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Abstract: Pogorelov proved in 1949 that every convex polyhedron has at least three simple closed
quasigeodesics. Whereas a geodesic has exactly a π surface angle to either side at each point, a
quasigeodesic has at most a π surface angle to either side at each point. Pogorelov’s existence proof did
not suggest a way to identify the three quasigeodesics, and it is only recently that a finite algorithm
has been proposed. Here we identify three simple closed quasigeodesics on any tetrahedron: at least
one through one vertex, at least one through two vertices, and at least one through three vertices. The
only exception is that isosceles tetrahedra have simple closed geodesics but do not have a 1-vertex
quasigeodesic. We also identify an infinite class of tetrahedra that each have at least 34 simple
closed quasigeodesics.
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1. Introduction

It is well-known that every convex polyhedron has at least three simple closed quasi-
geodesics [1], a counterpart to the Lusternik–Schnirelmann theorem that every smooth
closed convex surface has at least three simple closed geodesics. Whereas a geodesic on a
convex polyhedron has exactly π surface angle to either side at each point, a quasigeodesic
has at most π surface angle to either side of any point. Unlike geodesics, quasigeodesics
can pass through vertices.

As Pogorelov’s result does not lead directly to an algorithm, it was posed as an
open problem to find a polynomial-time algorithm to construct at least one simple closed
quasigeodesic: Open Prob. 24.2 [2]. Even a finite algorithm was not known. Recently
there has been progress on this question [3], and an exponential-time algorithm has been
developed [4].

In this paper, we describe the three quasigeodesics guaranteed by Pogorelov, in the
particular case of tetrahedra.

In reference [5], we conjectured that every convex polyhedron has either a simple
closed geodesic, or a simple closed quasigeodesic through exactly one vertex. We proved
this conjecture for doubly-covered convex polygons [5], Chapter 17. Here we prove it for
all tetrahedra.

Theorem 1. Every tetrahedron has a 2-vertex quasigeodesic, a 3-vertex quasigeodesic, and a simple
closed geodesic or a 1-vertex simple closed quasigeodesic.

Our result complements in some sense earlier work that determined closed geodesics
on simplices [6,7].

Many ellipsoids admit only three simple closed geodesics. (However, not all ellipsoids:
If sufficiently oblate, there are other simple closed geodesics [8].) Our second result estab-
lishes that many tetrahedra have an unexpected wealth of simple closed quasigeodesics.
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Theorem 2. There exists an open set O in the space of all tetrahedra, each element of which has at
least 34 simple closed quasigeodesics.

All our proofs are constructive and lead to algorithms and constant-time in an ap-
propriate model of computation. See [3] for a discussion of models of computation for
quasigeodesics.

Alongside the above results, we also obtain a characterization of isosceles tetrahedra,
defined in Section 2. It complements results in [9,10]. A geodesic loop is a simple closed
curve that is a geodesic everywhere except at one point, the loop point.

Theorem 3. A tetrahedron is isosceles if and only if it admits no geodesic loop at a vertex.

After presenting our proofs, we conclude the paper with a short section of remarks
and open questions.

Notation

Here we list basic notation that we use throughout. More specialized notation and
preliminaries will be introduced where needed.

• Vertices of tetrahedron T: a, b, c, d;
• Face A is opposite a; So: A = bdc, B = cda, C = adb, D = abc;
• Face angles are specified by vertex and face. So the three face angles incident to vertex

a are: aB, aC, aD; etc. See Figure 1;
• Complete angle at a: θa = aB + aC + aD;
• Vertex curvature at a: ωa = 2π − (aB + aC + aD).

For succinctness, we will often use the symbol Qk as shorthand for a “k-vertex simple
closed quasigeodesic”.
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Figure 1. A = bdc, B = cda, C = adb, D = abc.

2. Q0: Simple Closed Geodesics

We use the Gauss–Bonnet theorem in two forms:

1. The total curvature at the four vertices sums to 4π;
2. The turn τ of a closed curve plus the curvature enclosed equals 2π: τ + ω = 2π.

By the first form of Gauss–Bonnet, a simple closed geodesic Q0 splits the vertex set of a
convex polyhedron into two subsets, the total curvature of each being 2π. Alexandrov [11]
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(pp. 377–378) observed that such a condition is uncommon among all convex polyhedra.
This fact was further refined by Gruber [12] (as a preliminary step of his general result
proof) and by Gal’perin [13] (for polyhedra homeomorphic to the sphere). This led to a
proof that, for a fixed number of vertices, the set of convex polyhedra having a simple
closed geodesic is closed and has measure zero in the space of all convex polyhedra.

Particularizing to our framework, there is a special class of tetrahedra which do have
many simple closed geodesics. An isosceles tetrahedron (also called an isotetrahedron, a
tetramonohedron, or an isohedral tetrahedron) is a tetrahedron whose four vertices each have
curvature π, or, equivalently, all four faces are congruent acute triangles.

It is a beautiful result that isosceles tetrahedra are the only convex surfaces that have
arbitrarily long simple closed geodesics [6,14]. Consequently, they have infinitely many such
geodesics. This wealth of Q0s is balanced in some sense by the non-existence of Q1s.

Lemma 1. No isosceles tetrahedron has a 1-vertex quasigeodesic.

This lemma complements the remark in [9] and was reproved in [15], that a regular
tetrahedron has no geodesic loop. See also [10] for a characterization of isosceles tetrahedra
as the only tetrahedra having three distinct minimal loops through any point on the face.

Proof. Refer to Figure 2. Here we use the second form of Gauss–Bonnet. Let Q be a 1-vertex
quasigeodesic through vertex d, with a and b strictly to Q’s left, and c strictly to Q’s right.
Since ωa + ωb = 2π, Q must have no turn, τ = 0, to its left at d, and turn τ = π to its right
at d. Having no turn to its left means the total angle of π is to the left of Q at d. Turning π
to the right means that Q turns around completely, folding back on itself, which then forces
Q to contain vertex c. Thus, c does not lie strictly to Q’s right: Q is a 2-vertex quasigeodesic,
not a 1-vertex quasigeodesic.

a b

c
d

d

d

D
D

C

A

B

B

C

A

a b

cd d

d

(a)
(b)

Figure 2. (a,b) Unfoldings of two isosceles tetrahedra. Quasigeodesic Q (red) is a degenerate doubling
of edge dc.

With a different argument, briefly presented next, one can prove a stronger result. No
isosceles tetrahedron has a geodesic loop at a vertex.

To see this, assume the isosceles tetrahedron T admits a geodesic loop Λ at its vertex
a. Star-unfold T with respect to a, resulting in an acute triangle T̄. The star-unfolding is
discussed in Section 4.2. It cuts the three edges incident to a. Tile the plane with T̄. In that
tiling, Λ corresponds to a segment Λ̃ joining two images of a, say aj and ak. However, aj

and ak are determining either a side or a diagonal apexed at images of a. In both cases, Λ̃
would contain the image of another vertex of T, showing that Λ necessarily passes through
the respective vertex.

3. Q1: 1-Vertex Quasigeodesics

We have just seen in Section 2 that isosceles tetrahedra have no 1-vertex quasigeodesic,
but do have simple closed geodesics. The goal of this section is to prove this theorem:
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Theorem 4. Every non-isosceles tetrahedron has at least one 1-vertex simple closed quasigeodesic.

Notice that Theorem 3 follows immediately from the above result and the remark
ending the previous section.

In the remainder of this section, we assume all tetrahedra are not isosceles.

Properties of Q1.

A quasigeodesic Q1 through exactly one vertex v on a tetrahedron T must satisfy these
conditions.

(1) Q must form a geodesic loop with loop point v.
(2) To satisfy the Gauss–Bonnet theorem, Q must partition the other three vertices two

to one side and one to the other, such that the total curvatures to each side of Q are at
most 2π (and not both sides equal to 2π, for then there is no curvature at v and it is
not a vertex).

Of course the quasigeodesic angle criterion must be satisfied at v.

Sketch of Proof for Theorem 4.

The proof follows a case analysis based first on how many curvatures are greater than
π, and second on the distances from low-curvature vertices to high-curvature vertices. The
curvatures greater than π lead to convex vertices in unfoldings, and which vertices are
closest to these high-curvature vertices permits concluding that particular geodesic loops
are inside certain disks and so live on T. Then the angles to either side at the geodesic loop
vertex must be verified to be at most π to conclude it is a quasigeodesic.

3.1. Case 1

For Case 1, assume exactly one vertex has curvature exceeding π: ωa > π. Let d be
the closest vertex to a among b, c, d. Then star-unfold T with respect to d, as illustrated in
Figure 3: Faces C, D, B are incident to a, and face A is attached to face D along edge bc.
Label the three images of d as d1, d2, d3 as illustrated.

We claim that Q = d1d2 (red in the figure) is a simple closed quasigeodesic containing
just the vertex d. It will help to view Q as directed from d1 to d2. Note that, because ωa > π,
θa < π.

First note that, because |ad| is shorter than or equal to |ab| and |ac|, Q separates b, c
from a: Q is a chord of a circle of radius |ad| centered on a, and b and c lie on or outside
that circle.

Next, Q is a straight segment between two images of vertex d in this unfolding, and so
a geodesic loop on T includes d. It remains to show that the angle to either side of Q at d
is ≤π.

Let α1 and α2 be the angles of4d1d2a above Q, as illustrated in the figures. Then it is
immediate that α1 + α2 < π.

Let β1 and β2 be the angles ∠d2d1b and ∠d1d2c below Q, as illustrated. The angle of
Q to the right side of d we seek to bound is β1 + β2 + dA. The reason angle dA is to the
right of Q is: (a) dA is incident to vertex d, and (b) face4bcd3 is right of d1d2.

Now note that the external angles at b and c in the unfolding are ωb and ωc respectively.
Because ωb, ωc < π, the triangle4d1d2d3 includes face A and so includes b and c. Therefore,
β1 + β2 + dA must be smaller than π because those three angles are each smaller than the
corresponding angles of4d1d2d3.

Therefore, we have proved that the angle to the right of Q at a is less than π, and so Q
is a simple closed quasigeodesic as claimed.
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Figure 3. Case 1. (a) Unfolding of a tetrahedron when ωa > π and the other three curvatures are <π.
d is closest to a. Curvatures at a, b, c, d are 282◦, 140◦, 173◦, 124◦. Auxiliary yellow triangles added.
(b) The quasigeodesic in 3D.

3.2. Case 2

For Case 2, assume T has at least two vertices with curvatures more than π: ωa ≥
ωb ≥ π.

The reader may find it easier to follow the proof on the particular case of T, a doubly
covered quadrilateral. The next argument, however, is valid for the general situation.

We will consider geodesic loops Qv at vertex v, with v ∈ {a, b, c, d} suitably chosen, as
constructed in Case 1.

Consider a closest vertex v to a among b, c, d.

Case 2.1:

v = b: |ab| ≤ |ac|, |ad|: b is closest to a. Then there exists a geodesic loop Qb at b which
separates a from c, d. We now justify this claim. As illustrated in Figure 4, the segment
Qb = b1b2 cannot be blocked by vertex a because θa ≤ π, and cannot be blocked by vertices
c or d, because they fall outside the circle centered at a of radius |ab|.

An equivalent but different way to view this is as follows. View a as the apex of T,
and remove the base bcd. Extend the faces B, C, D incident to a to a cone C. Then on C there
are geodesic loops based on each of b, c, d. Because b is closest to a, the loop Qb lives on T.

Because ωb ≥ π, the complete angle θb at b is at most π, hence Qb has less than π
to each side, and so is a simple closed quasigeodesic. This happens irrespective of ωc, ωd
being larger or smaller than π.

d

ca

b2

b1

b3

D

C
B A

Figure 4. Case 2.1: b is closest to a. Curvatures at a, b, c, d are 196◦, 190◦, 159◦, 175◦.

Case 2.2:

v = c; i.e., c (or equivalently d) is closest to a: |ac| ≤ |ab|, |ad|.
Consider now a closest vertex w to b among a, c, d.

Case 2.2.1:
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This is handled by Case 2.1 with the roles of a and b reversed.

Case 2.2.2:

|bd| ≤ |ba|, |bc|. |ac| ≤ |ab|, |ad|: c is closest to a and d is closest to b.
As illustrated in Figure 5a,b, the geodesic loop Qc at c separates a from b, d because c

is closest to a and so b, d cannot interfere, and the geodesic loop Qd at d separates b from
a, c, because d is closest to b and so a, c cannot interfere.

Now we argue that one or the other of Qc, Qd is a quasigeodesic. Note first that,
because ωa, ωb ≥ π, the angle at c toward a (left in the figure), and the angle at d toward
b (right in the figure), are < π in 4ac1c2 and 4bd1d2 respectively. Next we examine the
angles to the other side of Qc, Qd.

With a, b separated by Qc and Qd, those two geodesic loops bound a vertex-free region
R on the surface of T, homeomorphic to a cylinder. As Figure 5c illustrates, cut R is
isometric to a planar quadrilateral c1c2d1d2. Because the quadrilateral angles sum to 2π, it
cannot be that the two angles at c and the two angles at d both exceed π. At least one must
be ≤ π. The respective geodesic loop is therefore a quasigeodesic. Figure 6 shows the two
geodesic loops in 3D.

d
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c2

c1

c3d

ba

c2

c1

c3

b

c

a

d2

d1

d3

D

C

B A

D

C
B A

ba

c2

c1 d2

d1

D

C
B
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(a) (b)

(c)

Figure 5. Case 2.2.2: c is closest to a and d is closest to b. (a) Qc red. (b) Qd green. Curvatures at
a, b, c, d are 226◦, 205◦, 138◦, 151◦. (c) The two segments c1c2 and d1d2 are slightly non-parallel.

b
a

c

d

D

CB

Qc Qd

Figure 6. Case 2.2.2: Qc and Qd on the 3D tetrahedron unfolded in Figure 5. Qc is a quasigeodesic.

Case 2.2.3:

w = c; i.e., c is closer than d to both a and b: |bc| ≤ |ba|, |bd|. |ac| ≤ |ab|, |ad|.



Information 2022, 13, 238 7 of 20

As illustrated in Figure 7a, just as in Case 1, because c is closest to both a and b, there
exist geodesic loops Qc, Q′c at c such that Qc separates a from b, d and Q′c separates b from
a, d: vertex d cannot interfere with either Qc = c1c2 nor Q′c = c1c3.

However, although one can construct two geodesic loops at d, Qd on the cone apexed
at a and Q′d on the cone apexed at b, they may not stay inside T. We now argue that at least
one of Qd, Q′d lives on T.

Figure 7b illustrates the situation when one, in this case Qd = d1d2, falls outside T.
It should be clear that d1 can see c, because ωa, ωb ≥ π, so the two faces C ∪ D form a
convex quadrilateral. The exterior angle gap at c can only block visibility from one of d2, d3.
Another way to view this is that, if Qd = d1d2 does not live on T, then it separates a, c
from b. However, then Q′d = d1d3 even more so separates a, c from b, and lives on (remains
inside the surface of) T.

dc2

c1

ba

c3

b
c

d2

d1

d3

CD

C
B A

a D

B A

(a) (b)

Figure 7. Case 2.2.3: c is closer than d to both a and b. Qc, Q′c red (a), Qd, Q′d green (b). Curvatures at
a, b, c, d are 284◦, 200◦, 58◦, 178◦.

So now we have two geodesic loops, say, Qc = c1c2 and Qd = d1d2. Then, just as in
Case 2.2.2, we have identified a vertex-free region R, with one geodesic excluding a to the
left, the other b to the right. Following the same logic as in Case 2.2.2, we conclude that at
least one of the angles toward R at c or d must be ≤ π. It is straightforward that the angles
to the other side are ≤ π: 4ac1c2 and4bc1c2 and4bd1d3.

This completes the proof of Theorem 4. There is a sense in which this theorem cannot
be strengthened, because there are tetrahedra that have only one such Q1. (That more
complex “spiraling” geodesic loops are not possible is a consequence of Lemma 8 in [4]).
We claim that Figure 8 is an example of a tetrahedron with only one simple Q1.

b c b

a

b

d

b

c
d

a

(a) (b)

Figure 8. Tetrahedron with just one Q1. (a) Unfolded. (b) Coordinates of a, b, c, d:
(−0.65, 0, 1.56), (0, 0, 0), (1, 0, 0), (0.89, 0.25, 0).
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4. Q2: 2-Vertex Quasigeodesics

The goal of this section is to prove this theorem:

Theorem 5. Every tetrahedron has a 2-vertex simple closed quasigeodesic.

4.1. Degenerate 2-Vertex Quasigeodesics

If a tetrahedron has at least two vertices with curvature of at least π, then the complete
angle incident to those two vertices is each ≤π. So the double edge connecting them
constitutes a degenerate simple closed quasigeodesic: at each endpoint, the angle to one
side is 0, and to the other side at most π. We call such a degenerate quasigeodesic an
edge-loop.

Define a tetrahedron as pointed if it has just one vertex with curvature exceeding π.
We will consistently use the label a for that vertex, so it is pointed at a.

The remainder of this section concentrates on pointed tetrahedra. First, we review
some tools used in the proof.

4.2. Star-Unfolding and Cut Locus

A geodesic segment on a P is a shortest path between its extremities.
The cut locus C(x) of the point x on P is the set of endpoints (different from x) of all

nonextendable geodesic segments (on the surface P) starting at x.
The star-unfolding of T with respect to its vertex v is obtained by cutting along the

edges incident to v and unfolding to the plane.
We need one property of the star-unfolding that derives from [16] and is stated as

Lemma 3.3 in [17]. To avoid introducing notation not needed here, we specialize this lemma
to our situation:

Lemma 2. Let Sv be the star-unfolding of a tetrahedron from vertex v. Then the cut locus C(v) is
the restriction to Sv of the Voronoi diagram of the images of v. Moreover, C(v) lies entirely in the
face opposite v. In particular, the degree-3 ramification point y lies in that face, and is connected by
segments to that face’s three vertices.

One can see this intuitively: If y were interior to a face incident to v, then there would
be three paths from v to y: one straight in 3D, but the other two with some 3D aspect, a
contradiction.

Sketch of Proof for Theorem 5.

The proof first establishes a visibility relation in the star-unfolding that yields an edge-
loop. Second, the quasigeodesic condition is proved to hold at both ends of the geodesic,
thereby establishing a 2-vertex simple closed quasigeodesic.

4.3. Visibility

Let T be a tetrahedron pointed at a, and Sa the star-unfolding of T with respect to a.
Label the three images of a as ab, ac, ad, with ab opposite b, and similarly for ac and ad. Say
that two vertices v, u ∈ Sa are visible to one another if the segment vu is nowhere exterior to
Sa, and touches ∂Sa only at u and v. So uv is a vertex-to-vertex diagonal of Sa.

Lemma 3. If T is pointed at a, then at least one of b, c, d is visible in Sa to ab, ac, ad respectively.
Sometimes there is only one such visibility relation.

Proof. The tightness claim of the lemma is established by Figure 9.
Because T is pointed at a, Sa is reflex at b, c, d. Partition the plane into six regions

by extending the three edges of 4bcd. Call the cone regions Cb, Cc, Cd incident to b, c, d
respectively. If ab ∈ Cd or ab ∈ Cc, then ab cannot see b, and similarly for c and d. So, for
contradiction, we will show that if we have two visibility segments abb, acc blocked, then
ad can see d.
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Let H(x, y) be the halfplane to the left of the directed segment xy.

c

d

abac

ad

b

Figure 9. Pointed T with just one visible segment, add. Both ab and ac are blocked.

Case 1: Two a-images in one cone.

Let ab, ac ∈ Cd, with no loss of generality. To contradict the claim of the lemma, we
would need ad in either Cc or Cb. Again with no loss of generality, let ad ∈ Cc. This requires
ad ∈ H(d, c), for the boundary of H(d, c) is the (lower) boundary of Cc. See Figure 10. At
the same time, it must be that ad ∈ H(b, ac) in order for Sa to be reflex at b. However, it is
not possible for ad to be in both of those halfplanes below bc, for the intersection is only
non-empty above cd.

d

b c

ac

ad

ab

Cd

CcCb

H(d,c)

H(b,ac)

Figure 10. Case 1. ad cannot be in both Cc and H(b, ac).

Case 2: Two a-images in two different cones.

Let ab ∈ Cc and ac ∈ Cd, with no loss of generality. Then we seek to show that ad can
see d. If ad ∈ Cc or ad ∈ Cb, then it is blocked from seeing d. If ad ∈ Cc, then both ad and ab
are in the same cone, already handled by Case 1. So we must have ad ∈ Cb, which requires
ad ∈ H(b, d), as the boundary of H(b, d) is the lower boundary of Cb. See Figure 11.
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By Lemma 2, the cut locus is entirely inside4bcd. Thus, each of b, c, d connects by a
segment to the ramification point y. Each of these segments of the cut locus is a subsegment
of a bisector. In particular, the bisector of ab and ad lies along the segment cy.

Let β, γ, δ be the angles of4bcd. Now, in order for the bisector to penetrate into4bcd
at c, ad must lie in the halfplane H(c, x), where the ray cx makes an angle of γ with respect
to the lower boundary of cone Cc. In the example shown in Figure 11, it is clear that it
is impossible for ad to be in both H(c, x) and in H(b, d), because those halfplanes only
intersect above bc.

However, if γ is larger, then the two halfplanes could intersect below bc, and thus
there is a possible placement of ad in Cb satisfying the bisector condition. It is easy to see
that the critical inequality is that we need 2γ > π − β for a placement to be available.

However, now a similar inequality is needed for the placements of ac and ab, for each
of those to both lie in the appropriate cones, and lead to bisectors that penetrate into4bcd
at b and d respectively. Thus these three inequalities must hold:

2γ > π − β

2β > π − δ

2δ > π − γ.

The reason that the inequalities are strict is that equality implies that the boundaries
of H(b, d) and H(c, x) are parallel, and there is no spot at which to locate ad (and similarly
for ac and ab). Summing the three inequalities leads to 2π > 2π, a contradiction.

Therefore, it is not possible to have all three of ab, ac, ad located in three different cones.
Since the two Cases cover all possibilities, at least one image of a must lie in a region

between cones, and so can see the corresponding vertex of4bcd.

d

b c

ac

ad

ab

Cd

Cc
Cb

β

δ

γ
γ

γ

H(b,d)

H(c,x)

x

bisector

Figure 11. Case 2: ad must lie in H(c, x) for the bisector of ad and ab to penetrate4bcd at c.
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As a consequence of Lemma 3, we have established that every pointed tetrahedron
has an edge-loop. Our next goal is to show that this edge-loop is in fact a simple closed
quasigeodesic, which requires at most π angle at the endpoints of the visibility segment.

Lemma 4. Every pointed tetrahedron has a non-degenerate edge-loop forming a simple closed
quasigeodesic.

Proof. Let the visibility segment be add without loss of generality. First, because the
curvature at a is >π, the total angle there is <π, and so the quasigeodesic condition is
satisfied at that end. Now we turn to the other end at d.

Consider the segments incident to ad. Segment adb is left of and adc is right of add, just
by the counterclockwise labeling convention for the base bcd. Now, because ωb < π and
ωc < π, the angles at b and at c in the unfolding Sa are both reflex. See Figure 12. Therefore
the segment endpoints incident to ad follow the counterclockwise order ab, c, d, b, ac. There-
fore, the angle at d right of add is the apex of the triangle4abdad and the angle to the left is
the apex of4acdad. Because both angles are <π, we have established that the edge-loop is
in fact a simple closed quasigeodesic.

c

d
ab

ac

ad

b

Figure 12. 4abdad and4acdad: triangle angles at d are <π.

Note Lemma 4 holds for every visibility segment: although there is always at least
one, there can be as many as three.

Together with the degenerate 2-vertex quasigeodesics on non-pointed tetrahedra, we
have established Theorem 5.

4.4. A Geometrical Interpretation of Edge Loops

In this subsection, we provide a geometrical interpretation of edge loops of tetrahedra.
Our construction is based on Alexandrov’s Gluing Theorem and the technique of vertex
merging; see [5] for a description and other applications of these tools.

We are still in the case of tetrahedra T pointed at a, with an edge loop based on the
edge ad, see Figure 12. Then we have θa + θd < 2π.

Denote by n the mid-point of the edge ad. Cut T along ad and glue back differently,
via Alexandrov’s Gluing Theorem. Precisely, we identify a and d, and for the two banks of
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the cut, an with dn. Because θa + θd < 2π, the result after gluing is a convex polyhedron F
with 5 vertices: b, c, n1 and n2 obtained from n, and w = ab obtained from both a and b. By
construction, the curvatures at n1, n2 are precisely π.

On F, we can merge the vertices c and n1, and respectively d and n2, to obtain a new
convex polyhedron ∆ with three vertices: w, u obtained from c and n1, and v obtained from
d and n2. Therefore, ∆ is a doubly covered (obtuse) triangle. See Figure 13.

The edge loop of T based on ad corresponds to the geodesic loop at w on ∆ obtained
by doubling the height h from w.

a

n1

143

an2

d

n1

a n1

c

a
234

B

d

Db

c

d

a
v

n2

A

B

C D

b

cd

a

a a

A

B

C D

(a)

(b) u

Figure 13. (a) Unfolding of a pointed tetrahedron, with edge-loop red. (b) One side of ∆, an obtuse
doubly-covered triangle with edge-loop along the altitude. (n1 is on the back side.)

5. Q3: 3-Vertex Quasigeodesics

The goal of this section (a revision of [18]) is to prove this theorem:

Theorem 6. Every tetrahedron T has at least one face F whose boundary ∂F is a 3-vertex simple
closed quasigeodesic Q3.

We first establish two preliminary lemmas that will be used in the proof.

5.1. Preliminary Lemmas

Lemma 5. Let α1, α2, α3 be the face angles incident to vertex v of a tetrahedron T. Then the angles
satisfy the triangle inequality: α1 < α2 + α3, and similarly α2 < α1 + α3, and α3 < α1 + α2. The
inequalities are strict unless T is flat.

Proof. See Lemma 2.8 in [5].

To simplify the calculations, angles will be represented in inequalities in units of π:
1 ≡ π, 2 ≡ 2π, etc. Thus, under this convention, each of the 12 face angles of a tetrahedron
lies in (0, 1).

We say that “face F fails at vertex v” if the two angles incident to v not in F exceed π.
So, for face A to fail on vertex b, then among the three face angles bA, bC, bD incident to b,
the two angles not in A satisfy bC + bD > 1. This means that ∂A is not a quasigeodesic,
because to one side—the other side from bA—the angle exceeds π.
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Example.

Figure 14 shows a tetrahedron with ∂C a quasigeodesic, but none of the other face
boundaries is a quasigeodesic. Thus the “at least one” claim of Theorem 6 cannot be
strengthened. Its vertex coordinates are:

a, b, c, d = (−3.54, 1.98, 4.58), (0, 0, 0), (1, 0, 0), (4.91, 3.24, 0) .

For example, back face C does not fail at vertex b: bD + bA = 125◦ + 33◦ = 159◦ < π.
Front face B fails at vertex c: cD + cA = 48◦ + 140◦ = 188◦ > π.

Ab
c

d

a

B

C

D

Figure 14. The (red) boundary of shaded back face C = abd is a quasigeodesic, but none of ∂A, ∂B, ∂D
are quasigeodesics.

Lemma 6. If a face A fails at a vertex b, then ω(b) < 1.

Proof. Since face A fails at b, by definition, bC + bD > 1. Therefore

ω(b) = 2− (bA + bC + bD)

ω(b) = 2− (bC + bD)− bA

ω(b) < 1− bA

ω(b) < 1

This establishes the claim of the lemma.

5.2. Case Analysis

We now undertake a case analysis to show that it is not possible for all four faces
of tetrahedron T to fail at vertices. The cases, illustrated in Figure 15, distinguish first
the number of distinct vertices among the four face-failures, and second, the pattern of
the failures.
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A
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D
a

d

c

b

A

B

C

D
a

d
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b
A
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D
a

d

c

b

A

B

C

D
a

d

c

b
A

B

C

D
a

d

c

b

Case 1

Case 2a Case 2b

Case 3a Case 3b

Figure 15. Failures. Case 1: at 4 vertices. Case 2: at 2 vertices. Case 3: at 3 vertices.

The proof analyzes the 12 face angles of T, and shows that the set of solutions in
(0, 1)12 is empty (under the convention that each angle is in (0, 1)). So we are representing
tetrahedra by their 12 face angles. The four faces each have a total of π angle, which
reduces the dimension of the tetrahedron configuration space from 12 to 8. It is known
that in fact the configuration space is 5-dimensional, not 8-dimensional [19], but the proof
to follow works without including the various additional trigonometric relations that
tetrahedron angles must satisfy. It suffices to use linear equalities and inequalities among
the 12 face angles.

Case 1: 4 vertices.

Suppose first that each of the four faces A, B, C, D fail on four distinct vertices. Then
Lemma 6 shows that ω(v) < 1 for each vertex v. But then ∑ ω(v) < 4, contradicting the
Gauss–Bonnet theorem.

Case 2a: 2 vertices, 3 + 1.

Suppose now that the four faces fail on a total of two vertices. This can occur in two
distinct ways: three faces fail on one vertex, which we call Case 2a, or two faces fail each on
two vertices, Case 2b. Say that b is the vertex at which three faces fail. We then have:
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A fails at b : bC + bD > 1

B fails at a : aC + aD > 1

C fails at b

D fails at b.

It turns out that we do not need to use the fact that C and D fail at some vertices, so
the implied inequalities are suppressed. Summing the failure inequalities above leads to
a contradiction:

(aC + bC) + (aD + bD) > 2

(1− dC) + (1− cD) > 2

2 > 2 + (dC + cD)

0 > dC + cD.

This is a contradiction because all angles have a positive measure.

Case 2b: 2 vertices, 2 + 2.

This follows the exact same proof, as again C and D failures are not needed to reach a
contradiction.

Case 3a: 3 vertices, double outside.

The three vertices at which faces fail bound a face, say A. One vertex of A, say b,
is “doubled” in the sense that two faces fail at b. Case 3a is distinguished in that neither
face failing on b is the three-vertex face A (Swapping B to fail on c and A to fail of d is
symmetrically equivalent to the case illustrated).

We again do not need all failures, in particular, we only need those for faces B and D:

A fails at c

B fails at d : dA + dC > 1

C fails at b

D fails at b : bA + bC > 1.

Adding these inequalities leads to the same contradiction:

(bA + dA) + (bC + dC) > 2

(1− cA) + (1− aC) > 2

0 > aC + cA;

again a contradiction.

Case 3b: 3 vertices, double inside.

In contrast to Case 3a, in this case, one of the faces that fail on b is the three-vertex face
A. (Swapping B to fail on c, D to fail on b, and C to fail on d, is symmetrically equivalent.)
This is the only difficult case, and the only case in which the triangle inequalities guaranteed
by Lemma 5 are needed.

The angles of face A satisfy bA + cA + dA = 1. Assume without loss of generality that
bA ≤ cA ≤ dA. Three faces, B, C, D fail at the three vertices of face A: d, b, c respectively.

To build intuition, we first run through the proof for specific A-face angles:



Information 2022, 13, 238 16 of 20

(bA, cA, dA) = (0.1, 0.3, 0.6)

A fails at b

B fails at d : dA + dC > 1 : dC > 0.4

C fails at b : bA + bD > 1 : bD > 0.9

D fails at c : cA + cB > 1 : cB > 0.7

Note 0.4 + 0.9 + 0.7 = 2; this holds for arbitrary A angles. Now apply the triangle
inequality to each of dB, cB, dC:

bD < bA + bC : bC > bD− bA : bC > 0.8

cB < cA + cD : cD > cB− cA : cD > 0.4

dC < dA + dB : dB > dC− dA : dB > −0.2

Note 0.8 + 0.4− 0.2 = 1; this again holds for arbitrary A angles.
Triangle face D satisfies: bD + cD + aD = 1.

bD > 0.9

cD > 0.4

bD + cD > 1.3

bD + cD + aD > 1.3 > 1,

which contradicts bD + cD + aD = 1.
Without specific angles assigned to (bA, cA, dA), the argument is less transparent.

Again assume that bA ≤ cA ≤ dA.

A fails at b

B fails at d : dA + dC > 1 : dC > 1− dA

C fails at b : bA + bD > 1 : bD > 1− bA

D fails at c : cA + cB > 1 : cB > 1− cA.

Note the sum of the above three right-hand sides is 3− (dA + bA + cA) = 2. Now
apply the triangle inequality to dB, cB, dC:

bD < bA + bC : bC > bD− bA : bC > 1− 2 · bA

cB < cA + cD : cD > cB− cA : cD > 1− 2 · cA

dC < dA + dB : dB > dC− dA : dB > 1− 2 · dA.

Note the sum of the above three right-hand sides is 3− 2(dA + bA + cA) = 1. Face
D’s angles satisfy bD + cD + aD = 1. Now we reach a contradiction using the inequali-
ties above.

bD > 1− bA

cD > 1− 2 · cA

bD + cD > 2− (bA + 2 · cA).

We have (bA + 2 · cA) ≤ 1 because bA + cA + dA = 1 and cA ≤ dA. Of course every
angle is positive, so aD > 0. So we have:

bD + cD > 1

bD + cD + aD > 1,
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which contradicts bD + cD + aD = 1.
That the inequalities for each of the above cases cannot be simultaneously satisfied has

been verified by Mathematica’s FindInstance[] function, which uses Linear Programming
over the rationals to conclude that the set of solutions in R12 is empty.

Replacing the triangle inequalities with equalities when the tetrahedron is flat (e.g.,
aB = aC + aD instead of aB < aC + aD) again leads to the same contradiction.

We have thus established Theorem 6 and, together with remarks in Section 2,
Theorems 4–6 establish Theorem 1.

6. Tetrahedra with Many Q1,2,3

As mentioned in the Introduction (Section 1), one cannot expect there to exist more
than three simple closed quasigeodesics on a general convex surface, so one could expect
that the same fact also holds for general tetrahedra.

In this section we provide an open subset of the space of tetrahedra, each tetrahedron
of which has (unexpectedly) many such quasigeodesics.

Let T be the space of all tetrahedra in R3, with the topology induced by the usual
Pompeiu–Hausdorff metric. Two polyhedra in T are then close to each other if and only if
they have close respective vertices.

The goal of this section is to prove the theorem previously stated in the Introduction:

Theorem 2. There exists an open set O of tetrahedra, each element of which has at least 34 simple
closed quasigeodesics.

We call a tetrahedron f-acute if all its faces are acute triangles.

Lemma 7. The set F of f-acute tetrahedra is open in T .

Proof. The face angles at the vertices of T depend continuously on the vertex positions in
R3. Once they are < π, they remain so in a neighborhood.

We further restrict our study to a special open subset O of F , of tetrahedra near a
regular tetrahedron, all having three vertices of curvature > π. The introduction of these
tetrahedra is justified by the considerations in Section 4.

We start with a regular tetrahedron of apex a and horizontal base bcd and move
a downward a short distance along a vertical line. The new tetrahedron N has base
vertices of curvatures slightly larger than π and top vertex a of curvature slightly less
than π. Moreover, all faces of N remain acute triangles. So we consider O to be a small
neighborhood of N.

The next lemma can be proved with an argument similar to Lemma 7’s proof.

Lemma 8. All tetrahedra in O are f-acute and have three vertices of curvature > π.

The following is a particular case of Lemma 17.2 in [5].

Lemma 9. Assume the tetrahedron T has a simple closed quasigeodesic Qk through k ≥ 1 vertices,
such that its left and right angles at each of the k vertices are all strictly less than π. Then, all
tetrahedra sufficiently close to T in T have such a quasigeodesic.

In view of Lemmas 8 and 9, it suffices to count the simple closed quasigeodesics on
our reference tetrahedron N ∈ O.

• We saw that a general tetrahedron has no Q0;
• There exists at least one Q1 on every tetrahedron. In fact, N has 6 such quasigeodesics.

To see this, consider the four star-unfoldings of N with respect to its vertices. Because
of the symmetry of N, three of the unfoldings from the base vertices b, c, d are isometric.
See Figure 16. One can then check that through each base vertex pass two Q1s, as
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represented in Figure 16b. On the other hand, the three geodesic loops through apex a,
represented in Figure 16a, are not quasigeodesics;

• Because N is chosen sufficiently close to a regular tetrahedron, Lemma 9 shows that
every edge of N provides three non-degenerate Q2s, as in Figure 17. The three vertices
of curvatures > π provide three more degenerate Q2’s. They all sum up to 21 Q2s;

• The boundary of every face of N is a Q3, because N is f-acute, hence there are 4 such
Q3 quasigeodesics;

• Every partition of the face set of N into two faces provides a Q4, again because N is
f-acute, hence there are 3 Q4s, namely corresponding to AB : CD, AC : BD, AD : BC.

Thus we have found a tetrahedron N in whose neighborhood O, every tetrahedron
has at least 34 quasigeodesics, verifying Theorem 2.

b c

d

a

a a

b

c
d

d

d(a) (b)

a

Figure 16. Two star unfoldings of a near-regular tetrahedron. In this example, ωa = 142◦ and
ωb = ωc = ωd = 193◦. Geodesic loops are solid red segments. In (a), each loop has angle 12◦ to one
side of a and 206◦ to the other side. In (b), θd = 167◦, so the loops are quasigeodesics.

b
c

d

a

Figure 17. Three non-degenerate and one degenerate (red) Q2 on a regular tetrahedron. The blue,
green, and purple geodesic segments each connect to ab.

7. Remarks and Open Problems

Our work leaves open several questions of various natures.
Open Problem 1. The 2-vertex quasigeodesics that we identified in Section 4 are all

edge-loops, i.e., they contain the edge joining the respective vertices. Is this necessarily
the case?

According to Theorem 2, some tetrahedra have at least 34 simple closed quasigeodesics,
and this happens on an open subset of the space T of tetrahedra.
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Open Problem 2. Does there exist an upper bound on the number of simple closed
quasigeodesics a tetrahedron can have? Of course, this is not the case for pure simple closed
geodesics, see Section 2.

Open Problem 3. Find examples of tetrahedra with k ≥ 3 simple closed quasi-
geodesics, for as many values of k as possible. For example, is there any tetrahedron that
has only the k = 3 simple closed quasigeodesics that Pogorelov guarantees and we describe
in Theorem 1? Such a tetrahedron would be a polyhedral counterpart of an ellipsoid with
exactly three simple closed geodesics.

Our quest for simple closed quasigeodesics on tetrahedra lead us to investigate the
acuteness of face angles incident to a vertex. In this direction, we established the next
elementary result of some independent interest.

Proposition 3. Let ē be a longest edge of the tetrahedron T. Then at least one extremity of ē has all
incident face angles acute, or T is a doubly covered rectangle.

Notice that the face angles incident to a vertex v of ωv > π are all acute, directly from
Lemma 5.

Proof. Assume T = abcd and ē = ab. Then ab is in particular a longest edge in the triangle
faces C and D, hence the angles aC, aD, bC, bD are all acute.

Assume now that the statement does not hold, hence aB ≥ π, bA ≥ π. Unfold the
union of faces A ∪ B in the plane, to a quadrilateral a′b′c′d′. Clearly, the triangles a′c′d′

and acd are congruent, as are b′c′d′ and bcd. However, |a′b′| ≥ |ab|. The angle conditions
aB ≥ π, bA ≥ π imply, via an elementary geometry result, that the points a′ and b′ lie on,
or in the interior of, the circle of diameter cd. Therefore, we get |a′b′| ≤ |cd| ≤ |ab| ≤ |a′b′|,
impossible unless we have equalities everywhere. In this case, T is a doubly covered
rectangle, and the conclusion holds.

Our proofs involve the vertex of T of largest curvature.
Open Problem 4. Is the longest edge of a tetrahedron always incident to the vertex of

largest curvature? This is indeed the case for degenerate tetrahedra, which correspond to
planar quadrilaterals.
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