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Abstract

We investigate a question initiated in the work of Sib-

ley and Wagon, who proved that 3 colors suffice to color

any collection of 2D parallelograms glued edge-to-edge.

Their proof relied on the existence of an “elbow” par-

allelogram. We explore the existence of analogous “cor-

ner” parallelepipeds in 3D objects, which would lead to

4-coloring. Our results are threefold. First, we refine

the 2D proof to render information on the number and

location of the 2D elbows. Second, we extend the 2D re-

sults to 3D for objects satisfying two properties. Third,

we exhibit a genus-0 object (a topological ball) that sat-

isfies one but not both of our properties, and fails the

3D extension theorem, establishing that this theorem is,

in a sense, tight.

1 Introduction

Sibley and Wagon [SW00] proved that any collec-
tion of parallelograms glued whole-edge to whole-
edge must have at least one elbow : a parallelo-
gram with two edges incident to one of its ver-
tices exposed in the sense that neither is glued to
another parallelogram. Elbows have at most two
neighbors, which enabled them to prove that such
tilings are 3-colorable. The analogous question in
3D is [Wag02, DO03b]: Must every object built
from parallelepipeds (henceforth, bricks) have at
least one corner, a brick with three faces incident
to one of its vertices, exposed? The bricks must be
properly joined : each pair is either disjoint, or in-
tersects either in a single point, a single whole edge
of each, or a single whole face of each.

Just as in 2D, the existence of corner bricks would
lead to 4-colorability of the “brick graph.”

But Robertson, Schweitzer, and Wagon [RSW02]
found a polyhedron with no corner. Their ex-
ample, a “buttressed octahedron,” has genus 13.
Since then, there have been two developments con-
cerning corners of 3D brick objects. First, it was
shown in [GO03] that two classes of such objects
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always have corners: the zonohedra, and objects
built from orthogonal bricks, i.e., rectangular boxes.
Zonohedra are a particular class of genus-0 objects.
Second, we found a genus-3 object with no cor-
ners [DO03a], and conjectured that every genus-0
object built from bricks has a corner.
In this paper we refine the 2D results and show

that they fail to extend to topological balls in 3D.
We deviate from a concentration on genus and in-
stead posit two properties (called S and I/E) such
that, if an object possesses these properties, then
it must have corners. Finally, we prove that topo-
logical balls have the first property (S), but not the
second (I/E).

2 An Object with No Corners: The ZZ-Object

The genus-3 example from [DO03a] serves as a
counterexample to many hypotheses, and will be
important to illustrate our definitions. The over-
all design is shown in Fig. 1a. It consists of two
Z-shaped paths connecting four cubes. Each of the
long connectors has no corner when split lengthwise
into four bricks. Similarly, the four cubes have no
corners when split into eight cubes. However, as
is evident from (a), it is self-intersecting. The self-

e

(a) (b)

Figure 1: (a) A self-intersecting object with no
corners (after refinement) (b) A genus 3 non-self-
intersecting object built from 14 bricks with no cor-
ners (after refinement).

intersection can be removed by zig-zagging one of
the Zs. The resulting object is shown in Fig. 1b.

3 2D Brick Objects Revisited

Sibley and Wagon [SW00] proved that every 2D ob-
ject built from parallelograms has an elbow. In this
section we refine their theorem both quantitatively
and qualitatively. First, we need some definitions.
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A pseudoline L[e] is a longest sequence of adja-
cent bricks, all of whose shared edges are parallel to
e; it has two “sides” of edges, the top and bottom. A
collapse of a pseudoline L[e] is a chain of edges ob-
tained by shrinking all the edges of L[e] parallel to e
to length zero. A monotone chord is a boundary-to-
boundary chain of edges that is strictly monotone
with respect to some direction. Intuitively, a mono-
tone chord z is the result of collapsing a pseudoline
L[e].
A path of bricks crosses a pseudoline L if it con-

tains a brick of L. A pseudoline L is separating (S)
if there is no path of bricks connecting a point on
its top to a point on its bottom, without crossing L;
L is called interior (I) if none of its side edges are
exposed; exterior (E) if all of its edges to one side
are exposed; and I/E if either I or E. Finally, L is
an SI/E-pseudoline, if it is both S and I/E. Similar
definitions hold for monotone chords. Fig. 2a shows
examples of monotone chords and pseudolines that
are interior, exterior, and separating.

e1
L1[ e1]

k1e2

L2[ e2]

L3[ e3]e3
k3

c

(a) (b)

Figure 2: (a) L1[e1] and its collapse k1 are interior
and non-separating; L2[e2] is interior and separat-
ing; L3[e3] and its collapse k3 are exterior (b) A 2D
object with three elbows.

An object O is SI/E-collapsible if it is either
empty, or contains one pseudoline L that satisfies
property SI/E, and a collapse of L reduces O to an
SI/E-collapsible object.

3.1 Refinement of the Sibley-Wagon Theorem

We will distinguish between an elbow parallelogram,
and an elbow vertex, the vertex of the elbow with in-
cident exposed edges. The first extension of Sibley-
Wagon is quantitative:

Lemma 1 Every 2D object built from parallelo-

grams has at least three elbow vertices.

Proof. Any object O built from parallelograms has
an outer boundary P that is a simple polygon. The
edges of P are all edges of parallelograms that are
on the exterior face (the unbounded component of
R2 \O). Note that P is a simple polygon regardless
of the genus of O.
Orient the boundary of P counterclockwise, and

define the turn angle τi at a vertex vi of P to be

the angle needed to turn vi− vi−1 to vi+1− vi; τi is
π minus the internal angle at vi.
Let the parallelogram contributing edge ei =

(vi, vi+1) to P have angles αi at vi and so π−αi at
vi+1. If O has no corners, then every vertex of P
must have at least two incident parallelograms of O;
for just one incident parallelogram would be a cor-
ner. So τi = π−[αi+(π−αi−1)+βi] = αi−1−αi−βi,
where βi ≥ 0 is the angular contribution of other
parallelograms incident to vi. We know that for any
simple polygon,

∑

i
τi = 2π. In forming this sum

via the expression in terms of the αi’s, it is clear that
the parallelogram sharing ei has a net zero contri-
bution, because its terms in τi and in τi+1 cancel
out. Thus each parallelogram sharing an edge of
P contributes 0 to the turn angle sum. We thus
have

∑

i
τi = −

∑

i
βi ≤ 0. This contradicts the

fact that the sum must equal 2π, contradicting our
assumption that there are no elbows.
We have now reproved the Sibley-Wagon theo-

rem. But we have more, for each elbow vertex can
contribute only strictly less than π to the turn angle
(e.g., a sharp parallelogram vertex with nearly 0 in-
ternal angle). So, for

∑

i
τi to reach 2π, we need at

least three elbow vertices. If these three elbow ver-
tices are vertices of distinct elbows, we are finished.
Only a one-parallelogram object can have three el-
bow vertices on one elbow, and here the lemma is
clearly true. So assume there is an elbow with two
elbow vertices on P . Then together those two ver-
tices contribute exactly π to the turn, still leaving
a gap to reach 2π. So the claim of the lemma is
established. ¤

That this result is best possible is established by
Fig. 2b. The second extension of Sibley-Wagon is
qualitative, yielding information about where the
elbows are: one to each side of every monotone
chord. We can prove this using turn angles, with-
out other assumptions. We choose instead to prove
a weaker version which extends almost directly to
3D.

Lemma 2 A collapse of a pseudoline is a mono-

tone chord.

Lemma 3 A monotone chord can cross a pseudo-

line at most once.

Lemma 4 If O′ is an object obtained by collapsing

a pseudoline in O, then a monotone chord k in O
reduces to a monotone chord k′ in O′.

Theorem 5 For any SI/E-collapsible object O and

any SI/E-monotone chord z of O, there is an elbow

vertex strictly to each nonempty side of z.
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Proof. The proof is by induction on the number of
pseudolines. The base case is an object with one
pseudoline L. By Lem. 3, a monotone chord z may
cross L at most once. This implies that a nonempty
side of z will contain at least one of the two end
bricks of L, each of which has two elbow vertices,
at most one of which may be on z.

The inductive hypothesis is that the theorem
holds for any SI/E-object with N or fewer pseu-
dolines. To prove the inductive step, we consider
an arbitrary SI/E-object O with N +1 pseudolines,
and reestablish the inductive hypothesis for O.

Pick a SI/E-pseudoline L whose collapse reduces
O to SI/E-collapsible object O′. Note that O′ may
self-intersect geometrically, but we are only con-
cerned with the combinatorial structure and the
parallelism of edges; global intersections are irrele-
vant for our property. (Alternatively, one can view
bricks on either side of L to be topologically ex-
tended through L.) By Lem. 2, L reduces to a
monotone chord k in O′, as illustrated in Fig. 3.

L
O

kO'

(a) (b)

Figure 3: (a) L is a SI/E-pseudoline (b) The col-
lapse k of L is a monotone chord.

Let z be an arbitrary SI/E-monotone chord in O
and let O+ and O− be the pieces of O separated by
z. By Lem. 4, the monotone chord z reduces to a
monotone chord z′ in O′. Let O

′+ and O
′− be the

pieces to which O+ and O− reduce in O′.

Next we focus on O+ and show that if nonempty,
it contains an elbow vertex v+ not on z. The induc-
tive hypothesis applied to O′ tells us that O′+ has
an elbow vertex v not on z. If this v is away from
the collapse, it can serve to establish the claim; but
if it is involved in the collapse, further argument is
needed. We now consider two cases, depending on
whether L is interior or exterior. We only detail the
first case in this abstract.

v
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v
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O
-

O
+
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v
+

v
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z'

O'
+

O'
-

(a) (b)

Figure 4: (a) L is interior; z is a SI/E-monotone
chord (b) Elbows in O′ are elbows in O.

If L is interior, then k is interior, with none of its
vertices exposed. Refer to Fig. 4. This implies that
v is not on k; consequently, v is not on L. Then
v+ ≡ v is exposed in O+; this along with the fact
that v does not touch z settles this case. ¤

4 Extensions of Results to 3D

The result of Thm. 5 extends to 3D SI/E-collapsible
objects. First we need some definitions.
A pseudoplane Z[e] is a collection of bricks, all

with edges parallel to e, defined recursively as fol-
lows: (1) Every brick that shares e is in Z[e] (2)
If b is in Z[e] and e′ an edge of b parallel to e,
then every brick that shares e′ is in Z[e]. Note that
the cornerless ZZ object (Fig. 1) is in fact a sin-
gle pseudoplane Z[e]. Although a pseudoplane is
connected, its interior may not be connected, i.e.,
there could be “pinchings” at edge-to-edge contacts
between bricks. The top and bottom of Z[e] are de-
fined in the obvious way: the collection of all faces
of bricks of Z[e] that have no edge parallel to e,
and are incident to the top or bottom endpoint of
e, respectively.
A collapse of a pseudoplane Z[e] is a sheet of faces

z obtained by shrinking all edges in Z[e] parallel to
e to zero length. A monotone sheet z is, intuitively,
the result of collapsing a pseudoplane Z[e]. The top
and the bottom of a pseudoplane are both monotone
sheets.
We define a pseudoplane Z to be separating (S),

interior (I), exterior (E), I/E, SI/E, exactly analo-
gously to the 2D definitions for pseudolines. Sim-
ilarly, a 3D object O is SI/E-collapsible just as in
2D.
Thm. 6 is a direct extension of Thm. 5, and its

proof follows the 2D proof closely:

Theorem 6 For any monotone sheet s of a SI/E-
collapsible object, there is a corner vertex strictly to

each nonempty side of s.

Corollary 7 Any SI/E-collapsible object has at

least three corners.

5 Topological Balls

In this section we focus on topological balls built
from bricks and show that they satisfy property S,
but not property I/E.

Lemma 8 Any pseudoplane of a topological ball O
is separating and O is S-collapsible.

Lemma 9 Topological balls are not I/E-collapsible.

3



This last claim is established by the example in
Fig. 5, which shows a topological ball O composed
of a pseudoplane Z = Z[e], with e a vertical edge,
and a symmetric cornerless piece O+ that lies on
top of Z (O = Z ∪O+). Fig. 6 shows top and bot-

b
2

b
3
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2

b
4

b'
4

Z=Z[e]

e

Figure 5: Side view of a topological ball O with no
corners on one side of the pseudoplane Z = Z[e].

tom views of O. O is composed of four identical
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Figure 6: Top (left) and bottom (right) of the object
O from Fig. 5.

smaller pieces glued together, with one piece Q as
illustrated in Fig. 7b. Each piece Q is composed of
four mutually adjacent bricks, with Z adjacent to
three of them (see Fig. 7a).
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Figure 7: (a) Three mutually adjacent bricks share
convex vertex u (b) Four mutually adjacent bricks
share u and sit on top of the pseudoplane Z[e].

This object O shows that the 2D result of Thm. 5
does not extend to 3D. Indeed we can show that the
3D extension, Thm. 6, is best possible in the follow-
ing sense. O satisfies property S by Lem. 8, but it is
not I/E-collapsible, in that, after collapse of Z, the
remaining object O+ does not satisfy property I/E.
Fig. 8a delineates an arbitrary pseudoplane A(a)
of O, whose collapse induces a new corner u not

A(a)

a Z

u
b'  = b+4

Figure 8: A pseudoplane A(a) of O whose collapse
induces a new corner u.

present in O. It is just this situation that blocks
the proof technique employed in Thms. 5 and 6.

6 Conclusions

We have shown that there exist topological balls
with no corners to one side of a pseudoplane, unlike
the analogous situation in 2D. We identified a class
of 3D objects, which we called SI/E-collapsible,
that do have corners on each side of any pseudo-
plane, and showed the result tight in some sense.
This proves the existence of corners, and therefore
4-colorability, for I/E-collapsible topological balls.
(All objects built from bricks are known to be 5-
colorable [RSW02] [GO03]).
Although it is tempting to glue several copies

of the object from Fig. 5 together to build a cor-
nerless ball, we have not been able to complete
this construction. Thus the main question raised
in [RSW02]—whether every ball has at least one
corner—remains open.
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