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1 Introduction

This paper considers transformations of a planar poly-
gon P according to two types of operations. A vertex
pop (or a pop) reflects a vertex vi, i ∈ {1, . . . , n}, across
the line through the two adjacent vertices vi−1 and vi+1

(where index arithmetic is modulo n). A popturn ro-
tates vi in the plane by 180◦ about the midpoint of the
line segment vi−1vi+1. Pops and popturns are polygon
reconfiguration moves similar to “Erdős pocket flips”
and “flipturns” [5, 3] in that they preserve the lengths
of the polygon edges.

Our goal in this paper is to study which polygons can
be convexified by a series of pops or popturns, under var-
ious intersection restrictions and definitional variants.

We distinguish between three types of polygons. A
simple polygon is non-self-intersecting, in that edges in-
tersect only at common endpoints. A polygon is weakly
simple if its boundary does not “properly cross” itself.
Finally, a general polygon may be self-intersecting with
proper crossings. Pops and popturns can easily intro-
duce weak or proper crossings, so the latter two classes
are often more natural to study.

We also focus on two subclasses of polygons. In an
orthogonal polygon, adjacent edges meet at right angles.
In an equilateral or unit polygon, all edge lengths are
equal, say, to 1. In unit polygons, pops and popturns
become identical operations.

We will see that a vertex pop can create a hairpin ver-
tex (or a pin): a vertex vi whose incident edges overlap
collinearly. If also vi−1=vi+1 (which arises naturally in
unit polygons), then the reflection line for a pop of vi is
not determined. Whether to allow a pop of such a pin,
and if so, how to define it, leads to many interesting
variations, detailed in Section 3 below.
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††Chercheur qualifié du F.R.S.-FNRS
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Polygons Moves Convexifiable?

arbitrary popturns yes, always

simple popturns yes iff no purse

weakly simple, pops+180◦ rot.
unit, orthogonal or pops+untwists

yes, always

Table 1: Summary of our results.

Our results. Table 1 lists our results. If crossings are
permitted, it remains unresolved whether every poly-
gon can be convexified via vertex pops, but we show
that popturns suffice. Restricting to simple polygons,
it is known that every star-shaped polygon can be con-
vexified by popturns [1, Thm. 3.2]. We characterize
precisely the class of polygons that can be convexified
by simple popturns: those without a “purse.” Our final
result is specialized to unit orthogonal polygons, which
can be reconfigured under various hairpin move restric-
tions.

2 Popturns

The polygon P with clockwise vertices (v1, v2, . . . , vn)
can be seen as a cyclic sequence of rooted vectors
(e1, . . . , en), where ei = (vi−1, vi). A sequence of vectors
is simple if they form a simple polygon, and clockwise if
each vector has the interior of P on its right side. In the
following, we will use the terms sequence of vectors and
polygon interchangeably. A popturn then corresponds
to swapping two adjacent vectors in their cyclic order-
ing. We call the popturn crossing-free if the resulting
polygon is simple. The two vectors to be popturned and
their images form a parallelogram. We call the popturn
simple if it is crossing-free and this parallelogram does
not contain P . This is the case if and only if the re-
sulting polygon is simple and clockwise. A crossing-free
popturn can turn a polygon “inside-out” whereas the
more restrictive simple popturn cannot.

If we permit crossings, popturns can convexify by sim-
ulating bubble sort on edge directions, where each ad-
jacent swap corresponds to a popturn; see [2, p. 32].

Theorem 1 Any polygon of n vertices can be convexi-
fied (permitting crossings) by a sequence of at most 1

2

(
n
2

)
popturns.
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In the remainder of this section, we concentrate on
simple polygons and simple popturns. The turning an-
gle τi = τvi

at vertex vi is the clockwise angle between
the vectors ei and ei+1 (−π < τi < π), and the to-
tal turning angle τi,j = τei,ej between edges ei and ej

is
∑j−1

l=i τl. Because the polygon is closed, simple, and
clockwise, τi,j + τj,i = 2π. Notice that the total turning
angle τei,ej between two edges, ei and ej does not change
after a simple popturn unless ei and ej are adjacent, i.e.,
j = i + 1 or j = i− 1, and the popturn is performed at
their common vertex. Consider, for example, Fig. 1(a),
in which a popturn at v3 reorders the sequence of vectors
{. . . , e1, e2, e3, e4, . . .} to {. . . , e1, e3, e2, e4, . . .}. Only
two edge-turning angles change: τe2,e3 = 1

4π becomes
τ ′e2,e3

= (2+ 1
4 )π, wrapping around the entire polygon;

meanwhile, τe3,e2 = 1 3
4π becomes τ ′e3,e2

= − 1
4π.

1/4

1/4

1/4

v1

–1/4

1/2

1/2

v4

v3

v2

v5

e1

e4

e3

e2

e2

e3

v'3

ei

ej

(a) (b)

Figure 1: (a) Popturn at v3 of {e2, e3}. (b) Purse
ei, . . . , ej .

A purse is a (cyclic) subsequence ei, . . . , ej such that
τi,j ≤ −π; see Fig. 1(b). We show the following:

Lemma 2 If ei, . . . , ej is a purse, then ei and ej can
never be made adjacent by any sequence of simple pop-
turns; and so τi,j is constant.

Proof: As stated previously, τei,ej will be affected by
a popturn only if ei and ej are adjacent, i.e., j = i + 1
or j = i − 1. In the first case, τi,j = τi,i+1 must be
strictly between −π and π. In the second case, τi,j =
τj+1,j = 2π − τj,j+1, which is strictly between π and
3π. However, purse ei, . . . , ej has τi,j ≤ −π, meeting
neither case. Before ei and ej become adjacent, τi,j

must change, but before τi,j can change, ei and ej must
become adjacent. Thus ei and ej will never become
adjacent.

A vertex vi is reflex if τi < 0. A popturn at a reflex
vertex is called a reflex popturn.

Lemma 3 Given a simple clockwise polygon, if the pop-
turn at a reflex vertex vi is not simple, then the polygon
has a purse.

Proof: Let v′i be the position of vi after the popturn. If
the popturn at vi is not simple, then the parallelogram
vi−1vivi+1v

′
i intersects P . Suppose that P has no purse.

It follows that edge ei+2 is outside of the parallelogram.
Then by the Jordan curve theorem, there is a proper
intersection between the boundary of P and vi+1v

′
i or

v′ivi−1. Assume by symmetry that there is such an inter-
section on the edge vi+1v

′
i and let q be the first proper

intersection encountered while walking from vi+1 to v′i;
see Fig. 2.
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Figure 2: Proof of Lem. 3.

Let P ′ be a counterclockwise polygon formed by tak-
ing the portion of P between vi+1 and q and a vector e′

from q to vi+1. Let e∗ be the vector preceding e′ in P ′.
The polygon P ′ is closed, simple, and counterclockwise.
Thus the total turning angle τe′,e∗ + τe∗,e′ = −2π. But
the vector e∗ is part of a vector of P , say ej , and ei is
parallel to e′; thus, τi,j = τe′,e∗ . Finally, e∗ and e′ are
adjacent, so τe∗,e′ must be strictly between −π and π,
and τi,j = τe′,e∗ = −τe∗,e′ − 2π < −π. Thus ei, . . . , ej is
a purse.

Theorem 4 A simple polygon P can be convexified by
a finite sequence of simple popturns if and only if P
contains no purse.

Proof: If P contains a purse ei, . . . , ej , then by defi-
nition, τi,j < −π and by Lem. 2, ei and ej will never
become adjacent, which implies that the value of τi,j

will remain the same after any sequence of simple pop-
turns. In a clockwise convex polygon, the total turning
angle between every pair of edges is non-negative. This
implies P can never become convex after any sequence
of simple popturns.

Note that applying any sequence of popturns to P
will result in a polygon which is a permutation of the
original vectors. If P contains no purse, then by Lem. 3,
the popturn at any reflex vertex is simple. Such a pop-
turn will increase the area of the polygon, so the same
permutation of vectors will never be repeated. Since the
number of different permutations of vectors is finite, any
sequence of reflex popturns will have to be finite as well.
At the end of such a maximal sequence, no reflex vertex
remains and the polygon is convex.

Now we can more precisely bound the number of pop-
turns needed to convexify a polygon:
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Lemma 5 Let P be a polygon that has no purse. Any
maximal sequence of reflex popturns will convexify an
n-gon P after exactly |{(i, j)|τi,j < 0}| ≤

(
n
2

)
popturns.

The situation is significantly more complex in the case
of crossing-free popturns. In the full version we prove:

Theorem 6 Deciding if a polygon can be convexified by
a sequence of crossing-free popturns is NP-Hard.

3 Unit Orthogonal Polygons

When restricted to simple pops, even the 12-vertex poly-
gon in Fig. 3(a) cannot be convexified. Here we loosen
that restriction and allow hairpin vertices. A hairpin
vertex vi in a unit polygon has vi−1=vi+1, which leaves
a pop of vi undefined. We feel it is natural to define the

(a) (b) (c) (d)

Figure 3: (a) A unit polygon that cannot be convexified
by pure pops. (b,c,d) Convexifying by pin popping.

pop of a pin vi when vi−1 = vi+1 as the reflection across
the line L perpendicular to the pin edges and through
their common endpoint. This permits convexifying the
previous example; see Fig. 3(b-d). Through an exten-
sion of the argument in Thm. 4, we can show that pops
together with pin pops still do not suffice to convexify
all unit polygons while remaining weakly simple. But
rather than detail this argument, we turn instead to
positive results.

3.1 Pin-move Extensions

There are three natural pin-move extensions: rotating
a pin 90◦, rotating 180◦, or “untwisting” a pin. The
first is related to the work of Dumitrescu and Pach [4],
in that their “coin moves” can be simulated in certain
contexts with the help of 90◦ pin rotations. However,
we do not pursue this connection, and only observe that
90◦ rotations are subsumed by 180◦ rotations. We next
show that the second two pin movements, and there-
fore the first, permit convexifying any unit orthogonal
polygon while remaining weakly simple.

Let P be a unit orthogonal polygon. We define a
U -shaped boundary piece (vi, vi+1, ..., vj−1, vj) to be a
cup if vi+1 and vj−1 are both reflex or both convex and
vi+1, . . . vj−1 are collinear. The line segment vivj is the
cup lid. A cup is open if no piece of ∂P lies along its
lid. A horizontal cup (or H-cup) is an upright or upside
down U -shape; a vertical cup (or V-cup) is a U -shape
on its side.

Our reconfiguration algorithm converts P to a canon-
ical form by moving pins around ∂P . If [vi−1, vi, vi+1]

is a pin, call vi its tip and vi−1 = vi+1 its base. We dis-
tinguish two types of pins. A flat pin has the tip vertex
vi coincident with either vi−2 or vi+2; see Figs. 4(a,b).
A barb pin has a tip vertex vi distinct from both vi−2

and vi+2; see Fig. 4(c,d).
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Figure 4: (a,b) Flat pins (c,d) Barb pins.

Now we relax the condition that pops preserve sim-
plicity of the polygon, and allow for simple pin “twists”
in a small neighborhood around their base point. A
twisted pin (e.g. Fig. 5(b)) is the result of pop(vi) ap-
plied in the following two conditions: (i) [vi−1, vi, vi+1]
is a simple (untwisted) flat pin, and (ii) vivi+1 and
vi+1vi+2 are orthogonal (cf. Figs. 4(b), 5(a)). Once
a pin becomes twisted, we immediately untwist it (cf.
Fig. 5(c)). Note that our pop operations apply on the
simple polygon obtained by separating the pin base into
two points within an epsilon-disk of the base, as illus-
trated in the pin drawings. Although pin untwisting
may seem like “cheating,” in fact the operation is quite
natural, for the coincidence of vi−1 with vi+1 means
that Fig. 5(b,c) are geometrically identical. Although
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Figure 5: (a) Initial pin [vi−1, vi, vi+1] (b) Pin twisted
after pop(vi) (c) Untwisted pin.

it may appear from Fig. 5(a,c) that the result of pop-
ping/untwisting a pin is the same as rotating the pin
180◦ about its reflex base point, the pop and the 180◦-
turn operations are not always identical. Nevertheless,
we show that they are equivalent in the sense that the
composite operations (see Sec 3.3) used by our algo-
rithm can be defined in terms of either pop/untwist pin
operations or pop/180◦-turn pin rotations.

3.2 Canonical Form

Let P be a polygon with 2x horizontal edges and 2y
vertical edges. The canonical form of P is a rectangle
of length x and height y. It is used as an intermediate
stage in reconfiguring P into another polygon with a
same number of horizontal and vertical edges.
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3.3 Composite Operations

We define three composite operations used by the recon-
figuration algorithm. Each can be implemented using
pop/untwist operations or pop/180◦-turn operations.
Slide(Π): Moves the pin Π one lattice edge cw around
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Figure 6: (a, b) Sliding a barb pin (c, d, e) Sliding a
flat pin.

the boundary. See Fig. 6.
Walk(Π, c): Applies a sequence of Slide operations
to walk the pin Π cw along ∂P until its base coincides
with corner point c.
PopSweep(Π, c): Here Π is an outward pointing barb
pin whose base vertex b is connected to vertex c by
a straight boundary segment. This operation pops all
vertices on the boundary segment, starting with b.

3.4 Converting P To Canonical Form

Let T = `r be the leftmost among the topmost maxi-
mal horizontal sections of ∂P , with ` (r) the left (right)
endpoint of T . The algorithm uses the composite op-
erations to convert P into a canonical rectangle R that
has its lower-right corner at r (see Fig. 7(d)). Initially,
R is degenerate and coincides with line segment [`, r].

The algorithm repeatedly creates a pin Π and walks
it around ∂P to the top left corner t` of R (initially
t` = `), where it uses a PopSweep operation to expand
Π into a new (top) row or (left) column of R. A pin
is created by popping all base vertices of an open cup,
which always exists (Lem. 7). E.g., in Fig. 7(d), popping
base vertex b2 of cup (a2, b2, c2, d2) creates a pin (see
Fig. 7(e)). The cup must be open, for otherwise popping
the base vertices results in ∂P touching along non-pin
edges. In the first iteration, the algorithm uses a pin Π
corresponding to an upright open H-cup; this ensures
that, once it reaches `, Π expands into a row extending
from ` to r, turning R into a one-row rectangle (` =
b`, t`, tr, r). Figs. 7(a-g) show this for two pins.
Lemma 7 If P is not a rectangle, it has at least one
open cup in the halfplane H bounded above by T .
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Figure 7: (a) P (b) H-cup (a1, b1, c1, d1) turned into
pin Π by pop(b1) (c) Pin Π after Walk (d) Rectangle
R after PopSweep (e-g) Same steps for next pin.

Proof: If P is not a rectangle, then the reconfiguration
is not complete and some part of ∂P lies in the interior
of H. Therefore, P has at least one upright horizontal
cup in H, namely the H-cup with a lowest horizontal
edge as base. Of all upright horizontal cups in H, let
C = (vi, vi+1, . . . vj−1, vj) be one with a highest base.
Assume for the sake of contradiction that C is not open.
Then its lid contains some (maximal) horizontal section
vk, ..., vk+s of ∂P . Assume w.l.o.g. that k ≥ j. If vk and
vj coincide, then (vj−2, vj−1, vj = vk, vk+1) is an open
V-cup in H and the proof is finished, and similarly if
vk+s and vi coincide. So assume k 6= j and k + s 6= i.
Then vk, ..., vk+s must be the base of an upright H-cup,
call it D. Simple arguments show that D lies in H and
is higher than C, a contradiction.

Theorem 8 The described algorithm transforms P into
a rectangle in Θ(n2) pop operations.
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