
,

~.

(TR # 011) 07/26/91

TECHNICAL REPORT

Generating Random Polygons

Jos'eph ,O:J~our~e '
." Mandlra Vlrmanl

1" " " .. ';" \ •

. '

" ...
. , :.,...: 1oh>'

:t ~~;..l ~,.~'"' 't-:- • 1 '

;f,: ;:.,'O'1'>;dr~~~g4J:l:,

Department of Computer Science

Northampton, MA 01063

Stoddard Hall Smith College

Tel: (413) 585~3858

Generating Random Polygons

1 Introduction

Joseph O'Rourke'
Mandira Virmani t

July 25, 1991

There is a need for a method to generate "random" polygons for testing algorithms
that accept a polygon as input. See, for example, the Carleton "Workbench for
Computational Geometry"[EKM+90]. A precise definition of what should constitute
a random polygon seems elusive, and no attempt will be made here to clarify this
notion. Rather we report on a method we developed which seems to give reasonable
results.

2 Sketch of Method

The basic idea is simple. To generate a random polygon P of n vertices within a
certain bounded region R,· start with an arbitrary polygon of n vertices within that
region. In our experiments we chose to start with a regular polygon, which is of course
as far from random as possible. Now assign each vertex a fixed velocity in a random
direction, with a random speed (no greater than some maximum speed). Permit the
polygon to deform over time with its vertices moving like billiard balls, stretching the
edges between them appropriately.

At all times we would like to maintain two conditions: the polygon is simple (non
selfintersecting), and it remains within the bounding region R. When a violation of
either of these conditions is about to occur, we reassign the offending vertex a new
random velocity. In effect, the vertex "bounces off" the edge of P or of R as if it were
a ball spinning randomly (so that its new velocity is random).

The polygon is permitted to evolve over time until sufficient "mixing" is attained.
We make some half-hearted attempts to measure this mixing, but ultimately the
success of the method must be judged by the aesthetic appeal of the shape of the
resulting polygons.

"Department of Computer Science, Smith College, Northampton, MA 01063, USA. Supported
by NSF grant CCR-882194.

'Microsoft Corporation, One Microsoft Way, Redmond, WA 98052, USA.

I

3 Method in More Detail

We start with a regular polygon P of n vertices of radius 750 inside a bounding
circle R of radius 1000. Velocities are assigned to each vertex, with a random speed
uniformly distributed in [0,200]. Vertices are indexed from 0 to n - 1. The position
of vertex i is p[i], and its velocity is u[i]. A single time unit evolution is accomplished
as follows:

Algorithm 1: ONE TIME UNIT
for each i = 0 to n - 1 do

~!o\"e vertex i tentatively to p'li] = p[i] + u[i].
if p'[i] E R and the new polygon is simple

then (Accept) p[i] = p'li]
else (Reject) Assign u[i] a new random velocity.

Note that if an attempted move is in violation of the bounding region or of sim
plicity, it is simply not made: on the next iteration that vertex will move with a new
random velocity.

We currently use a brute-force algorithm to determine if a polygon 'is simple:
check if the two new edges, (p[i - 1], P'[i]) and (p/[i], p[i + 1]) intersect any other edges.
Thus this step requires O(n) time. One can imagine making this step more efficient:
perhaps O(log n) is possible.

Finally, the "One Time Unit" procedure is repeated until the desired mixing is
obtained.

4 Examples for t = 5

Before showing sufficiently mixed examples, we illustrate the algorithm working for
just five time units, on two examples, both with n = 36 but started with different
random seeds, in Figs. 1 and 2. The trajectories of the individual vertices are evident
in these figures. These (and all succeeding) figures should be read bottom to top, left
to right. Thus t = 0 is bottom left, and t = 5 is top right.

5 Examples for t = 1000

We now present six different random polygons for several values of n: n = 36, 72,
180, 360 in Figs. 3, 4, 5, 6 respectively. In all cases, the polygons evolved from a
regular n-gon in 1000 time units. Each of the six for each n differ only in the seed
used for the random number generator.

2

Figure 1: n = 36, five Lime st.t'ps (seed = 4) .

3

: i!;ure 2: n ., 36, five time steps (seed .. 10).

4

figure 3: II _ 36, t '" 1000, six dilfl'~Pt random ~.

,

Figure 4: FI '" 72, t '" 1000, six different ra.ndom seed$.

6

F'il!:ur~ 5: II = 180, I = 1000, 5ix diITerenl random seed,.

7

figure 6: " '" 360, ! '" 1000, six different random seed,.

8

6 Measures of Randomness

In an attempt to verify that the polygons in Figs. 3-6 are in fact "random" in some
sense, we measured two quantities: the spatial distribution of the polygon vertices l

,

and the distribution of the angles of the polygon edges. We call the first the vertex
distribution and the second the edge distribution. Clearly we would like to have both
distributions approximate uniform distributions.

6.1 Vertex Distribution

We partitioned the bounding circle R into k = 8 equal area concentric annuli , and
counted the number of vertices in each annulus. Initially the distribution of ver
tices into annuli is highly nonuniform, with all n vertices falling into one annulus.
We expect that after sufficient mixing, each annulus should contain approximately
n/ k \·ertices. Fig. 7 shows the concentric circles overlayed on the random polygons
from Fig. 3. We measured the deviation from uniformity x. with the Chi-square
distribution; see the caption to Fig. 7.

6.2 Edge Distribution

To measure the angle distribution, we partitioned the unit circle into k = 8 angular
sectors, and counted the number of edges (treated as directed by a counterclockwise
boundary traversal) that fell into each sector. Initially we have a perfect distribution,
because we start with a regular polygon. We expect that the distribution should
stay approximately uniform, with n/k edges in each sector, and again we measured
the deviation from uniformity x. with the Chi-square distribution. Fig. 8 shows the
distribution of the edge vectors for the random polygons in Fig. 4.

6.3 Chi-square Values

For k = 8, the relevant Chi-square values and the corresponding percent confidence
level that the observed distribution is uniform, are:

90Y.
95Y.
99Y.
99.5%

2.83
2.17
1.24
0.989

In Fig. 9 we show snapshots of the evolution of an n = 36 polygon at t = 400 intervals
up to t = 2000 (t = 0 bottom left, t = 2000 top right), and in Fig. 10 we plot the
Chi-square values for both the vertex and edge distributions.2 Figs. 11 and 12 show
similar pictures for n = 72, and Fig. 13 shows the distributions for a similar n = 180
example (not shown). These examples illustrate that both distributions are uniform

1 Eli Goodman suggested this.
'The point plotted for x. at t = 0 is not corred in this and succeeding figures: it is even larger,

but we moved it down to prevent the vertical scale from being stretched.

9

figure i : Botlom to top. left to right: x. = 1.4,0.3,0.2, 1.0, 1.2, 1.2

10

Figure 8: Bottom to top, left to right: X. = 2.4,2.7,0.8,0.4,3.9,3.1

11

at the 90% co:"::dence level most of the time, with an average confidence at about
the 95% level (.~ ~tter.

7 Discussion

We ha\'e no ii. .:s ion that the two measures we used are adequate to characterize
randomness in :·oiygons. It seems that random polygons should have a certain "con
voluted ness." .". ;>recise measure of this suggests itself: define the convolutedness of a
polygon to be =aximum link distance of a path from any point in the plane exterior
to the polygo;:. : 0 infinity. Here the path must avoid the interior of the polygon,
and its link di,: ance is one plus the number of turns in the path. For example, the
polygon in Fi~ : 4 has convolutedness of 3, because there is a point (shown) that
requires three ;.;-gments (two turns) to reach infinity.

A convex pc :ygon has convolutedness 0, and a spiral polygon has high convolut
edness. It seer:" that for a fixed n, our algorithm should evolve to a convolutedness
dependent on c. . If the limiting mean value of convolutedness were known, then this
would give a =ethod of defining "sufficient mixing": run the algorithm until the
expected conv(;·Jt.edness is attained.

We therefo:-= pose as an open problem: what is the expected convolutedness as a
function of n f:, our algorithm as t 00 ?

References

[EKM+90] P. :::?stein, A. Knight, J. May, T. Nguyen, and J.-R. Sack. A workbench
for :omputational geometry (WOCG). Technical report, Carelton Uni
ver;;,ty, 1990.

12

Fisure 9; n _ 36, six inl.psbo!.S up to t "'" 2000.

13

>
I

.c;
(J

,

30~---------------------------'

20

10

o 1000

Iteretlon.
2000

Figure 10: n = 36, Chi-square values.

14

II ChLv

• ChLe

Figure 11: n = 72, six snapshots lip to t = 2000.

15

>
I .-s:

0

>
I -~

0

30~---------------------------,

20

10

o 1000

It.r.,iona
200 0

Figure 12: n = 72, Chi-square values.
30~---------------------------,

20

10

o
o 1000 2000

1I.,.Uon.
Figure 13: n = 180, Chi-square values.

Figure 14: A polygon of convoluledness 3.

16

I!I ChLv

• ChUI

e Chi_v

• ChLe

Figure I: n _ 36, fke ~ime sleps (seed '" 4).

3

Figure 2: " = 36, li ve lime s\.eps (seed = 10) .

•

•

Figure 3: II = 36, t = 1000, six diff('renl random ~s.

,

Figure 4: 11 = 72, t = 1000, six different random seeds.

6

Fi,urt:): n _ ISO, t = 1000, six difrtrent r&l1dom seem.

7

