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a b s t r a c t

We consider the chromatic number of a family of graphs we call box graphs, which arise
from a box complex in n-space. It is straightforward to show that any box graph in the
plane has an admissible coloring with three colors, and that any box graph in n-space has
an admissible coloring with n + 1 colors. We show that for box graphs in n-space, if the
lengths of the boxes in the corresponding box complex take on no more than two values
from the set {1, 2, 3}, then the box graph is 3-colorable, and for some graphs three colors
are required. We also show that box graphs in 3-space which do not have cycles of length
four (which we call ‘‘string complexes’’) are 3-colorable.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction and results

There are many geometrically-defined graphs whose chromatic numbers have been studied. Perhaps the most famous
such example is the Four Color Theorem, which states that any planar graph is 4-colorable [1]. Another famous example is
the chromatic number of the plane. More specifically, a graph G = (V , E) is defined where V = R2 and (x, y) ∈ E precisely
when ∥x − y∥2 = 1 (where ∥ · ∥2 is the usual Euclidean norm in the plane). Through simple geometric constructions, one
can show that 4 ≤ χ(G) ≤ 7 for this graph, although the precise value is still not known; see [8], for example.

In this article, we consider graphs that arise from box complexes. We first define what a box complex is:

Definition 1. An n-dimensional box is a set B ⊂ Rn that can be defined as:

B = {x = (x1, x2, . . . , xn) ∈ Rn
: ai ≤ xi ≤ bi}

where ai < bi for i = 1, 2, . . . , n.
An n-dimensional box complex is a set of finitely many n-dimensional boxes B = {B1, B2, . . . , Bm} such that if the

intersection of twoboxes Bi∩Bj is nonempty, then Bi∩Bj is a face (of any dimension) of both Bi and Bj, for any i and j (see Fig. 1).

Now we can define a box graph:

Definition 2. An n-dimensional box graph is a graph defined on an n-dimensional box complex. The box graph G(B) =

(V , E) defined on the box complex B = {B1, B2, . . . , Bm} is the undirected graph whose vertex set is the boxes:

V = {B1, B2, . . . , Bm}
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(a) A box complex. (b) Not a box complex.

Fig. 1. Examples in R2 .

(a) A box complex. (b) The box graph inside the box
complex.

(c) Just the box graph.

Fig. 2. Defining a 2-dimensional box graph.

and whose edges (Bi, Bj) ∈ E record when Bi ∩ Bj is an (n − 1)-dimensional face of both Bi and Bj. In other words, the box
graph is the dual graph of the box complex, and the colorings we are considering are in some sense ‘‘solid colorings.’’

When it eases understanding, wemay use the terms box complex and box graph interchangeably.We alsomay use boxes
and vertices interchangeably.

The following proposition shows that, as far as the corresponding box graphs are concerned, we may as well restrict
ourselves to box complexes where each of the vertices of the boxes has integer coordinates (and thus all boxes have integer
lengths).

Proposition 1. Let B = {B1, B2, . . . , Bm} be a box complex and let G(B) = (V , E) be its corresponding box graph. There exists
a box complex {C1, C2, . . . , Cm} where the vertices of each Ci (i = 1, 2, . . . ,m) have all integer coordinates, such that the box
graph corresponding to complex {C1, C2, . . . , Cm} is the same graph G.

We will prove Proposition 1 in Section 2.
We ask the following natural question:

Question 1. What is the minimum number of colors k that are required so that every n-dimensional box graph has an
admissible k-coloring?

From Fig. 2(c), we can see that three colors may be necessary to color a 2-dimensional box graph. In fact, as wewill prove
in Section 2, three colors are also sufficient:

Proposition 2. Any box graph in n-space has an admissible coloring with n + 1 colors.

Our goal is to answer Question 1 in dimension 3, which is still open. In the case where the ‘‘boxes’’ are zonotopes
(as opposed to right-angled bricks), sometimes 4 colors are needed [4], and in the case where the ‘‘boxes’’ are now touching
spheres, the chromatic number is between 5 and 13 [2]. Analogously, for simplicial complexes in Rn, n+ 1 colors suffice [6].
We suspect that any 3-dimensional box graph is 3-colorable, and we can show that this is true for a few families of
3-dimensional box graphs. The following are the main results of this paper:

Theorem 1. Let G be an n-dimensional box graph such that the lengths of all of the boxes in the corresponding box complex
take on no more than two values from the set {1, 2, 3}. That is, all the side lengths of the boxes are 1 or 2, or all the side lengths
are 1 or 3, or all the side lengths are 2 or 3. Then G is 3-colorable.

Theorem 2. Let G be a 3-dimensional box graph that has no cycles on four vertices. Then G is 3-colorable.

The rest of this paper is organized as follows: in Section 2 we will state and prove some straightforward results on box
graphs. We will prove Theorem 1 in Section 3, and we will prove Theorem 2 in Section 4.

2. Straightforward results on box graphs

As promised, we will start with proofs of Propositions 1 and 2.
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Proof of Proposition 1. Suppose {B1, B2, . . . , Bm} is a box complex in Rn, so that each vertex of each box has n coordinates.
Let x0, x1, . . . , xk be the list of all of the different first coordinates of all of the vertices of the boxes in the box complex. Order
them so that

x0 < x1 < · · · < xk.

Now make a new box complex {B1
1, B

1
2, . . . , B

1
m} such that the vertices are all the same except the first coordinates.

Specifically, if the first coordinate of a vertex in Bj is xi, then the first coordinate of the corresponding vertex in B1
j is the

integer i. Thus, the vertex (xi, y2, y3, . . . , yn) of Bj becomes the vertex (i, y2, y3, . . . , yn) of B1
j .

Note that each B1
i is still a box, and this does not change the intersection pattern of the boxes. That is, if Bj ∩ Bℓ is

d-dimensional, then so is B1
j ∩ B1

ℓ . (And if Bj ∩ Bℓ was empty, then so is B1
j ∩ B1

ℓ .)
We continue with this process for the 2nd, 3rd, . . . , nth coordinates. Finally, we get a box complex {Bn

1, B
n
2, . . . , B

n
m} with

the same intersection pattern as B1, B2, . . . , Bm but with all integer coordinates for the vertices. Thus, the box graph for
complex {Bn

1, B
n
2, . . . , B

n
m} is the same as the box graph for complex {B1, B2, . . . , Bm}. �

In order to prove Proposition 2 we first give the definition of k-degenerate graphs, and show the well-known result that
k-degenerate graphs are k + 1-colorable [5].

Definition 3. A graph G is k-degenerate if each of its induced subgraphs has a vertex of degree k.

Lemma 1. Every k-degenerate graph is k + 1-colorable.

Proof. Let G = (V , E) be a k-degenerate graph. We will proceed by induction on |V |, the size of the vertex set. If |V | = 1
then certainly G is k-colorable for any k ≥ 1. Now, suppose that |V | = m ≥ 2, and assume as the induction hypothesis that
any k-degenerate graph onm − 1 vertices is k + 1-colorable.

Then, since G is k-degenerate we know there exists a vertex v ∈ V with deg(v) = k. Consider the graph G−v, formed by
removing vertex v and all of its incident edges, withm − 1 vertices. This graph must be k-degenerate since it is an induced
subgraph of G. Therefore, by the induction hypothesis we can color G − v using k + 1 colors. Now, when v and its edges
are added back in to form Gwe must have at least one available color since v has only k neighbors and there are k + 1 total
colors. Therefore, by induction, any k-degenerate graph is k + 1-colorable. �

We now prove Proposition 2 by showing that any box graph is n-degenerate.

Proof of Proposition 2. Let G = (V , E) be a box graph, so that each v ∈ V is a box in the corresponding box complex. We
will label each box in V by its ‘‘right, forward, top’’ vertex. More precisely, each box can be defined as

{x = (x1, x2, . . . , xn) ∈ Rn
: ai ≤ xi ≤ bi}

where ai < bi for i = 1, 2, . . . , n. We then label this box with (b1, b2, . . . , bn).
Now find a ‘‘right, forward, top’’ box in the graph. That is, find a vertex u ∈ V with corresponding label (u1, u2, . . . , un)

such that for any other v ∈ V with label (v1, v2, . . . , vn) and (u, v) ∈ E, we have

u1 ≥ v1, u2 ≥ v2, . . . , un ≥ vn.

(Such a box is guaranteed to exist because G is finite.) Note that, by our choice of u, u has at most n neighbors.
Since we began with an arbitrary box graph, the existence of a degree n vertex must be true for all induced subgraphs of

G. Therefore, any box graph corresponding to a box complex in Rn is n-degenerate, and by Lemma 1 is n + 1 colorable. �

We note that the above argument is the n-dimensional analogue to the ‘‘elbow’’ argument in [7].
We state the following result as a reminder to the reader:

Proposition 3. Let G = (V , E) be a graph. Then the following are equivalent:
1. The graph G contains no odd cycle.
2. The graph G is bipartite.
3. The graph G is 2-colorable.

Proof. Proposition 3 is a well-known introductory graph theory result. See Section I.2 of [3], for example. �

The following proposition shows that if a box graph cannot be colored with just 2 colors, it must have some boxes with
side lengths that are different from each other.

Proposition 4. Suppose a box complex only contains boxes that are cubes; that is, boxes with all side lengths equal. Then the
corresponding box graph is 2-colorable.

Proof. Suppose a box complex contains only cubes, and let G = (V , E) be the corresponding box graph. Without loss of
generality, we may assume that G is connected. Thus, since all of the boxes in the corresponding box complex are cubes,
they must all be cubes of the same size; let the side length of the cubes be k. By the proof of Proposition 1, we can assume
that k ∈ N and the coordinates of all the vertices of the boxes in the box complex are integer multiples of k.
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Just as we did in the proof of Proposition 2, label each v ∈ V with the ‘‘right, forward, top’’ vertex. Let (v1, v2, . . . , vn) be
the label for vertex v. Color vertex v with color

1
k

(v1 + v2 + · · · vn) (mod 2).

Note that exactly two colors are used. If two vertices are adjacent: (u, v) ∈ E, then we know that their corresponding labels
(u1, u2, . . . , un) and (v1, v2, . . . , vn) must be the same in every coordinate except one, in which they differ by k. That is,
there exists i ∈ {1, 2, . . . , n} such that

uj = vj if j ∈ {1, 2, . . . , n} and j ≠ i
ui = vi ± k.

Thus, if two vertices are adjacent then their colors must be different. Thus, this is a valid 2-coloring of G. �

In [4] it was proved that any box complex in R3 that is homeomorphic to a ball is 2-colorable.

3. Proof of Theorem 1

We shall prove Theorem 1 in parts via a few lemmas. Here is the first of our lemmas:

Lemma 2. Suppose that each side length of each box in a box complex is a positive integer which is congruent to
either 1 or 2mod 3. Then the corresponding box graph is 3-colorable.

Proof. Consider an n-dimensional box complex {B1, B2, . . . , Bm}, and label each box again by its ‘‘right, forward, top’’ vertex
coordinates, (b1, b2, . . . , bn). Now, color each box by (b1 + b2 + · · · + bn) mod 3. We claim that this is a valid coloring.

If two boxes, Bi, Bj are adjacent then their right, forward, top vertices will differ in exactly one coordinate. Let
(bi,1, bi,2, . . . , bi,n) be the label for Bi and (bj,1, bj,2, . . . , bj,n) the label for Bj. Then, WLOG, bi,1 ≠ bj,1 and bi,k = bj,k for
k = 2, 3, . . . , n. These two boxes will have the same color iff bi,1 − bj,1 ≡ 0 mod 3. However, this value is the side length of
one of these boxes which we have restricted to not equal any multiple of 3. Therefore neighboring boxes may not have the
same color, so this 3-coloring is admissible. �

The following corollary follows directly from Lemma 2:

Corollary 1. Suppose a box complex in Rn has boxes with side lengths only equal to 1 or 2. Then the corresponding box graph
is 3-colorable.

The next in our series of lemmas:

Lemma 3. Suppose that each side length of each box in a box complex is an odd integer. Then the corresponding box graph is
2-colorable.

Proof. We will prove this by showing that there can be no odd cycles in the graph (see Proposition 3).
Assume we have a box complex B = {B1, . . . , Bk}. Consider any cycle within the corresponding box graph. Label the

vertices of this cycle by the ‘‘right, forward, top’’ corner of the corresponding box, and label each of the edges of the cycle
with the distances between those corners, mod 2. In other words, if the neighboring vertices are labeled (1, 1, . . . , 1) and
(4, 1, . . . , 1) then we label the edge with 3 mod 2 = 1. Moreover, we will choose a direction of travel around the cycle
and sign the length of the edge positive if we are moving along that edge in the positive direction, and negative if we move
along the edge in the negative direction. Thus, for example, if we move from vertex (1, 1, . . . , 1) to (4, 1, . . . , 1), the edge
is labeled with 1 since moving from 1 to 4 is in the positive direction in the first coordinate, whereas if wemove from vertex
(4, 1, . . . , 1) to (1, 1, . . . , 1), the edge is labeled with −1.

We now claim that the sum of the integers along the cycle must be 0. This is because in each dimension, any length we
move in the positive directionmust be traveled again in the negative direction, and therefore their paritymust also be equal.

Finally, we note that, by assumption, all of the lengths are odd. Thus, all edge labels must be either 1 or −1. Since we
have a list of edges labeled 1 or −1 and the sum of the labels is 0, there must be an even number of edges in the cycle. �

The following corollary follows directly from Lemma 3:

Corollary 2. Suppose a box complex in Rn has boxes with side lengths only equal to 1 or 3. Then the corresponding box graph
is 3-colorable.

The proof for Theorem 1 when blocks have dimensions 2 or 3, given in the remainder of this section, relies on placing a
partial order on the box graph corresponding to a given box complex. The elements of the partially ordered set (poset)
are the vertices of the box graph, i.e., the individual boxes that comprise the box complex. As before, we label box
{x = (x1, x2, . . . , xn) ∈ Rn

: ai ≤ xi ≤ bi} by its ‘‘right, forward, top’’ vertex coordinates, (b1, b2, . . . , bn). The order
relation for this poset is induced by the following cover relation: box Bi with label (b1, b2, . . . , bn) covers box Bj with label
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(a) A part of a poset corresponding to a box complex. (b) The poset stretched, according to T .

Fig. 3. All edges above the ones drawn do not change in length after T is applied.

(c1, c2, . . . , cn) if and only if the two boxes are adjacent and
n

k=1 bk ≥
n

k=1 ck. Since these adjacent boxes must share an
(n − 1)-dimensional face, their labels will differ in exactly one coordinate, by a difference equal to the dimension of box Bi
orthogonal to shared face Bi ∩ Bj.

We note further that the sum r(Bi) =
n

k=1 bk of the entries of the label of a given box is a rank function for this poset.We
will use the rank function and the poset structure to describe valid colorings of the box graph. This technique will consider
an initial drawing of the poset (and subsequent re-drawings) with all nodes at integer heights. We then refer to the length
of an edge in the poset as the positive vertical distance between its endpoints.

Here is the last of the lemmas that we will need for Theorem 1:

Lemma 4. Suppose a box complex has boxes with side lengths only equal to 2 or 3. Then the corresponding box graph is
3-colorable.

Proof. Consider now the case in which all dimensions of the boxes in a box complex B = {B1, B2, . . . , Bm} are 2 or 3. We
produce the associated posetP described above, andmake an initial drawing of P with nodes having heights corresponding
to their ranks. Note that this implies that if two boxes Bi and Bj which are adjacent in the box graph are drawn with heights
hi and hj respectively, then r(Bi) − r(Bj) = hi − hj, and hi − hj is either 2 or 3 if hi > hj. In other words, all lengths of the
edges in the poset are either 2 or 3. Without loss of generality, we can make this drawing so that all rank-minimal vertices
have height h-value of 0. We now describe how to redraw the poset P in such a way that all adjacencies and cover relations
are preserved, but all edges have lengths equivalent to 1 or 2 mod 3.

We now consider the lengths of edges in the poset, working our way in order of increasing height h of the terminal
endpoints. Since the first nodes occur on the line h = 0 and all edges have length 2 or 3, no edges terminate on h = 1, and
edges that terminate on h = 2 have length 2, which is among the desired values. Edges terminating on h = 3 or above may
have length 2 or length 3. We perform the following transformation on the drawing of the poset. Let hi denote the height of
vertex Bi in the initial drawing of the poset. We perform transformation T below to the drawing of the poset:

T (hi) =


hi if hi ≤ 2,
hi + 2 if hi ≥ 3.

Note that T has no effect on the length of edges terminating at or below h = 2, and no effect on the length of edges
commencing at or above h = 3. For edges that include the interval [2, 3], two units are added to their length. In the new
drawing of the poset, no edges will terminate on lines h = 3 or h = 4. Edges terminating on h = 5 were either originally of
length 3 commencing from t = 0 or of length 2 commencing at h = 1. The former now have length 5, while the length of
the latter is now 4. In either case, edges terminating on h = 5 have lengths equivalent to 1 or 2 mod 3. A similar argument
shows that edges in the revised drawing that terminate on h = 6 or h = 7 are either of length 2, 4, or 5. (See Fig. 3.)

Any edges terminating on h-values of 8 or higher were not affected by the first stretch, and thus may have length 3.
Continue the stretching/redrawing procedure as before, extending the interval [7, 8] by two units and redrawing the poset.
This procedure only changes the lengths of edges which include the interval [7, 8], so in particular it does not change
the lengths of any prior edges. Since our complex is finite, only finitely many re-drawings are needed to draw the poset
with edges all having length equivalent to 1 or 2 mod 3. At that time, the nodes can be colored using the argument from
Lemma 2. �

We can now finally prove Theorem 1:

Proof of Theorem 1. This is a direct consequence of Corollaries 1, 2, and Lemma 4. �
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Fig. 4. This 2 × 2 pattern (a 4-cycle in the dual) is forbidden as part of a string complex.

Fig. 5. An example of a string complex.

4. Proof of Theorem 2

First, a couple of definitions:

Definition 4. A string complex is any box complex in R3 that does not contain a 2 × 2 pattern of boxes shown in Fig. 4. The
dual of the forbidden pattern is a 4-cycle, which is the shortest cycle possible in a box complex. So in other words, a string
complex is a 3-dimensional box complex in whose corresponding graph has no 4-cycle (see Fig. 5).

We use the term ‘‘string complex’’ because, without the 2 × 2 pattern in Fig. 4, the box complex is forced to have lots of
‘‘holes’’ and be ‘‘stringy.’’

Definition 5. A 3-dimensional box complex {B1, B2, B3, . . . , Bm} is reducible to the 3-dimensional box complex
{A1, A2, . . . , Aℓ} (ℓ ≤ m) if one can sequentially remove boxes from complex {B1, B2, . . . , Bm} of degree ≤2 in order to
obtain complex {A1, A2, . . . , Aℓ}. More specifically, there exists an ordering B1, B2, . . . , Bm such that

Bi = Ai for i = 1, 2, . . . , ℓ

and for j = 0, 1, 2, . . . ,m − ℓ − 1, the box Bm−j has degree ≤2 in the box complex

{B1, B2, . . . , Bm−j}.

A box complex is irreducible if every vertex is of degree ≥3.

Note that a complex may be reducible to a smaller complex which is itself irreducible.
The following lemma is analogous to the tools we used in the proof of Proposition 2:

Lemma 5. If a 3-dimensional box complex is reducible to the empty complex, then its corresponding box graph is 3-colorable.

Proof. Weprove by induction onm, the number of boxes in the box complex. Certainly ifm = 1, the box graph is 3-colorable.
Suppose that m ≥ 2, and that for any 3-dimensional box complex on m − 1 boxes which is reducible to the empty

complex, the corresponding box graph is 3-colorable. Suppose that the box complex {B1, B2, . . . , Bm} is reducible to the
empty complex. That is, for i = 1, 2, . . . , n, the box Bi has degree ≤2 in the complex

{B1, B2, . . . , Bi}.

Note that the box complex {B1, B2, . . . , Bm−1} is also reducible to the empty complex and has m − 1 boxes in it. Thus,
by our inductive assumption, the corresponding graph is 3-colorable. Now, because Bm had degree ≤2 in the box complex
{B1, B2, . . . , Bm}, we can choose to color Bm a color which is different from the colors of its neighbors. Thus, we have proven
the lemma. �
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Fig. 6. b0 is the topmost, leftmost box in the top layer T .

By Lemma 5, Theorem 2 is a direct corollary of the following theorem and its subsequent corollary:

Theorem 3. Every string complex is reducible.
Proof. Assume to the contrary. That is, let S = {S1, S2, . . . , Sm} be an irreducible string complex. We will show that
irreducibility implies the complexmust contain a 2×2 pattern of boxes, which contradicts the assumption that the complex
is a string complex.

Let T1, T2, . . . , Tℓ be the top layer of boxes in S; say the top faces lie in a plane parallel to the xy-plane, extreme in the
+z direction. We first claim that every box in T1, T2, . . . , Tℓ must have degree ≥2 within the complex T = {T1, T2, . . . , Tℓ}.
Suppose otherwise. That is, suppose there is a box Ti with degree ≤1 within the box complex T . Then Ti can have at most
degree 2 in the complex S by joining to a box beneath it. But we know that every box in S must have degree ≥3, because
the complex S was irreducible. Thus, it is indeed true that each Ti, i = 1, 2, . . . ℓ has degree ≥2 in the complex T .

Now we look at an extreme corner box of T1, T2, . . . , Tℓ. Specifically, let b0 be backmost (extreme in the +y direction),
and among the topmost boxes of T , leftmost (extreme in the −x direction). So b0 is a type of ‘‘upper left corner’’. Because it
is extreme in two directions, two of its faces in T are exposed, so it must have exactly degree 2 in T . Because we assumed S
is irreducible, b0 (and indeed every box of S) must have degree ≥3. So b0 must be adjacent to a box b′

0 beneath it (beneath
in the z-direction). See Fig. 6.

Let b1 and b2 be the boxes adjacent to b0 in T , with b1 adjacent to b0 in the x-direction as in the figure. Again, by our
previous arguments, b1 must have degree ≥2 in T . It is already adjacent to b0 to its left, and it cannot be adjacent to a box
above it, because it is topmost. So it must be adjacent to one or both of the boxes labeled b3 and b4 in the figure.

However, b1 cannot be adjacent to b3, for then {b0, b1, b2, b3} forms a 2 × 2 pattern, contradicting the assumption that
S is a string complex. Therefore b1 must be adjacent to b4 in Fig. 6. Now b1 has degree exactly 2 in T . Because it must have
degree ≥3 for S to be irreducible, it must be adjacent to box b′

1 underneath. But now {b0, b1, b′

0, b
′

1} forms a 2 × 2 pattern,
again contradicting the assumption that S is a string complex.

We have now exhausted all possibilities, which have led to contradictions. So the assumption that S is irreducible is false,
and S must be reducible. �

Corollary 3. Every string complex can be reduced to the empty complex.
Proof. Let S be a string complex. It cannot be irreducible by Theorem 3, and so it must have a box b of degree ≤2. Let
S1 = S \ b be the complex with b removed. We claim that S1 is again a string complex. The reason is that the forbidden
2 × 2 pattern cannot be created by the removal of a box. Therefore, applying Theorem 3 again, S1 is reducible. Continuing
in this manner, we can reduce S to the empty complex. �

5. Conclusion

That box complexes in R2 sometimes need 3 colors is a straightforward observation, but whether any box complex in
R3 might need 4 colors is an open question. Although it is natural to expect that the chromatic number might be n + 1 for
boxes in Rn as it is for simplices, we in fact have no example that requires more than 3 colors for any n ≥ 3.
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