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Quasigeodesics on the Cube
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Abstract

A quasigeodesic is a curve on the surface of a convex polyhedron that
has < 7 surface to each side at every point. In contrast, a geodesic has
exactly m to each side and so can never pass through a vertex, whereas
quasigeodesics can. Although it is known that every convex polyhedron
has at least three simple closed quasigeodesics, little else is known. Only
tetrahedra have been thoroughly studied.

In this paper we explore the quasigeodesics on a cube, which have not
been previously enumerated. We prove that the cube has exactly 15 simple
closed quasigeodesics (beyond the three known simple closed geodesics).
For the lower bound we detail 15 simple closed quasigeodesics. Our main
contribution is establishing a matching upper bound. For general convex
polyhedra, there is no known upper bound.
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1 Introduction

1.1 Quasigeodesics

A quasigeodesic is a curve on the surface of a convex polyhedron that has <«
surface to each side at every point. In contrast, a geodesic has exactly 7 to
each side. Because a vertex is a point with less than 27 surface, a geodesic can
never pass through a vertex. Quasigeodesics can pass through vertices.

Ever since since Poincaré’s investigations more than a century ago, closed
geodesics have played an important role in the topology of Riemannian mani-
folds [Ber03, p. 433]. It is a famous 1929 theorem of Lyusternik-Schnirelmann
that every smooth genus-0 surface has at least three simple (non-self-intersecting)
closed geodesics [1.S29]. Pogorelov proved in 1949 a natural analog: Every con-
vex surface has at least three simple closed quasigeodesics [Pog49]. Pogorelov’s
existence proof does not suggest a way to identify the three quasigeodesics, and
it is only recently that finite algorithms have been proposed [DHK20] [CdM24].

Aside from these algorithms, simple closed quasigeodesics have only been
systematically studied on tetrahedra. Two results in [OV22] are: (1) On any
tetrahedron, there is at least one 1-vertex, one 2-vertex, and one 3-vertex sim-
ple closed quasigeodesic. (2) There is an infinite class of tetrahedra that each
have at least 34 simple closed quasigeodesics. In contrast to (1), it is known
from [DDTY17] that the cube does not have a 1l-vertex simple closed quasi-
geodesic.

Simple closed quasigeodesics play central roles in [HLM*22] and [OV24], and
are of interest in their own right. But beyond their existence, much remains
unknown. There is no known upper bound on the number of simple closed
quasigeodesics on a given polyhedron, and there is an n-vertex polyhedron with
22(7) distinct simple closed quasigeodesics [DO07, Sec. 24.4]. In contrast, it is
known that isosceles tetrahedra! have arbitrarily long “spiraling” simple closed
geodesics [Pro07] [AP18].

In this paper we make a complete inventory of simple closed quasigeodesics
on a cube. It was known that there are precisely three simple closed geodesics
on the cube. We identify a further 15 simple closed quasigeodesics (up to sym-
metries), and prove that this list is complete. We consider this proof to be our
most significant contribution.

1.2 Three simple closed geodesics

To describe geodesics and quasigeodesics explicitly, we adopt the notation for
faces and vertices displayed in Fig. 1. Note that we label vertices in figures by
their index 4, but refer to them in the text as v;.

It has long been known that there are precisely three simple closed geodesics
on the cube [FF07], displayed in Fig. 2.2 Note that each of the three geodesics

LAlso called disphenoids, tetramonohedra, isotetrahedra, and several other names. All
faces are congruent acute triangles.
2Note these three are not the three from Pogorelov’s theorem.



Figure 1: F,R,T,K,L,B = Front, Right, Top, bacK, Left, Bottom. B vertices
indexed 1,2,3,4; T vertices indexed 5,6,7,8. v; is marked white.

can slide within a range, maintaining parallelism. This is because each geodesic
lies on a cylinder, with 27 curvature (four vertices, each with 7/2 curvature) to
each side.

2 Outline of Argument

We mentioned that simple closed geodesics can spiral around isosceles tetrahe-
dra. A simple closed quasigeodesic also may spiral around other convex poly-
hedra, as shown in Fig. 3 below. A central aspect of our proof is to show that
quasigeodesics cannot spiral on a cube.

Define a geodesic segment as a non-self-intersecting vertex-to-vertex geodesic.
A simple closed quasigeodesic is composed of a sequence of geodesic segments,
satisfying the < 7 condition to both sides at each vertex.

An instructive example was identified in [DHK20]: a long box with a spiral-
ing simple closed quasigeodesic. See Fig. 3. Each of the four marked vertices
has 7 angle to one side and 7/2 to the other side. Since there is freedom to
partition the 37 /2 surface angle differently (while maintaining < 7 to each side),
the number of spiraling simple closed quasigeodesics of a long box grows with
the length of the long side of the box. A crucial property of spiraling is that
some geodesic segment re-enters its initial face. For example, the blue geodesic
segment from vy to vy in the figure starts on the long front-side face and later
re-enters that face. We will prove that this cannot happen on a cube: a geodesic
segment cannot return to its initial face, and in fact, cannot cross any face more
than once.

3

3In some literature, a geodesic segment is a shortest path between its endpoints. In this
paper, our geodesic segments may or may not be shortest.
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Figure 2: The three simple closed geodesics on a cube. The first is an equatorial
band. The other two are as depicted.
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Figure 3: (v1,vq,v3,v3,v4) is a simple closed quasigeodesic. Based on Fig. 2
in [DHK?20).

3 Fifteen Simple Closed Quasigeodesics

Here is our main result:

Theorem 1 There are exactly 15 simple closed quasigeodesics on the cube (be-
yond the three simple closed geodesics noted above). These are displayed in
Fig. 4 and described in Table 1.

As our sole focus in the remainder is on “simple closed quasigeodesics,” we often
simplify that term to quasigeos.
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Figure 4: The 15 simple closed quasigeodesics.
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Four quasigeos using only 0/1 segments (each of length 1).

Five quasigeos using at least one 1/1 segment (length 1/2), and none longer.
Four quasigeos using at least one 1/2 segment (length v/5), and none longer.
1: One quasigeo using a single 1/3 (length v/10), and none longer.

One quasigeo using a single 2/3 (length v/13).
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Table 1: Description of the five categories of quasigeos.

The quasigeos are listed in order of the length of the geodesic segments
comprising them, as described in Table 4. We identify a geodesic segment by its
slope y/x, i.e., vertically up y units and rightward horizontally z units within
the natural coordinate system of its starting face.

4 Five Slopes

Our approach is to analyze a geodesic segment based on the angle « it makes in
its starting face. Consider a geodesic segment that does not follow an edge of



the cube. Then it enters the interior of a face and makes an angle in the range
(0,7 /4] with one edge of the face. We express this as a slope in the range (0, 1].
We first rule out some slopes in this range because the geodesic segment revisits
the first face and intersects itself there. We rule out further slopes by finding
intersections between two geodesic segments. This reduces the possible slopes
to a finite set, which allows a combinatorial enumeration of all simple closed
quasigeodesics.

2/3
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Figure 5: The five possible distinct slopes.

Lemma 1 A geodesic segment that is a component of a simple closed quasi-
geodesic on the cube can only have one of the five slopes shown in Fig. 5:
0/1,1/3,1/2,2/3,1/1.

Corollary 1 A geodesic segment that is a component of a simple closed quasi-
geodesic on the cube does not cross any face more than once.

We prove the lemma by partitioning the rest of the slope range (0, 1] into
the following seven ranges:

e Case 1. (0/1,1/4]
o Case 2. (1/4,1/3)
e Case 3. (1/3,2/5)
o Case 4. [2/5,1/2)
e Case 5. (1/2,2/3)
e Case 6. (2/3,3/4)
e Case 7. [3/4,1/1)

Fig. 6 shows the seven cases, and Fig. 7 shows how each range progresses on
the unfolded surface of the cube. Each case has a (pink) F-cone with angle
at v1. From Fig. 7 we immediately obtain:



Claim 1 No geodesic segment is possible in Cases 2, 3, and 6 because the seg-
ment revisits the starting face and intersects itself there. (We note that the
crossing is at right angles, a known constraint [FF07].)

The remaining four cases are possible for a single geodesic segment, but not
for a geodesic segment that is part of a quasigeo.

Claim 2 Consider a geodesic segment g that is a component of a simple closed
quasigeodesic on the cube, and that falls into Case 1, 4, 5, or 7. Then g inter-
sects another segment of the quasigeodesic.

Proof: We find an intersection point by following the quasigeo backwards
from vy, the starting vertex of g. Let ¢’ be the geodesic segment before g. We
trace ¢’ backwards from its terminus at v;.

3/4

Case 7: [3/4,1/1)
Case 6: (2/3,3/4)
2/5  Case 5:(1/2,2/3)
113 Case 4:[2/5,1/2)
Case 3: (1/3,2/5)
Case 2: (1/4,1/3)
Case 1: (0/1,1/4]

£ 0/1

Figure 6: The seven slope ranges. Cases 2, 3, and 6 (in blue) are ruled out in
Claim 1, and Cases 1, 4, 5, and 7 (in pink) are ruled out in Claim 2, leaving
only the five slopes (in purple) allowed in Lemma 1.

Case 1. We focus on Case 1 in Fig. 9. The 2D unfolding of that case is shown
on the 3D cube in Fig. 8. Cases 4, 5 and 7 will follow the same general scheme
as does Case 1.

View g as directed crossing faces F1, R, K, L in order. In Case 1, g has slope
in (0/1,1/4] and lies within the pink F-cone of angle 6 as illustrated. We now
show that g cannot be part of a quasigeo, by analyzing the possibilities for the
previous geodesic segment g'.

Because the angle between ¢ and ¢’ at v1 must be < 7, ¢’ must leave v; in a
0 + 7/2 cone that extends counterclockwise from edge vivs. This cone is open
along edge vivs and closed on its other boundary. See vertex vy in Face Fy in
the figure. We partition the cone into three possibilities:
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Figure 7: The seven slope cases, showing the range of slopes (in pink) progressing
across the faces of the cube. The geodesic segment starts in face F; and revisits
the starting face, marked Fy (in white).

Figure 8: The Case 1 F-cone in 3D. § = arctan(1/4). Cf. Fig. 9.



(1)

(2)

¢’ lies strictly within the quarter-circle on face L at vy (counterclockwise
between edges vivs and v1v4). Then ¢’ crosses g no matter where g and
¢’ lie in their respective cones.

g’ lies in the cone of angle 6 counterclockwise of edge vivs. This cone
(colored blue in Fig. 8) is open along the edge v1v4 and closed on its other
boundary. Then ¢’ wraps clockwise around vy by 7/2, and crosses g in
face K.

g’ follows the edge vivs. Then ¢’ hits vertex vy and ends there. Let
g"" be the next geodesic segment. Then ¢” leaves vy in face K in the
closed quarter-circle bounded by edges v4vg and v4vs. Any ¢” in this cone
intersects g unless ¢g” follows the edge vsv3. Repeating this argument,
we either find an intersection with g, or we eventually follow the edge
vov1—but then the angle with g at vy is too sharp for a quasigeodesic.

So we obtain a quasigeo violation for every g inside or on the upper boundary
of the F-cone in Case 1.

The argument for the remaining cases proceeds similarly, presented below
somewhat more concisely.

Case 4. Again the F-cone has angle 6 at v; in F1, and g’ must leave vy at Fo
inaf+m/2 cone.

(1)

(2)

3)

¢ lies strictly within the quarter-circle on faces B and L. Then ¢’ crosses
g no matter where they lie in their cones.

¢’ lies in the cone of angle 0 strictly clockwise of the upper boundary of

the F-cone. Then ¢’ wraps counterclockwise about v7 and crosses g in face
R.

g’ follows the upper F-cone edge (slope 1/2). Then ¢’ hits v;. As in
Case 1, repeating the argument, the next geodesic segment g” leaves the
quarter-circle similarly anchored on v7 and either crosses g in the F-cone,
or hits v; at an angle too sharp for a quasigeodesic.

Case 5.

(1)

2)

g’ lies strictly within the quarter-circle on faces B and L. Then ¢’ crosses
g no matter where they lie in their cones.

¢’ lies in the cone of angle 6 strictly counterclockwise of the lower boundary
of the F-cone. Then ¢’ wraps clockwise about v7 and crosses ¢ in face R
or T.

g’ follows the lower F-cone edge (slope 1/2). Then ¢’ hits v;. Repeating
the arguments of the previous cases, the next geodesic segment ¢’ leaves
the quarter-circle anchored on v; and either crosses g in the F-cone, or
hits v; at an angle too sharp for a quasigeodesic.

10
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Figure 9: The geodesic segment g in the F-cone is crossed by ¢’, either if starting
backwards in the quarter-circle, or starting as much as 6 beyond (blue angle and
segment.), where 6 is the F-cone angle at v;.
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Case 7.

(1) ¢’ lies strictly within the quarter-circle on faces B and L. Then ¢’ crosses
g no matter where they lie in their cones.

(2) ¢’ lies in the cone of angle € strictly clockwise of the upper boundary of
the F-cone. Then ¢’ wraps counterclockwise about vg and crosses g in face
Lor K.

(3) ¢’ follows the upper F-cone edge (slope 1/1). Then ¢’ hits vg. We re-
peat the previous arguments. The next geodesic segment ¢’ leaves the
quarter-circle anchored on vg and either crosses g in the F-cone, or hits

vg. Applying the argument again, the next geodesic segment g’ either
crosses g or or hits v at an angle too sharp for a quasigeodesic.
This completes the proof of Claim 2. O

Claims 1 and 2 establish that, of the seven cases filling the entire range of
slopes (Fig. 6), all but the five identified slopes are impossible, and so prove
Lemma 1.

5 Search for Quasigeos

We initially found the 15 quasigeos in Fig. 4 “by hand.” To establish that
there are no other possibilities, we programmed an exhaustive search based on
Lemma 1. We chose to use a DFS search, starting with the longest geodesic
segments first, because they maximize pruning. Ordered by lengths, the slopes
are 2/3>1/3>1/2>1/1 > 0/1. Examples of pruning are shown in Fig. 10.

The DFS found 29 quasigeos, and after eliminating the duplicates congruent
by a symmetry, exactly the 15 in Fig. 4 remain.*

Recall Corollary 1 established that no single geodesic segment part of a
cube quasigeo can cross a face more than once. This contrasts with the long
box example, Fig. 3. A consequence of the inventory of the 15 quasigeos is that
no cube quasigeo can cross a face more than once.

6 Discussion and Open Problems

We have proved Theorem 1 by verifying that the list in Fig. 4 is exhaustive.
Below we list several open questions.

e Is there a finite upper bound to the number of simple closed quasigeodesics
(that are not geodesics) on a given nondegenerate polyhedron of n vertices?
There is no such bound for simple closed geodesics. Nor is there a bound
for (degenerate) doubly-covered squares: see Fig. 11.

4We have not made our code available, but it is an easy programming exercise to verify
our exhaustive search.

12
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Figure 10: Red: Partial quasigeo, through vertices listed. Blue: All possible
next segments based on angle with the previous segment.

Figure 11: Doubly-covered square. Red segments: front. Blue segments: back.
(a) Simple closed geodesic. (b) Simple closed quasigeodesic.

13



e It was proved in [OV22] that every tetrahedron has a simple closed geodesic
or a 1-vertex simple closed quasigeodesic. That the same holds for any
convex polyhedron was conjectured in [OV24]. As mentioned, it is known
from [DDTY17] that the cube does not have a 1-vertex simple closed quasi-
geodesic, but it does have simple closed geodesics, so the cube accords with
the conjecture. Settling the conjecture either way seems currently out of
reach.

e A slightly non-cubical box, 1 x 1 x h for h € (1,2), has a “diamond” 1-
vertex simple closed quasigeodesic: see Fig. 12. Characterizing all simple

/

Figure 12: A 1-vertex quasigeo on a 1 x 1 X 1% box.

closed quasigeodesics on boxes is a natural next step.

14
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