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Open Problems from CCCG 2002

Erik D. Demaine∗ Joseph O’Rourke†

The following is a list of the problems presented on
August 12, 2002 at the open-problem session of the 14th
Canadian Conference on Computational Geometry held
in Lethbridge, Alberta, Canada.

Boxed problem numbers indicate appearance
in The Open Problem Project (TOPP); see
http://www.cs.smith.edu/~orourke/TOPP/.

Great Circle Graphs: 3-colorable?

Stan Wagon

Macalester College

wagon@macalester.edu

TOPP

#44

Is every zonohedron 3-colorable when viewed as a
planar map? This question arose out of work de-
scribed in [RSW01]. An equivalent question, under
a different guise, is posed in [FHNS00]: Is the ar-
rangement graph of great circles on the sphere 3-
colorable? Assume no three circles meet at a point,
so that this graph is 4-regular. Circle graphs in the
plane can require four colors [Koe90], so the key
property in this problem is that the circles must be
great. All arrangement graphs of up to 11 great cir-
cles have been verified to be 3-colorable by Oswin
Aichholzer (August, 2002). See [Wag02] for more
details.
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Kissing Circle Representation

Therese Biedl

University of Waterloo

biedl@math.uwaterloo.ca

It is known that any planar graph G can be rep-
resented by “kissing circles”: an interior-disjoint
collection of circles, one circle per vertex, such that
two circles touch (“kiss”) precisely when the corre-
sponding vertices are adjacent. However, the com-
putation of such kissing circles is not straightfor-
ward. See [Koe35, Moh93, BS93, Sac94, Smi91,
Zie95] for more information.

Suppose one loosens the kissing requirement and
seeks instead a collection of disks whose intersec-
tion graph is G. Is it easier to compute such a repre-
sentation? Can the disk centers be restricted to ra-
tional coordinates? Can they be integers bounded
by a polynomial in some parameters of the graph?
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3-Manifolds Built of Boxes

Joseph O’Rourke

Smith College

orourke@cs.smith.edu

A result in [DO01, DO02] may be interpreted as fol-
lows: For any polyhedral 2-manifold homeomorphic
to a sphere S

2 ⊂ R
3, all of whose facets are rectan-

gles, adjacent facets either meet orthogonally or are
coplanar. This raises the analogous question one
dimension higher: For any polyhedral 3-manifold
homeomorphic to a sphere S

3 ⊂ R
4, all of whose

facets are rectangular boxes, is it true that adja-
cent facets lie either in orthogonal 3-flats or within
the same 3-flat? Very roughly, must a 3-manifold
built from boxes be itself orthogonal?
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Visibility Product Characterization

Tom Shermer

Simon Fraser University

shermer@cs.sfu.ca

Let P be a polygon, treated as a region in the plane.
Define (for lack of a better term) the visibility prod-
uct VP(P ) to be the following four-dimensional set:

VP(P ) = {(x1, y1, x2, y2) |
(x1, y1) ∈ P, (x2, y2) ∈ P,

(x1, y1) can see (x2, y2)}

Two points can see one another if the line segment
between those points is a subset of P . Thus VP
is something like a set product capturing visibil-
ity. Determine the structure of VP(P ), character-
ize the set, find an algorithm to construct it, and
determine if it has utility.

3D Orthogonal Graph Drawings

David Wood

Carleton University

davidw@scs.carleton.ca

TOPP

#46

Does every simple graph with maximum vertex de-
gree ∆ ≤ 6 have a 3D orthogonal point-drawing
with no more than two bends per edge? An or-
thogonal point-drawing of a graph maps each ver-
tex to a unique point of the 3D cubic lattice, and

maps each edge to a lattice path between the end-
points; these paths can only intersect at common
endpoints. In this problem, each path must have
at most two bends, that is, consist of at most three
orthogonal line segments (links).

There are several related known results. Two bends
would be best possible, because any drawing of K5

uses at least two bends on at least one edge. If ∆ ≤
5, two bends per edge suffice [Woo03]. Two bends
also suffice for the complete multipartite 6-regular
graphs K7, K2,2,2,2, K3,3,3, and K6,6 [Woo00]. In
general, there is a drawing with an average number
of bends per edge of at most 2 + 2

7
[Woo03]. Addi-

tionally, three bends per edge always suffice, even
for multigraphs [ESW00, PT99, Woo01].

This problem was first posed in [ESW00].
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Sailor-in-the-Fog Generalization

Alejandro López-Ortiz

University of Waterloo

alopez-o@uwaterloo.ca

The venerable “Sailor in the Fog” problem asks for
an optimal search strategy for a sailor to find the
shoreline when lost in a fog offshore (a version was
posed by Bellman in [Bel87]). There are many vari-
ations on this problem. For example, one version
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can be rephrased as follows: Find the shortest-
length path from the center of a unit disk that in-
tersects every halfplane whose bounding line (the
shoreline) supports the disk. Note here the assump-
tion is that the distance to the shore is known. This
problem was solved by Isbell [Isb57].

A conference conversation suggested the follow-
ing higher-dimensional generalization: Find the
shortest-length path from the center of a unit
ball that intersects every halfspace whose bound-
ing plane supports the ball. This problem might
represent a diver seeking the surface.

It came to light after the presentation that this
problem was posed before, in a paper by V. A.
Zalgaller [Zal92], for which there is apparently no
published translation from the Russian. Nonethe-
less, the problem remains unsolved. See [Fin01] for
more information.
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Region Realization

Alejandro López-Ortiz

University of Waterloo

alopez-o@uwaterloo.ca

Suppose we are given a collection of constraints on
unknown planar connected regions of the form

1. region A is contained in region B; and

2. region A properly intersects region B;

3. regions A and B are adjacent (share just
boundary points);

4. region A does not touch region B.

Is there a polynomial-time algorithm to decide
whether there is a realization of these constraints
by planar connected regions? The special case in-
volving just constraints of Type 3 is called a map
graph, a concept introduced by Chen, Grigni, and

Papadimitriou [CGP02] and solved by Mikkel Tho-
rup [Tho98].

A simpler variation on this problem is that all re-
gions are given (as planar polygons) except for one
unknown region X which must be found in order
to obey the given constraints.
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Guaranteed Aspect Ratio Partitions

Mirela Damian-Iordache

Villanova University

mirela.damian@villanova.edu

Define the aspect ratio of a polygon as the ratio of
the diameters of the smallest circumscribing circle
to the largest inscribed circle. (Thus in this con-
text the aspect ratio measures circularity.) Find a
polynomial-time algorithm for partitioning a poly-
gon into the fewest polygonal pieces, each piece
with an aspect ratio no more than a given α > 1,
or to report that no such partition exists. Here the
pieces are permitted to employ “Steiner points,”
points that are not vertices of the given polygon.
When Steiner points are disallowed, a polynomial-
time algorithm is known [DI02]. A second question
is to find the smallest α > 1 for which there is a
partition in which every piece has aspect ratio at
most α.
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Representing Separation by Pseudotriangulation

Bettina Speckmann

ETH Zürich

speckman@inf.ethz.ch

Consider a nonoverlapping collection of polygons in
the plane. Is it always possible to decompose the
exterior of these polygons into pseudotriangles such
that each object touches at most as many pseu-
dotriangles as its minimum-link separation chain?
How efficiently can such a decomposition be com-
puted, when it exists?
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D-forms

Joseph O’Rourke

Smith College

orourke@cs.smith.edu

Let c1 and c2 be two smooth, closed, convex, pla-
nar curves of the same length, each bounding a flat
piece of paper. Choose a point p1 on c1 and a point
p2 on c2, and glue the two curves to each other (ac-
cording to arclength) starting with p1 glued to p2.
The resulting single piece of paper forms a shape
in space called a D-form by Helmut Pottmann, Jo-
hannes Wallner, and Tony Wills. The curves c1 and
c2 join to form a closed space curve c bounding two
developable surfaces S1 and S2. These authors ask
two questions in [PW01, p. 418]:

1. “It is not clear under what conditions a D-
form is the convex hull of a space curve.”

2. “After some experiments we found that, sur-
prisingly, both S1 and S2 were free of creases,
but we do not know whether this will be so in
all cases.”
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