, truncated icosidodecahedron, snub dodecahedron,
snub dodecahedron c, j2, j4, j5, j6, j7, j9, j18, j19, j20, j21, j23, j24, j25, j32, j33, j34, j35, j36,
j38, j39, j40, j41, j42, j43, j45, j45 c, j46, j46 c, j47, j47 c, j48, j48 c, j49, j52, j53, j55, j57,
j58, j59, j60, j61, j63, j64, j66, j67, j68, j69, j70, j71, j72, j73, j74, j75, j76, j77, j78, j79, j80,
j81, j82, j83, j91, j92, triangular prism, pentagonal prism, hexagonal prism, octagonal prism,
decagonal prism, dodecagonal prism, pentagonal antiprism, octagonal antiprism, decagonal antiprism,
dodecagonal antiprism
Table 2 Considered polyhedrons which did not generate a plane roller with considered tilings
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