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Abstract

The new algorithm of Bobenko and Izmestiev for reconstructing the unique poly-

hedron determined by given gluings of polygons is described.

One form of Cauchy’s rigidity theorem states that the combinatorial structure of a tri-
angulated convex polyhedron together with all its edge lengths determines a unique convex
polyhedron P : the 3D vertex coordinates are uniquely determined (up to rigid motions)
by this information. However, it has long been an unsolved problem to algorithmically
reconstruct the geometric shape.

Sabitov found an exponential algorithm to solve this problem based on the “volume poly-
nomial” [Sab96]. A recent extension of Sabitov’s work [FP05] establishes that the unknown
internal diagonal lengths between each pair of vertices are roots of a polynomial of degree
at most 4m, where m is the number of edges of the polyhedron P . Knowing these internal
diagonals permits reconstruction. Exponential lower bounds on the polynomial degree left
practical reconstruction unresolved.

One can view the information input to Cauchy’s result as a gluing-together of a collection
of polygons to form a topological sphere. In Cauchy’s theorem, the polygons are in fact the
faces of the polyhedron. Alexandrov [Ale05] proved a significant strengthening: any gluing-
together of a collection of polygons to form a topological sphere leads to a unique convex
polyhedron,1 as long as no more than 2π of angle is glued at any one point. The polygons
now have no relation to the faces. In fact, his theorem applies even to just one polygon whose
perimeter is glued to, or identified with itself. Alexandrov’s proof is, alas, nonconstructive,
and did not suggest an algorithm.

Now Alexander Bobenko and Ivan Izmestiev have found a constructive proof of Alexan-
drov’s theorem, which leads to an effective numerical algorithm to reconstruct the 3D struc-
ture of the unique polyhedron guaranteed by the theorem, and therefore of Cauchy’s theorem
as well [BI06]. They and Stefan Sechelmann have implemented the algorithm and have made
it available through a Java applet.2

The historical roots of their algorithm go back to a remark made by Blaschke and Herglotz
in 1937 concerning a related problem posed by Weyl. Alexandrov speculated on the form a
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constructive proof might take in 1950 [Ale05, p. 320–1], and his student Volkov carried out
a portion of the project in 1955, now included as Appendices in [Ale05]. The new result can
be viewed as a completion of this project.

The gluing-together of polygons mentioned above defines a topologically spherical surface
S with a convex polyhedral metric: a metric d so that every point x ∈ S is either flat, i.e., with
a neighborhood isometric to a subset of R

2, or a vertex, i.e., with a neighborhood isometric
to an open subset of a cone with angle < 2π at the apex x. The polygon gluing defines
(S, d). The challenge is to construct the unique polyhedron P (e.g., the 3D coordinates of
its vertices) guaranteed by Alexandrov’s theorem (or Cauchy’s theorem if the polygons are
the faces of P ).
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Figure 1: Folding of a unit square produces a polyhedron with 6 vertices (marked) and 8
triangle faces. Lengths of edges on the perimeter are as indicated, and edges connected by
an exterior path are identified, i.e., glued to one another.

As an example, consider the gluing of the perimeter of a unit square to itself indicated
in Fig. 1. The metric defined by this gluing has 6 vertices, those points at which the total
surrounding angle is < 2π. Alexandrov’s theorem only requires this gluing as “input.” The
dashed lines indicate the creases of the folding into 3D, which I know from applying ad
hoc techniques for octahedron reconstruction [ADO03][DO07, Ch. 25]. Even knowing these,
which now provide the “input” for Cauchy’s theorem, it is far from obvious what is the exact
shape of the convex polyhedron this folding produces. The difficulty is that the resulting
octahedron has an internal diagonal of unknown length. (The latest version of Sabitov’s
algorithm already requires finding roots of a polynomial of degree 4m=412=16, 777, 216 to
find this length.)
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The basic idea of the new algorithm is to extend the metric on the surface S to the
interior (the Blaschke-Herglotz suggestion), producing a metric structure on the ball. This
is accomplished by starting with a “solid” object that cannot be embedded in R

3, and
deforming it according to a differential equation until it becomes, in the limit, P ⊂ R

3. The
equation is a function of t running from t = 1 to t = 0.

The algorithm starts with a geodesic triangulation T (1) of S: a partition of S into
triangles whose edges are geodesic paths on S, and whose vertices are the cone points of S.
More on how T (1) is selected in a moment. At any time t, a generalized polytope is defined
by an apex a and radii of length ri from a to each vertex of T (t). If △ijk is one face of
T (t), then ri, rj , and rk form a pyramid over △ijk. All these pyramids share the same apex
a. Let κi, the curvature at ri, be 2π minus the sum of the dihedral angles of the pyramids
sharing ri. At the t = 0 endpoint P , we must have κi = 0 for all i, for then the pyramids fill
the interior of P , forming a solid topological ball, and so completely surround each radial
spoke. Generalized polytopes permit κi 6= 0, which implies they cannot be embedded in R

3.
The starting triangulation T (1) is a crucial ingredient of their algorithm, described in

another paper [BS05]. It is the Delaunay triangulation defined via intrinsic geodesic distance
on S. One way to compute the Euclidean Delaunay triangulation of a set of points in the
plane is to start with an arbitrary triangulation, and “flip” any edge e that is not locally

Delaunay : where a vertex of one triangle sharing e falls inside the circumcircle of the other
triangle sharing e. It is a remarkable fact that repeatedly flipping non-locally Delaunay edges
converts any triangulation into the Delaunay triangulation (in at most O(n2) flips) [Ede01]. It
is even more remarkable that the generalization to geodesic triangulations holds: the flipping
algorithm constructs the geodesic Delaunay triangulation in a finite number of steps. Two
aspects make this a nontrivial extension of the planar result. First, an empty disk bounded
by a circumcircle might wrap around S and self-overlap. Second, S in general has an infinite
number of geodesic triangulations. Even a cube has an infinite number of such triangulations,
as can be seen as follows. Partition the top and bottom cube faces by diagonals, and view the
vertical faces as determining a cylinder. Now one can spiral noncrossing geodesics around
this cylinder connecting the bottom and top vertices forming an infinite variety of “barber
pole” triangulations. This complication makes it impossible to bound the number of flips,
although the number is finite.

A generalized convex polytope requires, in addition to the ri defining pyramids, each
edge ij of the triangulation to have a dihedral angle θij (determined by the pyramids) of
≤ π, i.e., compatible with convexity. Bobenko and Izmestiev prove that, for the Delaunay
geodesic triangulation of S, there is a sufficiently large R such that setting all ri = R,
i.e., r(1) = (R, R, . . . , R), defines a generalized convex polytope P (1), which can serve as
the starting point. They also prove that a set of ri determine a unique generalized convex
polytope, important for intermediate steps.

Now the stage is set for deformation of P (1) to P (0). The idea is to drive each κi to zero
via κi(t) = t · κi(1) for t going from 1 to 0. As the κi change, the ri deform according to a
differential equation

dr

dt
= M(t) · κ(1) , M(t) =

[

∂κi

∂rj

]

−1

.
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Here r and κ(1) are both n-vectors, and M(t) is the n × n inverse matrix of the Jacobian
computed for the polytope P (t). Establishing the nondegeneracy of the Jacobian is a crucial
aspect of the proof, complicated by the fact that the geodesic triangulation T (t) on which the
terms are based is changing via flips throughout the process. In the end, limt→0 r(t) = r(0)
exists and determines P (0) = P , the unique polyhedron realizing the given polyhedral metric
(S, d).

Their software follows this recipe, computing T (1), and then numerically solving the
differential equation. Fig. 2 shows a screen snapshot of the software reconstructing the
octahedron from the gluing defined in Fig. 1.

Figure 2: Screen shot of the software. To the left is the XML file describing the triangle
gluings, to the right the reconstructed 6-vertex octahedron.

Because the starting point of this algorithm is determined by flipping to the Delaunay
geodesic triangulation, and because the number of flips cannot be bounded, the algorithm
is not polynomial-time in the number of vertices n. But it remains pragmatically effective,
as the software demonstrates.
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