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1 Introduction

A line of research investigation has opened in the last decade that spans two
millennia of geometry: from Greek explorations of convex polyhedra to cutting-
edge geometrical research today. And yet the topic is elementary and can be
fruitfully explored in the classroom at a wide range of educational levels.

The main question driving this research is simply stated:

’ Q1. Which polygons can fold to a convex polyhedron?

Unpacking this question requires defining its four technical terms. A polygon
P is a planar shape whose boundary is composed of straight segments. It is a
single-piece shape that could be cut out from a piece of paper by straight scissors
cuts. A polyhedron Q is the 3D analog of a 2D polygon. It is a solid in space
whose boundary is composed of polygonal faces. As we are concerned mainly
with this surface boundary, we will use Q to refer to the surface rather than
the solid. A convezr polyhedron is one without dents or indentations. Examples
include the five “regular” Platonic solids (tetrahedron, octahedron, cube, dodec-
ahedron, icosahedron), the thirteen “semi-regular” Archimedean solids (trun-
cated icosahedron (i.e., a soccer ball), etc.), or any of an infinite variety of
irregular convex polyhedra. As we will only discuss convex polyhedra in this
article, the “convex” qualification will be often left implicit. Finally, to fold a
polygon to a polyhedron means to crease the polygon and fold it into 3D so that
it forms precisely the surface of the polyhedron, without any wrapping overlap,
and without leaving any gaps. Another way to view this is in reverse: a polygon
P can fold to a polyhedron @ if Q could be cut open and unfolded flat to P.

Two examples are shown in Figure 1. Note from (a) that creases of P, which
become edges of Q, do not necessarily begin or end at vertices (corners) of P.
Note from (b) that a nonconvex polygon might fold to a convex polyhedron.
In the alternative cut-open-and-unfold view, the cuts in both these examples
are along polyhedron edges. We will see that in general the cuts are arbitrary
surface segments.
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Figure 1: (a) Folding an equilateral triangle to a regular tetrahedron. (b) Fold-
ing the Latin cross to a cube.

These examples already show that at least some polygons can fold to some
polyhedra. This naturally raises this question:

’ Q2. Does every polygon fold to some convex polyhedron?

The answer is NO, established by the polygon P, shown in Figure 2. We now

Figure 2: An un-foldable polygon P,. [Fig. 25.1 in [DO07].]

offer an elementary proof that this P, cannot fold to a convex polyhedron. The
key observation is that the total angle surrounding any true vertex v (corner) of
a convex polyhedron is less than 360°. In technical language, the sum of the face
angles incident to v is less than 360°. This is one reason why there is not a 6-th
Platonic solid: gluing together three equilateral triangles to a vertex produces
the tetrahedron, four yields the octahedron, five the icosahedron, but six times
60° = 360° makes a flat region, not a true vertex. Another way to phrase this
constraint, more useful for our purposes, is that the total angle surrounding any
point p on a convex polyhedron (vertex or not) is < 360°. When the angle is
exactly 360°, p is not a vertex. This constraint does not hold, incidentally, for
nonconvex polyhedra: there there is no a priori bound on the total face angle
surrounding surface points.

The consequence of the angle constraint is that, when we glue the perimeter
of any P to itself to form the folding, we can never glue more than 360° around



any one point, for otherwise, @ would not be convex.

Now, classify the vertices of a polygon P as either conver, having internal
angle < 180°, or refler, having internal angle > 180°. The polygon P, in
Figure 2 has three consecutive reflex vertices (a, b, ¢), with the complementary
exterior angle 3 at b small. All other vertices are convex, with interior angles
strictly larger than (.

Now we imagine how we might glue up the perimeter in the vicinity of the
problematic vertex b. There are only two options. Either we “zip” together
edges ba and bc, or some other point or points of the perimeter glue into b. The
first possibility forces a to glue to ¢, exceeding 360° there, and violating the
angle constraint. So this is ruled out. The second possibility cannot occur with
P,, because there is no perimeter point with small enough internal angle to fit
inside 8 at b. This rules out the second possibility, and shows that P, cannot
fold to any convex polyhedron.

So now we know that sometimes polygons can, and sometimes they cannot,
fold to a polyhedron, which justifies the phrasing of Q1: Which polygons can
fold to a polyhedron? Before pursuing this question further, it is natural to
wonder how common foldability in this sense is. This would lead into a thicket
of questions of how to define a “random polygon,” but suffice it to say that
under reasonable assumptions, the answer is that foldability is rare: if you cut
out a random polygon of n sides from a piece of paper, the probability that it
will fold (to a convex polyhedron) approaches zero as n gets large.

Now that we have explained Q1 and explored a few basic issues, it is time to
admit that there is as yet no satisfactory answer to the question. In particular,
there is no characterization of which polygons fold and which do not, except in
certain special cases, explored below. Nevertheless, there is now an algorithm,
implemented in publicly available software,' that will take any specific P and
tell you whether it can fold, and if so, give some information about the Q to
which it can fold. Before we can explain this somewhat mysterious statement,
we turn to the powerful theorem that sits at the heart of this research.

2 Alexandrov’s Theorem

Alexandrov’s theorem is both beautiful and elementary (in statement, not in
its proof techniques), but is not taught in any Western school curriculum below
specialized sporadic graduate-level courses, as far as I know. Part of the reason
is language: he published his theorem in Russian in 1941 [Ale41], and included
it in his 1950 masterwork Convex Polyhedra [Ale50], again in Russian. This
was translated to German in 1958 [Ale58], but only in 2005 did an English
translation of his book appear [Ale05]. Fortunately, the beauty and utility of
this theorem is now more widely recognized, and is essential for our topic.

I will simplify and specialize his theorem to our needs. First, let us define an
Alezandrov gluing of a polygon to be just what we need for a folding to a convex

Thttp://theory.lcs.mit.edu/~edemaine/aleksandrov/cross/.



polyhedron. There are three conditions that must be satisfied for a gluing to be
Alexandrov:

(a) The gluing must entirely consume the perimeter of the polygon with
matches: every point p of the perimeter must be matched with one or
more points of the perimeter. Here we allow isolated points to be mate-
less (or to match with themselves), as we did in Figure 2 when considering
“zipping” in the neighborhood of b.

(b) The gluing creates no more than 360° angle at any point. (This is our
angle condition for convex polyhedra.)

(¢) The gluing should result in a topological sphere, that is, a surface that
could be deformed to a sphere. In other words, not a torus (donut), not a
fundamentally twisted shape, etc., but rather what amounts to a lumpy,
closed bag.

This third condition is difficult to state precisely without introducing technical
language from topology.? In any case, I hope it is clear that if a gluing has any
hope of producing a convex polyhedron, it must be an Alexandrov gluing, for
the three conditions just specify what is obviously necessary—mno gaps, the 360°
condition, and producing a spherical shape.

Theorem (Alexandrov). Any Alexandrov gluing corresponds to a
unique convex polyhedron (where a doubly covered polygon is consid-
ered a polyhedron).

Let us ignore the parenthetical caveat for a moment to emphasize what this is
saying: the obvious necessary conditions for a polygon to fold to a polyhedron
are also sufficient. Not only that, the resulting polyhedron is unique. This
means that any time you can find an Alexandrov gluing, you have created a
convex polyhedron. We will see that one catch is that Alexandrov’s proof was
an existence proof: so you have created a particular convex polyhedron but you
don’t know what it looks like!

We have already seen two Alexandrov gluings in Figure 1, but their fold-
ings were obvious, both due to their regularity and because the crease lines are
self-evident. But consider the unusual folding of an equilateral triangle in Fig-
ure 3(a). One can easily check that it is an Alexandrov gluing. Condition (a)
is satisfied because no perimeter sections are left unmatched. Condition (b) is
met at the gluing together of {x, A, B, C'}, whose angles sum to 360°, and at
the four “pinch” or fold points {a,b,c,d} glued to themselves, with each angle
180° there, i.e., the flat side of the triangle. All other points glued together are
180° + 180° = 360°. That condition (c) is satisfied is perhaps best verified by
taping a folded paper triangle according to the gluing instructions and seeing
that the result is a sort of bag. Alexandrov’s theorem says that this bag is
a particular convex polyhedron. In fact, it is the irregular tetrahedron shown

2The shape should be homeomorphic to a sphere.



(2) (b)

Figure 3: Alexandrov gluings of an equilateral triangle. (a) The three corners
{4, B,C?} all glue to point x. The four fold points {a,b, ¢,d} become the four
vertices of the resulting tetrahedron in (c), two of whose faces are Aabd, and
Abced. (b) A folding that creases the triangle down an altitude, gluing A and
B together, and edge AC to BC'. (c) View of the tetrahedron that results from
the gluing in (a). Note the three corners {A, B,C} “disappear,” forming 360°
at = on tetrahedron edge ab.



in (c) of the figure, which you might be able to coax out of your taped-triangle

bag with some nudging.

The folding in Figure 3(b) is also an Alexandrov gluing, but what it produces
for the exception clause in Alexandrov’s theorem: gluings might produce zero-

is simply a doubly covered, flat 30°—60°—90° triangle. And this is the reason

volume flat “polyhedra.”
3 Folding Convex Polygons
Although foldability in general is rare, every convex polygon folds to a polyhe-
dron.? A convez polygon is one without dents: every vertex is convex. Not only

do all these fold, they all fold to an infinite variety of polyhedra:

Theorem. Every convex polygon folds to an infinite number (a contin-

uum) of noncongruent convex polyhedra.

The essence of this claim follows from Alexandrov’s theorem. Take any
convex polygon P, and mark a point x on its boundary. Walk around half
the perimeter and mark an opposite point y. Now glue the perimeter half

. Now we argue that this
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from z to y to the half from y to x; see Figure 4(a)
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Figure 4: (a) A perimeter-halving folding of a unit square. z is 1 from the lower
left corner, and y is % from the upper right corner. The length 2 perimeter half
is glued symmetrically as indicated. The folding produces (non-obviously!) an
octahedron. (b) Crease pattern of edges, and vertices of octahedron. As in

Figure 3, the corners of the polygon “disappear” in the folding.
3Shephard [She75] was the first to study the connection between what he called convex

“nets” (polygons) and convex polyhedra, largely from the viewpoint of unfolding rather than

folding.
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gluing is Alexandrov. Certainly it consumes all the perimeter (a). The key is
requirement (b): no more than 360° is glued at any one point. At the fold points
x and y, the amount of angle is < 180°. Any other two points glued together
either sum to exactly 360°, if the points are interior to an edge of P, or to less
than 360°, if one or the other is a vertex of P. It is here that convexity of P
is used: any convex vertex has an interior angle < 180°. That the gluing is a
topological sphere (c) can be seen if one views the perimeter-halving gluing as
zipping up a pocketbook.

So, Alexandrov’s theorem says that every perimeter halving folds to a convex
polyhedron. (The folding of Figure 4(a) leads to an octahedron following the
crease pattern in (b).) Sliding x around the boundary, and y correspondingly,
leads to a continuum of foldings. That among these are also an infinite number
of noncongruent polyhedra is not obvious, but it is so.

Figure 5 shows the continuum achieved by perimeter-halving foldings of a
square [ADOO03]. Starting from the doubly covered 1 x 1 rectangle achieved
by creasing down a midline (3-o’clock position in the diagram) the continuum
continues clockwise to the doubly covered right triangle achieved by creasing
down a diagonal (9-o’clock position). This corresponds to sliding x from the
midpoint of an edge of the square to an adjacent corner. Continuing sliding x
repeats the shapes in mirror image (clockwise from 9- to 3-o’clock). Incidentally,
this figure represents only a portion of the polyhedra foldable from a square.
See [DOO07, p. 416] for the full variety.

As a practical experiment, one could cut out of paper any convex polygon,
start creasing it at an arbitrary z, and “zip” up the boundary from there with
tape, and eventually arriving at y; no measurement of the perimeter need be
made. The result will be a handbag- or pita-like shape, which, by Alexandrov’s
theorem, may be coaxed (with patience!) to reveal the creases that fold it into
its unique polyhedral form.

So far the “space” of all foldings of regular polygons has been explored, but
there remains as yet little general understanding of the phenomenon.

4 The Foldings of the Latin Cross

We have just canvased the foldings of convex polygons. How about nonconvex
polygons? Here we enter largely unknown territory. My coauthors (including
five college students) and I decided to explore the foldings of the Latin cross, as
a test case [DDL199] [DO07, Sec. 25.6]. What we found, to our surprise, is that
the Latin cross folds not only to the cube (Figure 1(b)), but to 22 other distinct
convex polyhedra: two flat quadrilaterals, seven tetrahedra, three pentahedra,
four hexahedra, and six octahedra. See Figure 6. Here there is no continuum—
the nonconvexities block the sliding possible with convex polygons.

How these foldings are achieved is by no means obvious. Figure 7 illustrates
just one of the 23 foldings in detail, a delicate folding to a tetrahedron. The
other foldings are equally intricate.

Aside from this one detailed example, we are left largely without a general



Figure 5: Continuum of perimeter-halvings of square. Four crease patterns
are shown. The octahedron at the 6- and 12-o’clock positions corresponds to
Figure 4(b).
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Figure 6: The 23 polyhedra foldable from the Latin cross. [Fig. 25.30 in [DO07].]

Figure 7: Folding the fourth polyhedron in Figure 6. [Fig. 25.10 in [DOO07], from
the video [DDL199].]



theory encompassing the foldings of nonconvex polygons. In particular, the
polyhedra achievable from the other ten hexamino unfoldings of a cube (besides
the Latin cross) remain to be explored.

5 Reconstruction of 3D Polyhedra

As mentioned previously, there is an algorithm (and software) to take any given
polygon P and list all the Alexandrov gluings of P. But to which (unique) poly-
hedra these gluings correspond is unknown. The polyhedra displayed in Fig-
ures 5 and 6 were reconstructed by laborious ad hoc techniques that cannot ex-
tend much beyond octahedra. Quite recently a group of researchers [BI06] [O’R06]
discovered a way to convert Alexandrov’s existence proof into a constructive
proof, with the implication that solving a particular differential equation will
lead to the unique 3D shape guaranteed by Alexandrov’s theorem. It remains to
be seen if this advance will lead to a practical numerical method of computing
the 3D shape of the polyhedron guaranteed by Alexandrov’s theorem.

6 Nonconvex Polyhedra

Here we reach the frontier of knowledge on this topic. Let me close with one
outstanding unsolved (“open”) problem, which involves nonconvexity:*

Q3. Does every polygon fold to some (perhaps nonconvex) poly-
hedron?

Even restricting the fold to be perimeter-halving leaves the question unresolved.
If, as I suspect, the answer to Q3 is NO (which could be established by a
single counterexample, incidentally), then immediately we enter new uncharted
territory by deleting the qualifier “convex” from Q1: Which polygons can fold
to a polyhedron? Rarely can an open problem at the frontier of mathematical
research be stated so succinctly.

Acknowledgments. I am indebted to Erik Demaine, my coauthor on [DOO0T]
and on most of my work in this area, and to Joseph Malkevitch for useful
comments.

References

[ADOO03] Rebecca Alexander, Heather Dyson, and Joseph O’Rourke. The convex
polyhedra foldable from a square. In Proc. 2002 Japan Conf. Discrete
Comput. Geom., volume 2866 of Lecture Notes Comput. Sci., pages 38—50.
Springer-Verlag, 2003.

[Ale50] Aleksandr D. Alexandrov. Vupyklue Mnogogranniki. Gosydarstvennoe Iz-
datelstvo Tehno-Teoreticheskoi Literaturu, 1950. In Russian.

40pen Problem 25.1 in [DO07].

10



[Ale58]

[Aled]1]

[Ale05]

[BIO6]

[DDL*99]

[DO07]

[O’RO6]

[SheT75]

Aleksandr D. Alexandrov. Konvexe Polyeder. Akademie Verlag, Berlin,
1958. Math. Lehrbucher und Monographien. Translation of the 1950 Rus-
sian edition.

Aleksandr D. Alexandrov. Existence of a convex polyhedron and a convex
surface with a given metric. In Yu. G. Reshetnyak and S. S. Kutateladze,
editors, A. D. Alexandrov: Selected Works: Part I, pages 169-173. Gordon
and Breach, Australia, 1996. Translation of Doklady Akad. Nauk SSSR,
Matematika, volume 30, No. 2, 103-106 (1941).

Aleksandr D. Alexandrov. Conver Polyhedra. Springer-Verlag, Berlin,
2005. Monographs in Mathematics. Translation of the 1950 Russian edition
by N. S. Dairbekov, S. S. Kutateladze, and A. B. Sossinsky.

Alexander I. Bobenko and Ivan Izmestiev. Alexandrov’s theorem, weighted
Delaunay triangulations, and mixed volumes. arXiv:math/0609447v1
[math.DG], 2006.

Erik D. Demaine, Martin L. Demaine, Anna Lubiw, Joseph O’Rourke, and
Irena Pashchenko. Metamorphosis of the cube. In Proc. 15th Annu. ACM
Sympos. Comput. Geom., pages 409-410, 1999. Video and abstract.

Erik D. Demaine and Joseph O’Rourke. Geometric Folding Algorithms:
Linkages, Origami, Polyhedra. Cambridge University Press, July 2007.
http://wuw.gfalop.org.

Joseph O’Rourke. Computational geometry column 49. Internat. J. Com-
put. Geom. Appl., 77(77):77, 2006. Also in SIGACT News, 38(2): 51—
55(2007), Issue 143.

Geoffrey C. Shephard. Convex polytopes with convex nets. Math. Proc.
Camb. Phil. Soc., 78:389-403, 1975.

11



