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1 Introduction 
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Mandira Virmani t 

July 25, 1991 

There is a need for a method to generate "random" polygons for testing algorithms 
that accept a polygon as input. See, for example, the Carleton "Workbench for 
Computational Geometry"[EKM+90]. A precise definition of what should constitute 
a random polygon seems elusive, and no attempt will be made here to clarify this 
notion. Rather we report on a method we developed which seems to give reasonable 
results. 

2 Sketch of Method 

The basic idea is simple. To generate a random polygon P of n vertices within a 
certain bounded region R,· start with an arbitrary polygon of n vertices within that 
region. In our experiments we chose to start with a regular polygon, which is of course 
as far from random as possible. Now assign each vertex a fixed velocity in a random 
direction, with a random speed (no greater than some maximum speed). Permit the 
polygon to deform over time with its vertices moving like billiard balls, stretching the 
edges between them appropriately. 

At all times we would like to maintain two conditions: the polygon is simple (non
selfintersecting), and it remains within the bounding region R. When a violation of 
either of these conditions is about to occur, we reassign the offending vertex a new 
random velocity. In effect, the vertex "bounces off" the edge of P or of R as if it were 
a ball spinning randomly (so that its new velocity is random). 

The polygon is permitted to evolve over time until sufficient "mixing" is attained. 
We make some half-hearted attempts to measure this mixing, but ultimately the 
success of the method must be judged by the aesthetic appeal of the shape of the 
resulting polygons. 

"Department of Computer Science, Smith College, Northampton, MA 01063, USA. Supported 
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3 Method in More Detail 

We start with a regular polygon P of n vertices of radius 750 inside a bounding 
circle R of radius 1000. Velocities are assigned to each vertex, with a random speed 
uniformly distributed in [0,200]. Vertices are indexed from 0 to n - 1. The position 
of vertex i is p[i], and its velocity is u[i]. A single time unit evolution is accomplished 
as follows: 

Algorithm 1: ONE TIME UNIT 
for each i = 0 to n - 1 do 

~!o\"e vertex i tentatively to p'li] = p[i] + u[i]. 
if p'[i] E R and the new polygon is simple 

then (Accept) p[i] = p'li] 
else (Reject) Assign u[i] a new random velocity. 

Note that if an attempted move is in violation of the bounding region or of sim
plicity, it is simply not made: on the next iteration that vertex will move with a new 
random velocity. 

We currently use a brute-force algorithm to determine if a polygon 'is simple: 
check if the two new edges, (p[i - 1], P'[i]) and (p/[i], p[i + 1]) intersect any other edges. 
Thus this step requires O( n) time. One can imagine making this step more efficient: 
perhaps O(log n) is possible. 

Finally, the "One Time Unit" procedure is repeated until the desired mixing is 
obtained. 

4 Examples for t = 5 

Before showing sufficiently mixed examples, we illustrate the algorithm working for 
just five time units, on two examples, both with n = 36 but started with different 
random seeds, in Figs. 1 and 2. The trajectories of the individual vertices are evident 
in these figures. These (and all succeeding) figures should be read bottom to top, left 
to right. Thus t = 0 is bottom left, and t = 5 is top right. 

5 Examples for t = 1000 

We now present six different random polygons for several values of n: n = 36, 72, 
180, 360 in Figs. 3, 4, 5, 6 respectively. In all cases, the polygons evolved from a 
regular n-gon in 1000 time units. Each of the six for each n differ only in the seed 
used for the random number generator. 
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Figure 1: n = 36, five Lime st.t'ps (seed = 4) . 
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: i!;ure 2: n ., 36, five time steps (seed .. 10). 
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figure 3: II _ 36, t '" 1000, six dilfl'~Pt random ~. 
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Figure 4: FI '" 72, t '" 1000, six different ra.ndom seed$. 
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F'il!:ur~ 5: II = 180, I = 1000, 5ix diITerenl random seed,. 
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figure 6: " '" 360, ! '" 1000, six different random seed,. 
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6 Measures of Randomness 

In an attempt to verify that the polygons in Figs. 3-6 are in fact "random" in some 
sense, we measured two quantities: the spatial distribution of the polygon vertices l

, 

and the distribution of the angles of the polygon edges. We call the first the vertex 
distribution and the second the edge distribution. Clearly we would like to have both 
distributions approximate uniform distributions. 

6.1 Vertex Distribution 

We partitioned the bounding circle R into k = 8 equal area concentric annuli , and 
counted the number of vertices in each annulus. Initially the distribution of ver
tices into annuli is highly nonuniform, with all n vertices falling into one annulus. 
We expect that after sufficient mixing, each annulus should contain approximately 
n/ k \·ertices. Fig. 7 shows the concentric circles overlayed on the random polygons 
from Fig. 3. We measured the deviation from uniformity x. with the Chi-square 
distribution; see the caption to Fig. 7. 

6.2 Edge Distribution 

To measure the angle distribution, we partitioned the unit circle into k = 8 angular 
sectors, and counted the number of edges (treated as directed by a counterclockwise 
boundary traversal) that fell into each sector. Initially we have a perfect distribution, 
because we start with a regular polygon. We expect that the distribution should 
stay approximately uniform, with n/k edges in each sector, and again we measured 
the deviation from uniformity x. with the Chi-square distribution. Fig. 8 shows the 
distribution of the edge vectors for the random polygons in Fig. 4. 

6.3 Chi-square Values 

For k = 8, the relevant Chi-square values and the corresponding percent confidence 
level that the observed distribution is uniform, are: 

90Y. 
95Y. 
99Y. 
99.5% 

2.83 
2.17 
1.24 
0.989 

In Fig. 9 we show snapshots of the evolution of an n = 36 polygon at t = 400 intervals 
up to t = 2000 (t = 0 bottom left, t = 2000 top right), and in Fig. 10 we plot the 
Chi-square values for both the vertex and edge distributions.2 Figs. 11 and 12 show 
similar pictures for n = 72, and Fig. 13 shows the distributions for a similar n = 180 
example (not shown). These examples illustrate that both distributions are uniform 

1 Eli Goodman suggested this. 
'The point plotted for x. at t = 0 is not corred in this and succeeding figures: it is even larger, 

but we moved it down to prevent the vertical scale from being stretched. 
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figure i : Botlom to top. left to right: x. = 1.4,0.3,0.2, 1.0, 1.2, 1.2 
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Figure 8: Bottom to top, left to right: X. = 2.4,2.7,0.8,0.4,3.9,3.1 
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at the 90% co:"::dence level most of the time, with an average confidence at about 
the 95% level (.~ ~tter. 

7 Discussion 

We ha\'e no ii. .:s ion that the two measures we used are adequate to characterize 
randomness in :·oiygons. It seems that random polygons should have a certain "con
voluted ness." .". ;>recise measure of this suggests itself: define the convolutedness of a 
polygon to be =aximum link distance of a path from any point in the plane exterior 
to the polygo;:. : 0 infinity. Here the path must avoid the interior of the polygon, 
and its link di,: ance is one plus the number of turns in the path. For example, the 
polygon in Fi~ : 4 has convolutedness of 3, because there is a point (shown) that 
requires three ;.;-gments (two turns) to reach infinity. 

A convex pc :ygon has convolutedness 0, and a spiral polygon has high convolut
edness. It seer:" that for a fixed n, our algorithm should evolve to a convolutedness 
dependent on c. . If the limiting mean value of convolutedness were known, then this 
would give a =ethod of defining "sufficient mixing": run the algorithm until the 
expected conv(;·Jt.edness is attained. 

We therefo:-= pose as an open problem: what is the expected convolutedness as a 
function of n f:, our algorithm as t ..... 00 ? 
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Fisure 9; n _ 36, six inl.psbo!.S up to t "'" 2000. 
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Figure 10: n = 36, Chi-square values. 
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Figure 11: n = 72, six snapshots lip to t = 2000. 
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Figure 14: A polygon of convoluledness 3. 
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Figure I: n _ 36, fke ~ime sleps (seed '" 4). 
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Figure 2: " = 36, li ve lime s\.eps (seed = 10) . 
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Figure 3: II = 36, t = 1000, six diff('renl random ~s. 
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Figure 4: 11 = 72, t = 1000, six different random seeds. 
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Fi,urt:): n _ ISO, t = 1000, six difrtrent r&l1dom seem. 
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