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Abstract

This addendum to [O’R17] establishes that a nearly flat acutely trian-
gulated convex cap in the sense of that paper can be edge-unfolded even
if closed to a polyhedron by adding the convex polygonal base under the
cap.

1 Introduction

The paper [O’R17] established that every sufficiently flat acutely triangulated
convex cap has an edge-unfolding to a non-overlapping simple polygon, i.e., a
net. I used the term “convex cap” in the following sense (where φ(f) is the
angle the normal to face f makes with the z-axis):

Define a convex cap C of angle Φ to be C = P ∩H for some P and
H, such that φ(f) ≤ Φ for all f in C. [...] Note that C is not a closed
polyhedron; it has no “bottom,” but rather a boundary ∂C.

This note proves that same claim holds even when C is closed to a polyhedron by
adjoining the convex base face B bounded by ∂C. Eventually this addendum will
be incorporated into a future version [O’R17]. For now we assume familiarity
with that paper, and especially the section below, the most relevant portions of
which we reproduce verbatim. Ellisons are marked by “[...].”

2 Angle-Monotone Spanning Forest

[...]
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2.1 Angle-Monotone Spanning Forest

“It was proved in [LO17] that every nonobtuse triangulation G of a convex
region C has a boundary-rooted spanning forest F of C, with all paths in F
90◦-monotone. We describe the proof and simple construction algorithm before
detailing the changes necessary for acute triangulations.

Some internal vertex q of G is selected, and the plane partitioned into four
90◦-quadrants Q0, Q1, Q2, Q3 by orthogonal lines through v. Each quadrant is
closed along one axis and open on its counterclockwise axis; q is considered in
Q0 and not in the others, so the quadrants partition the plane. It will simplify
matters later if we orient the axes so that no vertex except for q lies on the axes,
which is clearly always possible. Then paths are grown within each quadrant
independently, as follows. A path is grown from any vertex v ∈ Qi not yet
included in the forest Fi, stopping when it reaches either a vertex already in
Fi, or ∂C. These paths never leave Qi, and result in a forest Fi spanning the
vertices in Qi . No cycle can occur because a path is grown from v only when v is
not already in Fi; so v becomes a leaf of a tree in Fi. Then F = F1∪F2∪F3∪F4.

We cannot follow this construction exactly in our situation of an acute trian-
gulation G, because the “quadrants” for θ-monotone paths for θ = 90◦ −∆θ <
90◦ cannot cover the plane exactly: They leave a thin 4∆θ angular gap; call
the cone of this aperature g. We proceed as follows. Identify an internal vertex
q of G so that it is possible to orient the cone-gap g, apexed at q, so that g
contains no internal vertices of G. See Fig. 1 for an example. Then we proceed
just as in [LO17]: paths are grown within each Qi, forming four forests Fi, each
composed of θ-monotone paths.

It remains to argue that there always is such a q at which to apex cone-gap
g. Although it is natural to imagine q as centrally located (as in Fig. 1), it
is possible that G is so dense with vertices that such a central location is not
possible. However, it is clear that the vertex q that is closest to ∂C will suffice:
aim g along the shortest path from q to ∂C. Then g might include several
vertices on ∂C, but it cannot contain any internal vertices of G, as they would
be closer to ∂C. Again we could rotate the axes slightly so that no vertex except
for q lies on an axis.”
[...] (End quoted text.)

3 Unfolding the Base B

By our definition of a convex cap, its boundary ∂C lies in a plane, and so
bounds a convex polygonal base B. We assume that, unlike the cap C, B is not
triangulated, and so must be unfolded as an intact unit. (Of course, it can be
unfolded as a unit even if triangulated.)

Let C⊥ be the unfolded net of C produced by the algorithm in [O’R17].
If some edge e of C⊥ lies on the convex hull of C⊥, then B can be “flipped
out” to B′ around e by cutting all edges of ∂C except for e. Because B′ is
convex and is attached to the hull of C⊥, it is clear there is no overlap, and we
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Figure 1: Here the near-quadrants Qi have width θ = 87◦, so the gap g has
angle 4∆θ = 12◦.

would be finished. In fact this is the proof path we will follow, but it is not as
straightforward as it might seem.

3.1 Obstructions

We now argue that there is an arbitrarily flat convex cap C and a spanning cut
forest F such that there is no such edge e of C⊥ to which to attach B′ without
overlap. First, we look at a “real” unfolding to see what form the obstruction
might take. Fig. 2 shows a portion of C⊥, identifying a particular edge e which is
tilted inside the hull and would lead to overlap were B′ attached there. However,
even in this example, there are many other candidates for e that would suffice
as B’s attachment. This suggests the next question: Is there a cap C and a cut
forest F such that every edge of C⊥ is similarly titled inside the hull, leaving no
“safe” attachment edge for B? The answer is yes. We only sketch the argument
before discussing in more detail how to circumvent this counterexample.

Let C be a cap whose boundary ∂C is a 12-sided regular polygon (i.e., a
dodecagon). For the construction to work, we need at least a 9-sided polygon;
12 makes it visually clearer. The cut forest F is as illustrated in Fig. 3: one
tree in F is a 2-path from the center of C, and all the others trees are single
segments. The key property is that each segment creates a very shallow angle
with ∂C.

We arrange near-zero curvature at the central vertex, and all the other ver-
tices have the same curvature ω > 0. Because of the shallow angle they form
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Figure 2: Detail from Fig. 24 of [O’R17], with a portion of the convex hull
marked.

Figure 3: No edge of C⊥ is a convex hull edge. The cut forest F is shown red,
∂C is blue, developed edges of C⊥ black.
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with ∂C, the opening gap caused by cutting each segment is nearly orthogonal
to the cut segment. With the internal angle of a 12-gon 5

6π, the exterior angle
between B and a reflected copy B′ of B is 2

6π = 60◦ < 90◦. This allows the
orthogonally jutting rotation of each boundary edge to penetrate into a reflected
B′, reflected about the next edge e counterclockwise, as illustrated.

There is no impediment to realizing this example in 3D so that the curvatures
ω suffice to render every boundary edge of C⊥ leading to overlap with B′.
Moreover, this could be accomplished for an arbitrarily flat C by increasing the
number of sides of the n-gon base so that even a very small ω results in overlap.
These claims will not be justified further, as they only serve to motivate the
next steps.

3.2 Quadrant-based forest F

The reason the preceding counterexample does not present an insurmountable
obstacle is that the spanning forest F selected in the planar projection graph G
of C is not arbitrary, but instead is based on the quadrants illustrated in Fig. 1.
We now show that the quadrant-based forest F leads to an edge e of C⊥ to
which to attach the reflected base B′.

A reminder on the notation we are employing: C is the convex cap in R3, C
is its projection on the xy-plane, F the spanning forest in that plane, F the lift
of the forest, and C⊥ is the development of the cap C after cutting F .

Let v ∈ ∂C be a vertex on the boundary of the projection C that is a root
of a tree in the forest F . Rather than viewing the lift, cut, and development
as producing C⊥, it will help to view the movement of v in the plane caused
by opening the curvatures along the cut paths terminating at v. As we saw in
Section 8 of [O’R17], we can view each cut path Q to v as two planar polygonal
chains L and R which are initially identical, and then open at each vertex vi
along Q by the curvatures ωi. Here we are only interested in the final planar
displacement of the root v, the endpoint of the chain. Let v and v′ be the
original and displaced versions of v, i.e., the last vertices of L and R. The gap
segment vv′ represents the gap at the boundary of C⊥ caused by opening the
cuts in F to v, visible, for example, in Fig. 2.

The gap segment vv′ is caused by the composition of several (small) rota-
tions about different centers, the vertices along Q. It is well-known that vv′ is
equivalent to a single rotation about a (generally) different center c, which we’ll
call the composite center of rotation. We claim that, for sufficiently small ωi, c
is either inside the convex hull of Q, or arbitrarily close to the boundary of the
hull. This claim is justified in the Appendix by Lemma 2.

Returning to Fig. 3, the centers of rotation in F were arranged so that the gap
segments were nearly orthogonal to ∂C, so that they “jutted out” and caused
overlap with the reflected B′. We now argue first, that a different arrangement
of centers of rotation can produce “safe” gap segments, and second, that this
can be achieved by a quadrant-based spanning forest F .

Arrange an edge e = (v, u) of ∂C to be topmost and horizontal and crossing
the vertical quadrant boundary, and suppose both v and u are roots of cut trees
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in F . We call e a locally safe edge if the composite centers of rotation cv and
cu for the trees incident to v and u fall underneath e, as illustrated in Fig. 4.
For then the gap segments angle down below e, making e a safe candidate for
the attachment of B′.

Figure 4: Safe edge e.

Returning to Fig. 1, we now argue that what was there called the gap edge
g of ∂C can serve as a safe edge e. As in that figure, let q be the quadrants
origin. The shortest path γ on C to ∂C is orthogonal to a boundary edge e. The
development of the geodesic γ is a straight line. Use this straight line as the
vertical axis of the quadrants, with e horizontal. Now, because the spanning
forest algorithm grows edges within the quadrant wedges, we are guaranteed
that all edges of a tree incident to the endpoints of e are slanted such that they
angle strictly vertically underneath e, as illustrated in Fig. 5. The strictness
follows because the wedges are ∆θ less than 90◦.

Now applying Lemma 2, we obtain that the composite center of rotation
is underneath e. Even though that lemma allows the true center to be slightly
outside the hull of the rotation centers, that the wedges have angle less than 90◦

permits the conclusion that the true center is in the hull for sufficiently small
ωi, and therefore strictly underneath e. Thus we know that e is a locally safe
edge.

But now it is easy to reapply this argument to conclude that none of the
gap segments for other vertices around ∂C are angled above the horizontal, and
so e is in fact globally safe. Thus we can attach the reflected base B′ along e
without overlap. This proves:

Theorem 1 A convex polyhedron consisting of a a nearly flat acutely triangu-
lated convex cap C joined along ∂C to a base B can be edge-unfolded without
overlap, for sufficiently small cap curvature Ω.

Using the error between the true and approximate composite rotation centers
δ = 1

2

∑
i `iωi from Lemma 1, and crudely summarizing this as δ = Lω/2 for a

total chain length L, a calculation shows the wedge slant ∆θ leads to “sufficiently
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Figure 5: The trees incident to the endpoints of e have composite centers of
rotation underneath e.

small” curvatures satisfied if ω . 2∆θ. But already we know that

Ω < πΦ2 < π(0.3
√

∆θ)2 ≈ 0.28∆θ ,

and because ω < Ω for any one tree of F , the curvatures are already “sufficiently
small” from other constraints.

An illustration is shown in Fig. 6. The selection of e in this example does
not follow the proof exactly just due to limitations of my implementation (q is
not closest to ∂C and e is not orthogonal to the vertical quadrant axis), but
it illustrates how e is locally and indeed globally safe. (In this and in most
examples, there are many safe edges.)
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Figure 6: Cap C (left) and an edge-unfolding (right), including base B flipped
across safe edge e.
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Appendix

We need a lemma that allows us to conclude that, for small curvatures, the effect
of the rotations along a cut path Q to a boundary vertex v ∈ ∂C is equivalent
to one rotation from a point in the convex hull of the vertices along Q.

Lemma 1 Let Ri(ωi, pi) be a two-dimensional rotation by angle ωi ≥ 0 about
point pi, for i = 1, . . . , k. Then, for sufficiently small ωi, the result of composing
the k rotations Ri is equivalent to one rotation about a center-of-gravity rotation
center: the sum of the pi weighted by the angles:

R1(εω1, p1) ◦ · · · ◦Rk(εωk, pk)→ R(εω, p)

as ε→ 0, where

ω =
∑
i

ωi

and
p = (ω1p1 + · · ·+ ωkpk)/ω .

The role of ε is to ensure all the angles approach 0. Equivalently (and more
appropriate in our context), we can just think of the ωi as “sufficiently small.”
This proposition is illustrated in Fig. 7 for a polygonal chain.

True center

Approx center

ω=14° R

L

Figure 7: Comparison of true composite center of rotation, and the approximate
center-of-gravity center. Here R is fixed and L obtained by ωi rotations.

Proof: It is well-known that the composition of two rotations by angles ω1, ω2

about different centers p1, p2 is equivalent to one rotation by ω1 + ω2 about a
(generally) different center c.1 Consequently, the same holds for the compo-
sition of k rotations. We now prove that as ω1, ω2 approach 0, the center c
approaches the point p = (ω1p1 +ω2p2)/(ω1 +ω2) on the p1p2 segment. Follow-
ing [Nee98, p.38], we view the rotations by ω1, ω2 as reflections in lines separated

1Unless ω1 + ω2 = 2π, which will never occur with small rotations.
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by ω1/2, ω2/2. Then c is the intersection of two reflection lines, as illustrated in
Fig. 8. With p1 = (0, 0) and p2 = (1, 0), explicit calculation yields

c =

(
sinω2

sinω1 + sinω2
,

sinω1 sinω2

sinω1 + sinω2

)
.

From this expression and that for p above, futher calculation shows that the
error δ = |c− p| is 1

8 (ω1 + ω2) for small ωi. So indeed δ approaches zero.
Repeating the argument for k rotations yields (via a calculation not shown

here) that the error δ is bounded by 1
2

∑
i `iωi, where `i = |pi+1 − pi| are the

link lengths of the chain, as ωi → 0. Thus, δ → 0, c approaches p, and the claim
of the lemma is established.

Figure 8: The error δ between the true composite center c and the center-of-
gravity center.

An immediate implication of Lemma 1 is:

Lemma 2 Under the same assumptions, the center-of-gravity approximate cen-
ter p approaches a point in the convex hull of {p1, . . . , pk} as ε→ 0, or equiva-
lently, as ω → 0.

Proof: With ωi ≥ 0, the weighted sum in Lemma 1 is a convex combination of
the pi points, and so inside (or on the boundary of) the convex hull.
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