
ar
X

iv
:c

s.
C

G
/0

40
50

34
 v

1 
  7

 M
ay

 2
00

4

Computational Geometry Column 45

Joseph O’Rourke∗

Abstract

The algorithm of Edelsbrunner for surface reconstruction by “wrap-
ping” a set of points in R

3 is described.

Curve reconstruction [O’R00] seeks to find a “best” curve passing through
a given finite set of points, usually in R

2. Surface reconstruction seeks to find
a best surface passing through a set of points in R

3. Both problems have nu-
merous applications, usually deriving from the need to reconstruct the curve
or surface from a sample. Both problems are highly underconstrained, for
there are usually many curves/surfaces through the points. Surface recon-
struction in particular is notoriously difficult to control. Although significant
advances have been made in recent years [Dey04]—especially in the direc-
tion of performance guarantees based on sample density—we turn here to
a beautiful and now relatively old “wrapping” algorithm due to Edelsbrun-
ner, which, although implemented in 1996 at Raindrop Geomagic, has been
published only recently [Ede03] after issuance of a patent in 2002.

Sample results of the algorithm are illustrated in Figs. 1 and 2.1 Although
both of these examples reconstruct surfaces of genus one, we concentrate on
the genus-zero case (a topological sphere) and only mention extensions for
higher genus reconstructions.

An attractive aspect of the algorithm is that it reconstructs a unique
surface without assumptions on sample density and without adjustment of
heuristic parameters. Although the algorithm uses discrete methods, under-
neath it relies on continuous Morse functions. The discrete scaffolding on
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1.stl (stereolithography) files for shapes from http://www.cs.duke.edu/~edels/Tubes/.
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Figure 1: Torus, pentagonal cross-
section.

Figure 2: Smooth, twisted torus.

which the algorithm depends is the Delaunay complex, which we now infor-
mally describe. A simplex is a point, segment, triangle, or tetrahedron. A
simplicial complex K is a “proper” gluing together of simplicies, in that (1) if
a simplex σ is in K, then so are all its faces, and (2) if two simplices σ and σ′

are in K, then either σ∩σ′ is empty or a face of each. Let S be the finite set of
points whose surface is to be reconstructed. The Delaunay complex Del S is
the dual of the Voronoi diagram of S. Under a general-position assumption,
Del S contains a simplex that is the convex hull of the sites T ⊂ S iff there is
an empty sphere that passes through the points of T . The outer boundary of
Del S is the convex hull of S. Augmenting Del S with a dummy “simplex”
ø for the space exterior to the hull, covers R

3.
The algorithm seeks to find a “wrapping” surface W, a connected sim-

plicial subcomplex in Del S. It accomplishes this by finding a simplicial
subcomplex X of Del S whose boundary is W. The vertices of X will be
precisely the input points S, and the vertices of W will be a subset of S.

The algorithm uncovers X in Del S by “sculpting” away simplices from
Del S one-by-one, starting from ø, until X remains. The simplices are re-
moved according to an acyclic partial ordering. It is the definition of this
ordering that involves continuous mathematics.

A function g(x) assigns to every point x ∈ R
3 a number dependent on the

closest Voronoi vertex. In particular, if x is in a tetrahedron T of Del S whose
empty circumsphere has center z and radius r, then g(x) = r2 − ||z − x||2.
Thus g(x) is zero at the corners of T and rises to r2 at z, the closest Voronoi
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vertex. Points outside the hull are assigned an effectively infinite value. g(x)
is continuous but not smooth enough to qualify as a Morse function, needed
for the subsequent development. It will suffice here to claim that g can
be smoothed sufficiently to define the vector field ∇g, and from this, by
a limiting process, flow curves through every point x ∈ R

3 aiming toward
higher values.

These flow curves are in turn used to define an acyclic relation on all the
simplices of Del S and ø. Let τ and σ be two simplices (of any dimension) and
v a face shared between them. For example, if τ and σ are both tetrahedra,
v could be a triangle, or a segment, or a vertex. Define the flow relation

“→” so that τ → v → σ if there is a flow curve passing from int τ to int v

to int σ.2

A sink of the relation is a simplex that has no flow successor. ø is always
a sink (recall g(x) is large outside the hull), with the hull faces of Del S its
immediate predecessors. Sinks are like critical points of the flow, with the
simplices that gravitate toward a sink corresponding to a stable manifold in
Morse terminology.

A key theorem is that the flow relation on simplices is acyclic, which
reflects the increase of g(x) along every flow curve. The algorithms starts with
ø and methodically “collapses” its flow predecessors until no more collapses
are possible, yielding the complex X .

Let v be a face of τ ; then τ is called a coface of v.3 Assume τ → v; for
example, τ might be a tetrahedron and v one of its edges, with the flow from
τ through v. We give some indication of when the pair (v, τ) is collapsible,
without defining it precisely. First, τ must be the highest dimension coface
of v, and v should not have any cofaces not part of τ . Thus, v is in a sense
“exposed.” Second, the flow curves should pass right through every point of
v (as opposed to running along or in v). Collapse of the pair removes all the
cofaces of v, thus eating away the parts of τ sharing v.

A second key theorem is that any sequence of collapses from ø leads
to the same simplicial complex X . Collapses also maintain the homotopy
type, which, because Del S is a topological ball, result in X a ball and W a
topological sphere.

To produce surfaces of higher genus, the contraction is pushed through

2int v is the interior of v; for a v a vertex, int v = v.
3One can think of this is a containing face, although its origins are more in comple-

mentary topological terminology.
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holes: the most “significant” sink (in terms of g(x)) is deleted (changing the
homotopy type), and then the collapses resume as before. This is how the
shapes shown in Figs. 1 and 2 were produced. Repeating this process on the
sorted sinks results in a series of nested complexes X = X0,X1, . . . , ∅.

Finally, the algorithm works in any dimension, although most applications
are in R

3.
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