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Polygons Flip Finitely: Flaws and a Fix

Erik D. Demaine∗ Blaise Gassend† Joseph O’Rourke‡ Godfried T. Toussaint§

Abstract

Every simple planar polygon can undergo only a finite num-
ber of pocket flips before becoming convex. Since Erdős
posed this as an open problem in 1935, several independent
purported proofs have been published. However, we uncover
a plethora of errors and gaps in these arguments, and remedy
these problems with a new (correct) proof.

1 Pocket Flips

Given a simple polygon in the plane, apocketis a maximal
connected region interior to the convex hull and exterior to
the polygon. A(pocket) flipis the reflection of a pocket,
or more precisely the subchain of the polygon bounding the
pocket, across its line of support, the bounding edge of the
convex hull. In 1935, Paul Erdős [3] introduced the problem
of simultaneously flipping all pockets of a simple polygon,
and repeating this process until the polygon becomes con-
vex. He conjectured that this process terminates after a finite
number of steps. In 1939, Béla Nagy [2] pointed out that flip-
ping multiple pockets simultaneously may make the polygon
nonsimple. Modifying the problem slightly, he argued that
repeatedly flipping one pocket of the current polygon always
convexifies the polygon after a finite number of flips.

This result has come to be known as the Erdős-Nagy The-
orem. Over the years, the theorem has been rediscovered
many times, each discovery leading to a new proposed proof.
Among the arguments published in English, some are long
and technical, others use higher mathematics, some prove
a weaker result, some leave gaps for the reader to fill, and
still others are incorrect. In Section 2, we describe these ar-
guments and point out their weaknesses, gaps, and errors.
We view only one proof, by Kazarinoff and Bing [8, 1, 7],
as completely correct, though terse. Then, in Section 3, we
present our own proof which attempts to combine the most
elegant portions of the existing arguments, along with a few
new tricks, into a (correct) proof that we believe is both sim-
ple and thorough.

2 Existing Arguments

We begin by introducing some notation used in this paper.
Let d(x, y) denote the Euclidean distance between pointsx
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andy. Call a vertex of a simple polygonflat if its interior
angle isπ. Let P = P 0 = 〈v0, v1, . . . , vn−1〉 denote the
initial polygon and its vertices. LetP k = 〈vk

0 , vk
1 , . . . , vk

n−1〉
denote the resulting “descendant” polygon afterk arbitrary
pocket flips; ifP k is convex for somek, then we defineP k =
P k+1 = P k+2 = · · · . Let Ck denote the convex hull ofP k.
When we talk about convergence, it is always with respect to
k → ∞. When the limit ofP k exists, we denote it byP ∗,
its vertices byv∗i , etc.

2.1 Nagy

The very first claimed proof, published by Béla de Sz.-Nagy
in 1939 [2], is brilliant in overall design, but unfortunately
has a fatal flaw that may have gone undetected until now.1

Nagy’s argument consists of the following main steps:

1. The sequenceP k converges.

2. The limit P ∗ is convex.

3. Nonflat vertices ofP ∗ converge in finite time.

4. The sequenceP k converges in finite time.

The flaw is in Step 2, where Nagy uses the claim that
P 0 ⊆ C0 ⊆ P 1 ⊆ C1 ⊆ . . . to show thatP k andCk con-
verge to the same (necessarily convex) limit. As illustrated
in Figure 1, this claim is incorrect. When there are multiple
pockets to choose from,Ck 6⊆ P k+1.
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Figure 1: Nagy’s error:P 0 ⊆ C0 6⊆ P 1 ⊆ C1.

Despite most later arguments being based on Nagy’s, this
flaw seems unique to Nagy’s argument. Many later argu-
ments use the other steps of Nagy’s argument, to which we
now turn.

In Step 1, Nagy observes that the perimeter ofP k is
constant, and concludes that eachvk

i has a point of ac-
cumulation. Then he observes that, forx inside P k and
m ≥ k, d(x, vm

i ) < d(x, vm+1
i ). Therefore, forn ≥ m,

1We should point out, though, that Grünbaum [4] states that Bing
and Kazarinoff [1] remark that Nagy’s proof [2] is invalid. However,
Grünbaum [4] goes on to say that there is no basis for this claim. We have
not yet seen the Russian paper [1] and thus cannot assess this point further.
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Figure 2: For a nonflat vertexvk
i , once all the vertices are within

a small enough ball around their limit, there is a line which sepa-
rates the ball ofvk

i from all the other balls. Thusvk
i subsequently

remains on the convex hull ofP k and cannot be flipped again.

d(vm
i , vn

i ) < d(vm
i , vn+1

i ), which prevents the existence of
multiple points of accumulation, thus proving convergence.

To prove Step 3, Nagy uses an argument illustrated in Fig-
ure 2 to show that nonflat vertices of the limit polygon con-
verge in finite time. This argument is easy to draw, but re-
quires care to justify in detail, while Nagy’s presentation is
somewhat terse.

Finally, in Step 4, once all the nonflat vertices have con-
verged, no more flips are possible, because they would cause
the convex hull to increase beyond its limit.

2.2 Grünbaum

Branko Gr̈unbaum [4] described some of the intricate his-
tory of this problem following the appearance of Nagy’s pa-
per [2], uncovering several rediscoveries of the theorem. He
also provided his own argument, similar to Nagy’s but more
terse. One main difference is that, at each step, he flips the
pocket that has maximum area (if there is more than one
pocket to choose from). Therefore Grünbaum [4] actually
proves a weaker theorem: there exists a (well-chosen) se-
quence of flips that convexifies after finitely many flips. An
extended version of [4] was published in 2001 by Grünbaum
and Zaks [5].

Grünbaum’s argument has a similar structure to Nagy’s:

1. A subsequence of the sequenceP k converges to a con-
vex limit.

2. The whole sequence converges.

3. Nonflat vertices of the limit polygon converge in finite
time. (Same proof as Nagy.)

4. The sequence converges in finite time. (Same as Nagy.)

For Step 1, Gr̈unbaum invokes Nagy’s “constant polygon
length” argument to show that a subsequence converges. He
then claims that “due to the selection of pockets that maxi-
mize the area, the limit polygonP ∗ is convex,” without fur-
ther explanation. We view this unjustified claim as a gap in
the proof, because the convexity ofP ∗ has been a stumbling
block in most claimed proofs of the theorem.

In Step 2, Gr̈unbaum invokes Nagy’s “distances from
points in the polygon increase” observation, without further
justification. As in Nagy’s proof, this argument seems insuf-
ficient by itself, requiring more detail.

2.3 Reshetnyak and Yusupov

In 1957, two papers in Russian by Reshetnyak [9] and
Yusupov [13] claimed proofs of the theorem. According to
Grünbaum [4], these arguments are similar to Nagy’s [2]. We
have not yet studied the differences in detail.

2.4 Kazarinoff and Bing

In 1959, Kazarinoff and Bing [8] announced the problem and
a solution. Two years later, a proof appeared in a paper by
Bing and Kazarinoff [1] and also in Kazarinoff’s book [7].
They also conjectured that every simple polygon becomes
convex after at most2n flips. This conjecture has since been
shown to be false; see Section 2.5.

The proof described in Kazarinoff’s book [7] has no miss-
ing steps, and suffers only from being terse. Our proof distin-
guishes itself mainly by providing more detail. Their proof
proceeds as follows:

1. The sequenceP k converges to a limitP ∗.

2. Nonflat vertices of the convex hull ofP ∗ converge in
finite time.

3. All vertices ofP k converge in finite time. (Same idea
as Nagy.)

For Step 1, Kazarinoff and Bing use the “constant poly-
gon length” and the “distances from points in the polygon
increase” arguments. They show that, forx interior to C0,
the sequenced(x, vk

i ) is bounded and monotonic, and thus
it converges. Applying this argument for three noncollinear
pointsx1, x2, andx3 shows that eachvk

i converges to the
unique intersection of three circles.

In Step 2, they argue that, becauseP k converges, its in-
terior angles must also converge. Thus, any vertex that con-
verges to a nonflat vertex ofC∗ has an interior angle less than
π after a finite number of steps. Because a vertex moves only
when it is flipped, and a flip changes an interior angleα into
the angle2π − α, the vertex can no longer move.

2.5 Joss and Shannon

In 1973, two students of Grünbaum at the University of
Washington, R. R. Joss and R. W. Shannon, worked on this
problem but did not publish their results. Grünbaum [4]
gives an account of the unfortunate circumstances surround-
ing this event. They found a counterexample to the conjec-
ture of Bing and Kazarinoff (but unaware of the conjecture).
Specifically, they showed that, given any positive integerk,
there exist simple polygons of constant size (indeed, quadri-
laterals suffice) that cannot be convexified with fewer thank
flips. See [4, 11].

2.6 Wegner

In 1981, Kaluza [6], apparently unaware of the previous
work, posed the problem again and asked whether the num-
ber of flips could be bounded as a function of the number
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of polygon vertices. In 1993, Bernd Wegner [12] took up
Kaluza’s challenge and solved both problems again. His
proof of convexification in a finite number of flips is quite
different from the others, but his example of unboundedness
is the same as that of Joss and Shannon.

Wegner’s proof is certainly the most intricate of the proofs
we have seen. His proof is very technical, for example, us-
ing convergence results from the theory of convex bodies,
and difficult to summarize. To his credit, Wegner carefully
details his reasoning, unlike many other authors.

Wegner’s approach contains a number of new ideas. He
notices that the undirected angles between consecutive poly-
gon edges are monotonically nondecreasing, as they only
change when a vertex is on the edge of the lid being flipped.
The use of undirected angles makes this property stand out,
but prevents the use of angles to show convergence in finite
time as in Kazarinoff’s proof [7].

Instead, Wegner introduces the areaAk of P k and tries
to show that, after a finite number of flips, performing an
additional flip would causeAk to exceed the areaA∗ of its
limit. He lower-bounds the increase in area during a flip that
moves vertexvk

i by considering the areaa of the triangle
vk

i−1v
k
i vk

i+1. Wegner argues that, during such a flip,Ak will
increase by at least2a, and uses this fact to forceAk beyond
its limit. However, as illustrated in Figure 3, the increase in
area by2a occurs only for reflex verticesvk

i . Fortunately,
this flaw is easy to fix, because a convex vertex becomes
reflex after one flip, so the next time it moves, Wegner’s ar-
gument indeed applies.

a

a

a

a

Figure 3: Flipping a reflex vertex increases the polygon area by
twice the areaa of the incident triangle (left), but this property is
not true of a convex vertex (right).

2.7 Toussaint

Motivated by the desire to present a simple, clear, elemen-
tary, and pedagogical proof of such a beautiful theorem, Tou-
ssaint [10] presented a more detailed and readable argument
at CCCG 1999. He combined Kazarinoff and Bing’s ap-
proach to proving the convergence ofP k with Nagy’s ap-
proach of proving that convergence occurs in finite time.

The original argument that appeared in [10] uses one in-
stead of three noncollinear pointsx1, x2, andx3 to conclude
that the verticesvk

i converge. However, without further jus-
tification, it is plausible thatvk

i circles aroundx and thus has
multiple accumulation points. Because Toussaint’s argument
is explicit in the details, this issue is clearly an error. (This is
unlike Gr̈unbaum’s argument where the reader is left guess-
ing whether Gr̈unbaum was in error or left some trick unre-

ported.) This led the first and third authors of this paper to
point out the problem, and propose the three-point solution.
This correction appeared in the journal version of Toussaint’s
argument [11].

Unfortunately, both arguments [10, 11] make an invalid
deduction for establishing the convexity of the limit poly-
gonP ∗: “we note that the limit polygon must be convex, for
otherwise, being a simple polygon, another flip would alter
its shape contradicting that it is the limit polygon.” For some
intuition on why this deduction is invalid, imagine that there
are two portions of the polygon that each inflate infinitely
often (hypothetically, of course). If we spend all of our time
flipping just one of those portions, the other portion never
gets flipped, so the limit is nonconvex.

3 Proof of the Erdős-Nagy Theorem

We now offer a short, elementary, and self-contained proof
of the Erd̋os-Nagy Theorem. After writing our proof, we
discovered that it uses essentially the same arguments as
Kazarinoff and Bing [8]. The main difference is that we en-
deavored to detail all important steps. As we shall see in
Section 3.1, this led to some small changes from [8] which
we feel enhance the clarity of the proof.

Theorem 1 A simple polygonP can undergo only a finite
number of pocket flips before being convexified.

Proof. Reasoning by contradiction, suppose that there were
an infinite sequence of polygonsP k = 〈vk

0 , . . . , vk
n−1〉, in-

dexed byk, eachP k derived from the previousP k−1 by
exactly one pocket flip (i.e., the sequenceP k never becomes
constant), starting fromP 0 = P . Let x be any point in-
sideP . By definition of flipping, we haveP 0 ⊂ P 1 ⊂ · · · ⊂
P k, sox is inside all descendants ofP .

We first offer an outline of the proof:

1. The distance from each vertexvk
i to a fixed pointx ∈ P

is a monotonically nondecreasing function ofk.

2. The sequenceP k approaches a limit polygonP ∗.

3. The angleθk
i at vertexvk

i converges.

4. Any vertex vk
i that moves infinitely many times con-

verges to a flat vertexv∗i .

5. The infinite sequenceP k cannot exist.

Step 1. First we prove that the distance fromx to any
particular vertexvi is monotonically nondecreasing withk.
Let d(x, vk

i ) be this distance at stepk. If the (k + 1)st flip
does not movevi, then the distance remains the same. Ifvi

is flipped, then it flips over the pocket’s line of support,L,
which is the perpendicular bisector ofvk

i vk+1
i ; see Figure 4.

BecauseL supports the hull ofP k andx is insideP k, x is
on the same side ofL asvk

i . Thusd(x, vk+1
i ) > d(x, vk

i ).
This establishes that the distance fromx to each vertex is a
monotonically nondecreasing function ofk.

Step 2.Next we argue that the sequenceP k approaches a
limit polygon P ∗. The perimeter ofP k is independent ofk,
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Figure 4: The distance fromx to vi increases by a flip.

for it is just the sum of the fixed edge lengths. The distance
from x to vi is bounded above by half the perimeter (because
the polygon has to wrap around bothx andvi). Thus each
distance sequenced(x, vk

i ) has a limit. If we look at the dis-
tance sequences tovi from three noncollinear pointsx1, x2,
andx3 insideP , their limits determine three circles (centered
at x1, x2, andx3) whose unique intersection point yields a
limit positionv∗i . ThenP ∗ = 〈v∗0 , . . . , v∗n−1〉.

Step 3. Let θk
i ∈ [0, 2π) be the directed angle

∠vk
i−1v

k
i vk

i+1. We observe thatθk
i ∈ [εi, 2π − εi], where

εi = min{θk
i , 2π − θk

i }. Indeed this relation holds forθ0
i ,

and forθk
i to get closer to0 or 2π, d(vk

i−1, v
k
i+1) would have

to decrease, which is impossible by the distance argument
detailed in Step 1. Becauseθk

i stays away from0 and2π,
and the edge lengths ofP k are fixed, and therefore cannot
approach zero,θk

i is a continuous function of the coordi-
nates of the three vertices inP k that define the angle. These
vertices converge, soθk

i must also converge, and its limit is
θ∗i = ∠v∗i−1v

∗
i v∗i+1.

Step 4. We now distinguish between flat and nonflat ver-
tices ofP ∗. A flat vertexv∗i is one for whichθ∗i = π. A
nonflat vertexhas θ∗i 6= π; it could be convex or reflex.
Consider a vertex for whichvk

i moves an infinite number
of times. We show that this vertex converges to a flat vertex
v∗i of P ∗. Indeed, whenvk

i moves as a result of a pocket flip,
θk+1

i = 2π − θk
i , as befalls any directed angle which is re-

flected. Consequently, there are infinitely manyk for which
θk

i ≥ π, and infinitely many for whichθk
i ≤ π. Thus the

limit θ∗i can only beπ.
Step 5. All that remains is to force a contradiction by

showing that, once the nonflat vertices ofP ∗ have been
reached, no further flips are possible. Here we use the convex
hull Ck of P k, and the hullC∗ of P ∗. Of course,P k ⊆ Ck

andP ∗ ⊆ C∗. We will obtain a contradiction to Fact A: for
anyk, P k+1 6⊆ Ck. The reason this fact holds is that, at ev-
ery flip, the mirror image of the pocket area previously inside
Ck is outsideCk. (See, for example, Figure 1:P 1 6⊆ C0.)

Let k̄ be a value ofk for which only flat vertices ofP ∗

have yet to converge.P k̄ includes all nonflat vertices in their
final positions. Of course,P ∗ also includes all nonflat ver-
tices in their final positions. Now, because the flat vertices
of P ∗ cannot alter its hull beyond what the nonflat vertices
already contribute, we know thatC∗ ⊆ C k̄. (C k̄ is conceiv-
ably a proper superset because of the vertices ofP k that are
destined to be, but are not yet, flat vertices inP ∗.)

Now considerP k̄+1. It is contained in all subsequent

polygons and so inP ∗ ⊆ C∗. So we have reached Fact B:
P k̄+1 ⊆ C∗ ⊆ C k̄. Fact B contradicts Fact A, so there
cannot be an infinite sequenceP k. �

3.1 Discussion

To close, we outline some of the main differences between
our proof and other arguments, particularly Kazarinoff and
Bing’s proof [8], which make exposition easier:

1. Whereas previous authors prove thatP k becomes con-
stant after a finite number of steps, we prefer to reason
by contradiction, proving that an infinite number of flips
is impossible. This simplifies our reasoning. For exam-
ple, it allows us to conclude thatP k+1 always contains
points not inCk. Otherwise, this relation would only
hold until the polygon has convexified.

2. We use directed angles instead of interior angles. This
approach allows us to talk about limit angles without
worrying about whether the limit polygon is simple.

3. We show that nonflat vertices ofP ∗ converge in finite
time. Kazarinoff and Bing [8] use vertices ofC∗ in-
stead, and consider that all vertices ofC∗ are nonflat.
Unfortunately, this view means that there can be fewer
vertices inC∗ than inP k, so we lose the correspon-
dence between vertices ofC∗ and vertices ofP k.
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