Every Combinatorial Polyhedron Can Unfold with Overlap

Joseph O'Rourke*

January 2, 2023

Abstract

Ghomi proved that every convex polyhedron could be stretched via an affine transformation so that it has an edge-unfolding to a net Gho14. A net is a simple planar polygon; in particular, it does not self-overlap. One can view his result as establishing that every combinatorial polyhedron has a realization that allows unfolding to a net.

Joseph Malkevitch asked if the reverse holds (in some sense of "reverse"): Is there a combinatorial polyhedron such that, for every realization, and for every spanning cut-tree, it unfolds to a net? In this note we prove the answer is NO: every combinatorial polyhedron has a realization and a cut-tree that unfolds with overlap.

1 Introduction

Joseph Malkevitch asked ${ }^{1}$ whether there is a combinatorial type of a convex polyhedron whose every unfolding results in a net. One could imagine, to use his example, that every realization of a combinatorial cube unfolds without overlap for each of its 384 spanning cut-trees Tuf11, 2 The purpose of this note is to prove this is, alas, not true: every combinatorial type can realized and edge-unfolded to overlap: Theorem 1 (Section 5). For an overlapping unfolding of a combinatorial cube, see ahead to Fig. 12

An implication of Theorem 1] together with [Gho14], is that the resolution of Dürer's Problem O'R13 must focus on the geometry rather than the combinatorial structure of convex polyhedra.

[^0]
2 Proof Outline

We describe the overall proof plan in the form of a multi-step algorithm. We will illustrate the steps with an icosahedron before providing details.

```
Algorithm 1: Realizing \(G\) to unfold with overlap.
    Input: A 3-connected planar graph \(G\).
    Output: Polyhedron \(P\) realizing \(G\) and a cut-tree \(T\) that unfolds \(P\)
                with overlap.
    (1) Select outer face \(B\) as base.
    (2) Embed \(B\) as a convex polygon in the plane.
    (3) Apply Tutte's theorem to calculate an equilibrium stress.
    (4) Apply Maxwell-Cremona lifting to \(P\).
    (5) Identify special triangle \(\triangle\).
    (6) Scale \(P\) horizontally (if necessary).
    (7) Scale \(P\) vertically (if necessary).
    (8) Form cut-tree \(T\), including ' \(Z\) ' around \(\triangle\).
    (9) Unfold \(P \backslash T\).
    (10) \(\rightarrow\) Overlap.
```

We are given a 3 -connected planar graph G, which constitutes the combinatorial type of a convex polyhedron. By Steinitz's theorem, we know G is the 1 -skeleton of a convex polyhedron. Initially assume G is triangulated; this assumption will be removed in Section 3.1.
(1) Select outer face B as base. Initially, any face suffices. Later we will coordinate the choice of B with the choice of the special triangle \triangle.
(2) Embed B as a convex polygon in the plane. Select coordinates for the vertices of B, which then pin B to the plane. B must be convex, but otherwise its shape is arbitrary.
(3) Apply Tutte's theorem Tut63 to calculate an equilibrium stress-positive weights on each edge - that, when interpreted as forces, induce an equilibrium at every vertex. This provides explicit coordinates for all vertices interior to B. The result is a Schlegel diagram, with all interior faces convex regions. Fig. 1 illustrates this for the icosahedron ${ }^{3}$
(4) Apply Maxwell-Cremona lifting to P. The Maxwell-Cremona theorem says that any straight-line planar drawing with an equilibrium stress has a polyhedral lifting via a "reciprocal diagram." The details are not needed here ${ }^{4}$ we only need the resulting lifted polyhedron. An example from [Sch08]

[^1]

Figure 1: Icosahedron Schlegel diagram.
shows the lifting of a Schlegel diagram of the dodecahedron: Fig. 2, A lifting of the vertices of the icosahedron in Fig. 1 is shown in Fig. $3{ }^{5}$
(5) Identify special triangle \triangle. This special triangle must satisfy several conditions, which we detail later (Section 3). For now, we select $\triangle=a_{1} a_{2} a_{3}=$ $6,8,5$ in Fig. 4
(6) Scale P horizontally (if necessary). Not needed in icosahedron example.
(7) Scale P vertically (if necessary). Not needed in icosahedron example.
(8) Form cut-tree T, including a ' Z '-path around \triangle. We think of a_{1} as the root of the spanning tree, which includes the Z-shaped (red) path $a_{1} a_{2} a_{3} a_{4}$ around \triangle and the adjacent triangle \triangle^{\prime} sharing edge $a_{2} a_{3}$. In Fig. 4 , the \mathbf{Z} vertex indices are $6,8,5,11$. The remainder of T is completed arbitrarily.
(9) Unfold $P \backslash T$.
(10) Finally, the conditions on \triangle ensure that cutting T unfolds P with overlap along the $a_{2} a_{3}$ edge. See Fig. 5

[^2]

Figure 2: Maxwell-Cremona lifting to a dodecahedral diagram. Sch08, by permission of author.

Figure 3: Lifting the vertices of the icosahedron Schlegel diagram in Fig. 1.

Figure 4: Red: face numbers; blue: vertex indices. $\triangle=5, \triangle^{\prime}=6$. Z-portion of spanning tree T red; remainder blue.

Figure 5: Close-up views of overlap.

3 Conditions on \triangle

We continue to focus on triangulated polyhedra. In order to guarantee overlap, the special triangle $\triangle=a_{1} a_{2} a_{3}$ should satisfy several conditions:

1. The angle at a_{2} in \triangle must be $\leq \pi / 3=60^{\circ}$, and the edge $a_{2} a_{3}$ at least as long as $a_{1} a_{2}$.
2. The spanning cut-tree T must contain the Z as previously explained. In addition, no other edge of T is incident to either a_{1} or a_{2}. In particular, edge $a_{1} a_{3}$ is not cut, so the triangle \triangle rotates as a unit about a_{1}.
3. The curvatures at a_{1} and a_{2} must be small. We show below that $<20^{\circ}$ suffices.
4. \triangle should be disjoint from the base $B: \triangle$ and B share no vertices.

This 4th condition might be impossible to satisfy, in which case an additional argument is needed (Section 44). For now we concentrate on the first three conditions.
\triangle is chosen to be the triangle disjoint from B with the smallest angle α. Clearly $\alpha \leq \pi / 3=60^{\circ}$. Let $\triangle=a_{1} a_{2} a_{3}$ with a_{2} the smallest angle. Chose the labels so that $\left|a_{1} a_{2}\right| \leq\left|a_{2} a_{3}\right|$. It will be easy to see that \triangle an equilateral triangle is the "worst case" in that smaller α leads to deeper overlap, and $\left|a_{1} a_{2}\right|=\left|a_{2} a_{3}\right|$ suffices for overlap. So we will assume \triangle is an equilateral triangle.

Next, we address the requirement for small curvatures, when the second condition is satisfied: no other edge of T is incident to either a_{1} or a_{2}. Let ω be the curvature at a_{1} and a_{2}. Then an elementary calculation shows that $\omega=\frac{1}{9} \pi=20^{\circ}$ would just barely avoid overlap: see Fig. 6

Figure 6: Left: $\omega=20^{\circ}$ avoids overlap. Right: $\omega=10^{\circ}$ overlaps.
One can view the flattening of a_{1} and a_{2} when cut as first turning the edge $a_{2} a_{3}$ by ω about a_{2}, and then rotating the rigid path $a_{1} a_{2} a_{3}^{\prime}$ about a_{1} by
ω. For any ω strictly less than 20°, overlap occurs along the $a_{2} a_{3}$ edge. The basic reason this "works" to create overlap is that the cut-path around \triangle is not radially monotone, a concept introduced in O'R16 and used in O'R18 to avoid overlap.

In the unfolded icosahedron in Fig. 4 the angle at a_{2} is 59°, and the curvatures ω_{1}, ω_{2} at a_{1}, a_{2} are 2.4° and 8.1° respectively.

If the two curvatures are not less than 20°, then we scale P vertically (step (7) of Algorithm 1. As illustrated in Fig. 7, this flattens dihedral angles and reduces vertex curvatures at all but the vertices of base B, which increase to compensate the Guass-Bonnet sum of 4π. Clearly we can reduce curvatures as much as desired.

Figure 7: Dihedral angle δ flattens as z-heights scaled: $\left(1, \frac{1}{2}, \frac{1}{5}\right) \rightarrow$ $\left(90^{\circ}, 125^{\circ}, 160^{\circ}\right)$.

3.1 Non-Triangulated Polyhedra

If G and therefore P contains non-triangular faces, then we employ step (6) of Algorithm 1] Scale P horizontally. For example, in the dodecahedron example (Fig. 22, no face has an angle $\alpha \leq \pi / 3$. But by horizontal scaling (parallel to the $x y$-plane), we can sharpen any selected face angle, as illustrated in Fig. 8 . Then we can identify \triangle within that face, and proceed just as in a triangulated polyhedron.

Figure 8: (a) Regular pentagon scaled $\frac{2}{3}$ and $\frac{1}{3}$ horizontally. (b) A triangle with one angle 60°.

4 No Pair of Disjoint Faces

Finally we focus on the 4 th condition that \triangle should be disjoint from the base B. If G contains any two disjoint faces, triangles or k-gon faces with $k>3$, we select one as B and the other to yield \triangle. So what remains is those G with no pair of disjoint faces.

For example, a pyramid- B plus one vertex a (the apex) above B-has no pair of disjoint faces. However, note that a pyramid has pairs of faces that share one vertex but not two vertices. It turns out that this suffices to achieve the same structure of overlap. Fig. 9 illustrates why. Here B is a triangle $b_{1} b_{2} a_{3}$ and we select $\triangle=a_{1} a_{2} a_{3}$. The small-curvature requirement holds just for $a_{1}, a_{2}-$ the start of the Z - the curvature at a_{3} could be large (117° in this example) but does not play a role, as the unfolding illustrates. Therefore, if G has no pair of disjoint faces, but does have a pair of faces that share a single vertex, we proceed just in Algorithm 1, suitably modified.

Figure 9: (a) B and \triangle share $a_{3} . \mathrm{Z}=a_{1} a_{2} a_{3} b_{2}$. (b) Unfolding with overlap.
This leaves the case where there are no two disjoint faces, nor two faces that share a single vertex: every pair of faces shares two or more vertices. If two faces share non-adjacent vertices, they cannot both be convex. So in fact the condition is that each two faces share an edge. Then, it is not difficult to see that G can only be a tetrahedron, as the following argument shows.

Suppose $B=b_{1} b_{2} \ldots b_{k}$ is k-gon. Add one triangle $t_{1}=a b_{1} b_{2}$; see Fig. 10 A second triangle must share an edge with t_{1}, say $b_{2} a$, so sharing with B leads to $t_{2}=a b_{2} b_{3}$. Now a third triangle must share with B, t_{1}, t_{2}. The only uncovered edge of t_{1} is $b_{1} a$. But $t_{3}=a b_{1} b_{k}$ does not share an edge with t_{2} unless $k=3$. In that case we have a tetrahedron.

Figure 10: Every pair of faces shares an edge.

So the only case remaining is a tetrahedron. But it is well known that the thin, nearly flat tetrahedron unfolds with overlap: Fig. 11. And since there is only one tetrahedron combinatorial type, this completes the inventory.

Figure 11: Fig. 28.2 [detail], p. 314 in DO07: tetrahedron overlap. Blue: exterior. Red: interior.

5 Theorem

We have proved this theorem:
Theorem 1 Any 3-connected planar graph G can be realized as a convex polyhedron P that has a spanning cut-tree T such that the unfolding of $P \backslash T$ overlaps in the plane.

So together with Ghomi's result $]_{[6]}$ any combinatorial polyhedron type can be realized to unfold and avoid overlap, or realized to unfold with overlap.

Returning to Malkevitch's example of a combinatorial cube, consider Fig. 12 Starting from the standard Schlegel diagram for a cube, horizontal scaling (step (6) of Algorithm (1) is needed to squeeze the top and bottom squares to diamonds, so that the angle at a_{2} becomes small, in this case 55°. The lifting leaves the curvatures at a_{1}, a_{2} to be small enough, $6.0^{\circ}, 6.5^{\circ}$, so step (7) of Algorithm 1 is not needed.

Figure 12: Unfolding of a combinatorial cube. Diagonals in the left figure are an artifact of the software; all faces are planar quadrilaterals. Base B attached left of $b_{1} b_{4}$ not shown. Vertex coordinates:
$(-1,0,0.5),(1,0,0.5),(0,-2,0.5),(0,2,0.5),(-2,0,0),(2,0,0),(0,-4,0),(0,4,0)$

[^3]Acknowledgements. I benefitted from discussions with Richard Mabry and Joseph Malkevitch.

References

[DO07] Erik D. Demaine and Joseph O'Rourke. Geometric Folding Algorithms: Linkages, Origami, Polyhedra. Cambridge University Press, 2007. http://www.gfalop.org
[Gho14] Mohammad Ghomi. Affine unfoldings of convex polyhedra. Geometry \& Topology, 18(5):3055-3090, 2014.
[GSV19] Richard Goldstone and Robert Suzzi Valli. Unfoldings of the cube. The College Mathematics Journal, 50(3):173-184, 2019.
[O'R13] Joseph O'Rourke. Dürer's problem. In Marjorie Senechal, editor, Shaping Space: Exploring Polyhedra in Nature, Art, and the Geometrical Imagination, pages 77-86. Springer, 2013.
[O'R16] Joseph O'Rourke. Unfolding convex polyhedra via radially monotone cut trees. arXiv:1607.07421, 2016. https://arxiv.org/abs/1607. 07421 .
[O'R18] Joseph O'Rourke. Edge-unfolding nearly flat convex caps. In Proc. Symp. Comput. Geom. (SoCG), volume 99, pages 64:1-64:14. Leibniz Internat. Proc. Informatics, June 2018. Full version: https://arxiv. org/abs/1707.01006.
[RG06] Jürgen Richter-Gebert. Realization Spaces of Polytopes. Springer, 2006.
[Sch08] André Schulz. Lifting planar graphs to realize integral 3-polytopes and topics in pseudo-triangulations. PhD thesis, Univerität Berlin, 2008.
[SZ18] Gözde Sert and Sergio Zamora. On unfoldings of stretched polyhedra. arXiv:1803.09828, 2018. https://arxiv.org/abs/1803.09828.
[Tuf11] Christopher Tuffley. Counting the spanning trees of the 3-cube using edge slides. arXiv:1109.6393, 2011. https://arxiv.org/abs/1109. 6393.
[Tut63] W. T. Tutte. How to draw a graph. Proc. London Mathematical Society, 13(52):743-768, 1963.

[^0]: *Departments of Computer Science and of Mathematics, Smith College, Northampton, MA 01063, USA. jorourke@smith.edu
 ${ }^{1}$ Personal communication, Dec. 2022
 ${ }^{2}$ Burnside's Lemma can show that these 384 trees lead to 11 incongruent unfoldings of the cube GSV19.

[^1]: ${ }^{3}$ Here the drawing is approximate, in that I did not explicitly calculate the equilibrium stresses.
 ${ }^{4} \mathrm{~A}$ good resource on this topic is RG06.

[^2]: ${ }^{5}$ This is again an approximation as I did not calculate the reciprocal diagram.

[^3]: ${ }^{6}$ See [SZ18] for a different proof of Gho14].

