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Abstract

We address a question posed by T. Sibley and Stan Wagon. They proved that

rhombic Penrose tilings in the plane can be 3-colored, but a key lemma of their

proof fails in the natural 3D generalization. In that generalization, an object is

built from bricks, each of which is a parellelopiped, and they are glued face-to-

face. The question is: How many colors are needed to color the bricks of any

such object, with no two face-adjacent bricks receiving the same color?

We have settled a number of questions on the general problem. For arbitrary

parellelopiped bricks, we have proven that zonohedral balls are 4-colorable, and

4 colors are sometimes necessary. For orthogonal bricks, we have several results.

First, any object built from such bricks is 4-colorable. Moreover, any genus-zero

object (a ball) is 2-colorable. Our most complex result is that any object with

no ”dividing” holes (ones that a plane parallel to one of the coordinate planes

is divided into two disconnected pieces by the hole), regardless of its genus, is

2-colorable. We have examples, however, that require 3 colors. We prove that

all genus-one objects are 3-colorable, as well as object of higher genus subject

to certain restrictions, and we conjecture that any object built from orthogonal

bricks is 3-colorable.



Contents

1 Introduction 4

1.1 Notation and Questions . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Zonohedra 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Structure of Zonohedra . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Zonohedra and Arrangments . . . . . . . . . . . . . . . . . . . . 10

3 Orthogonal Bricks 15

4 Crack Lemma 16

5 Orthogonal Balls are 2-Colorable 18

5.1 Genus Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.2 2-Colorings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 Objects of Higher Genus 25

7 Shine-Through Holes 27

8 The General Case 31

1



List of Figures

2.1 A rhombic dodecahedron. . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Zonohedron generated by 30 random vectors. . . . . . . . . . . . 11

2.3 An octagon zonogon and its dual arrangement. . . . . . . . . . . 12

4.1 Coordinate plane P intersects a set of bricks B. . . . . . . . . . . 17

5.1 A genus-0 object built from bricks. The central rectangle is not

a hole when the object’s boundaries are displaced inward by ε. . 19

5.2 A situation where a clash might occur. Note that if there exists

a path from b1 to b2 other than through b, such as the one along

the dotted line, then the grey area becomes a hole in the object,

and the object is no longer genus-zero. . . . . . . . . . . . . . . . 20

5.3 A rope showing that the object has genus at least 1. . . . . . . . 21

5.4 Threading a rope through two layers with a disconnected inter-

section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.5 Sweeping P up through the layers. . . . . . . . . . . . . . . . . . 24

6.1 An example of a 3-chromatic graph built from orthogonal bricks. 26

7.1 Cutting the cycles to get a genus 0 object. . . . . . . . . . . . . . 28

7.2 Repairing along the cuts. Even when the cuts are very close,

there are no clashes. . . . . . . . . . . . . . . . . . . . . . . . . . 28

2



7.3 An orthogonal object object built from bricks constructed by

drilling two holes through a cube. (a) Hole A, parallel to y,

and hole B, parallel to z, intersect. Cracks a1 and a2 of A do

not align. (Not all cracks are shown in the figure.) (b) The yz

quarter-planes incident to a1 and a2 are therefore not coplanar. 29

3



Chapter 1

Introduction

Our work stems from questions posed by Stan Wagon at the open-problem

session [DO03] of the 14th Canadian Conference on Computational Geometry.1

Sibley and Wagon noticed that rhombic Penrose tilings were 3-colorable,

and proved that any collection of “tidy” parallelograms in the plane (including

those Penrose tilings) is 3-colorable [SW00]. In tidy collections, each pair of

bricks intersects either in a single point, or a single whole edge of each, or not at

all. We will introduce our own terminology for this concept below. Their proof

establishes the existence of an “elbow” in any such collection: a parallelogram

with at most two neighbors. (Again, we will introduce our own notation below.)

This then supports an inductive coloring algorithm.

As reported in [Wag02], attempts to extend this result to three dimensions

have failed, largely because the analog of the elblow lemma is false. Wagon,

Robertson, and Schweitzer found a genus-7 polyhedron composed of parallelop-

ipeds in which none has degree three or less. Were such an elbow always present,

an inductive argument could establish 4-colorability. Without that lemma, the

chromatic number of such objects is unclear.

Although we do not settle the general question for 3D, we establish a number

of partial results, which we will summarize after setting notation.

1Lethbridge, Alberta, Canada, August 2002.
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1.1 Notation and Questions

A parallelopiped is a hexahedron composed of three pairs of parallel faces, each of

which is necessarily a parallelogram. We will use the simpler term brick to refer

to the same shape. An orthogonal brick is one whose (internal) dihedral angles

are all π/2, and whose faces are necessarily rectangles, i.e., it is a rectangular

box.

A ball is a solid object that is topologically equivalent to (i.e., homeomorphic

to) a solid sphere. To emphasize the dimension of the ambient space Rd, we’ll

call it a d-ball ; without qualification a “ball” will be understood to be a 3-ball.

A collection of bricks is said to be properly joined if each pair of bricks

intersects either in a single point, a single whole edge of each, or a single whole

face of each.2 Two bricks in a collection are adjacent if they share a single whole

face. A face of a brick that has no other brick face joined to it is called exposed.

Define the brick graph of a collection of bricks to have a node for each brick,

and an arc for each pair of adjacent bricks. Sometimes this is called the “dual

graph” of the collection.

We will say that an object is built from bricks if it is a collection of properly

joined bricks whose brick graph is connected.

A k-coloring of an object built from bricks is a k-coloring of its brick graph,

i.e., an assignment of k colors, one per brick, such that every pair of adjacent

bricks are assigned different colors.

The primary question on which we are focussing is due to Stan Wagon,

posed in a presentation at CCCG August 2002 (in another guise, with different

notation):

Is every ball built from bricks 4-colorable?

Call any brick that has at most degree-3 in the brick graph an (≤ 3)-brick.

A brick is a corner brick if it has a vertex all three of whose incident faces are

exposed. A corner brick is a (≤ 3)-brick, but not every (≤ 3)-brick is a corner

brick.

Call a collection of objects built from bricks strongly shellable if removal of

any brick from an object, that does not disconnect the object’s brick graph,

2This is the three-dimentional version of what Sibley and Wagon call “tidy”.
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results in another object in the collection. (Balls are not strongly shellable,

because removal of a brick could change the genus.) A collection is shellable

if there is at least one brick whose removal results in another object in the

collection.

Lemma 1.1.1 If, among a strongly shellable class C of objects built from bricks,

every object has at least one (≤ 3)-brick, then every object in C is 4-colorable.

Proof: Let P be an object in C. By hypothesis, P has a (≤ 3)-brick b. Then

P ′ = P \ b is also a member of C because the class is strongly shellable. Induc-

tively 4-color P ′. Repace b, using the color not employed among its at most 3

adjacencies. 2

This question is of interest independent of the shelling connection:

Does every ball built from bricks have at least one corner

brick?
As mentioned before, there exists a genus 7 object built from bricks that has

no (≤ 3)-brick [Wag02] (and so no corner brick). Nevertheless, the question is

open for balls built from bricks.

1.2 Summary of Results

1. Results for arbitrary parallelopiped bricks.

(a) Some balls built from bricks require four colors.

(b) Every zonohedron (a particular type of ball) has a corner brick.

(c) Every zonohedron is 4-colorable.

2. Results for orthogonal bricks.

(a) Every ball built from orthogonal bricks has a corner brick.

(b) Every object built from orthogonal bricks is 4-colorable.

(c) Some objects built from orthogonal bricks need three colors.

(d) Every ball built from orthogonal bricks is 2-colorable.

(e) Every object built from orthogonal bricks with no “dividing” holes

is 2-colorable.
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(f) Every object built from orthogonal bricks with dividing holes satis-

fying certain restrictions is 3-colorable.

(g) Every genus-1 object built from orthogonal bricks is 3-colorable.
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Chapter 2

Zonohedra

2.1 Introduction

In this section we consider balls built from general parallelopiped bricks. If the

bricks are glued together tree-like, more precisely, such that the brick graph

is a tree, then it is easy to see the object is 2-colorable: Remove a leaf, color

the remaining object inductively, and now place back the leaf using the color

opposite its parent. So it is clear that more colors will only be needed when the

object has a higher degree of connectivity. It seems intuitively that the highest

degree of connectivity comes from building a sphere-like object from the bricks,

surrounding each internal brick as much as possible. For balls (genus zero), this

seems to be the worst case. And this worst case is captured in an object known

as a zonohedron.

A typical zonohedron is shown in Fig. 2.1. A zonohedron is a convex polyhe-

dron all of whose faces are parallelograms. The notion generalizes to arbitrary

dimensions, then called a zonotope. Zonohedra are natural candidate objects

for us, because clearly any object built from parallelopiped bricks will have par-

allelogram faces. But is the reverse true? Can every zonohedron be built from

bricks? Indeed, this is true, although to understand this requires going a bit

deeper into the structure of zonohedra.
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Figure 2.1: A rhombic dodecahedron.

2.2 Structure of Zonohedra

One can generate a zonohedron by starting with n independent vectors (or

segments) e1, . . . , en, and taking all the points expressible as scaled versions of

these vectors:

p =

n
∑

i=1

αiei

with αi ∈ [0, 1]. The convex hull of all such points is a zonohedron, whose

edges are all parallel to the n vectors. Coxeter [Cox73, p. 27] calls the n vectors

an n-star. There is some variation in the literature depending on whether one

insists the vectors be independent, in which case all faces are parallelograms, or

not, in which case faces could be, e.g., hexagons. The zonohedron in Fig. 2.1 is

generated by four segments, no two of which are coplanar.

Two other ways of viewing a zonotope is as the affine projection of a cube

from higher dimensions, or as the Minkowski sum of n line segments [Zie94,

p. 198ff].

Zonohedra get their name from the zone of faces forming a “belts” around

their “middles,” each composed of faces with two edges equal in length and

parallel. Each face belongs to two zones that cross through it, and cross again
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at an antipodal position on the surface. The zones are evident in Fig. 2.2 below.

We find the answer to the question we posed above in [Cox73, p. 258]:

Lemma 2.2.1 Every zonohedron generated by n segments “may be dissected (in

various ways) into
(

n
3

)

parallelopipeds, one for every three of the n segments.”

Thus the zonohedron in Fig. 2.1 is built from
(

4

3

)

= 4 bricks. It is also worth

noting that the brick graph of the rhombic dodecahedron is K4, thereby estab-

lishing that some zonohedra require four colors.

A more complex example of a zonohedron is shown in Fig. 2.2. This was

generated by code written by David Eppstein [Epp95] from 30 random vectors.

Thus, it may be dissected into
(

30

3

)

= 4060 bricks.

Although we have not be able to find a precise proof of Lemma 2.2.1 in the

literature, the following was provided by Eppstein1:

Proof: “By induction on number of zones and dimension. Choose one zone, and

view the zonohedron as being formed by the product of a smaller zonohedron

and a single line segment. The facets of the smaller zonohedron are partitioned

into two subsets by whether they point towards one end or the other of the

segment; you can form the larger zonohedron by gluing the smaller zonohedron

to a shell formed by the product of the lower facets and the segment. The

lower facets look like a zonohedron one dimension down, so can be divided into

parallelograms, and when you take the product of them with a line segment you

get a zonohedron.” 2

Our goal is to prove that any of the dissections of a zonohedron into bricks

is 4-colorable. For that we need to connect zonohedra to arrangements.

2.3 Zonohedra and Arrangments

The combinatorics of the faces of a zonohedron are equivalent to those of a simple

arrangement of planes in 3-space [Zie94, p. 207]. Each zone of faces corresponds

to one plane of the arrangement, perpendicular to the parallel edges defining the

zone. Each point of the arrangement where three planes meet corresponds to a

brick. The brick shape is determined by the three edges corresponding to the

1Personal communication, Oct. 2002
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Figure 2.2: Zonohedron generated by 30 random vectors.
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three planes: it is the product of the three segments. The arrangement specifies

how the bricks are glued together. This is best illustrated in two dimensions.

Fig. 2.3 shows a 2D zonogon based on a 4-star, partitioned into 6 parallel-

ogram bricks. The six bricks are numbered, and correspond to the intersection

1

2

3

4 5 6

1

2

3

4 5 6

Figure 2.3: An octagon zonogon and its dual arrangement.

points of pairs of lines orthogonal to the zones. Each face of the arrangement

corresponds to a vertex of the dissection. Thus the degree-4 vertex shared by

bricks {2, 3, 5, 6} corresponds to a quadrilateral face of the arrangement.2 The

reason there are “various ways” to dissect a zonohedron into bricks is that there

are several combinatorially distinct arrangement constructible from the same

set of parallel lines.

Define the skeleton of an arrangement of planes as the collection of vertices

and finite-length edges connecting those vertices (excluding the infinite rays

incident to one vertex). Note the skeleton is a geometric object. It is merely

the arrangement with all infinite rays “clipped” off. The way in which the

combinatorics of a zonohedron are equivalent to those of the arrangement may

be stated as follows:

Lemma 2.3.1 The skeleton of an arrangement, viewed as a graph, is isomor-

phic to the brick graph of the associated gluing of bricks.

2That it is actually geometrically inside the face is an accident of the example.
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Recall that a corner brick is one with a vertex all three of whose incident

faces are exposed. A corner brick has degree ≤ 3. (As we mentioned, the similar

concept in 2D is called an elbow in [SW00].)

Theorem 2.3.2 A zonohedron built from n bricks has at least four corner bricks

if n ≥ 4. If n < 4, all of its bricks are corners.

Proof: Take the convex hull of the skeleton of the arrangement. If the arrange-

ment is formed from at least four planes, this hull is at least a tetrahedron. Let

v be a vertex of the hull. Reorient so that v is the unique leftmost point of the

hull. Because the arrangement is simple, every vertex of the arrangement has

degree 6, formed by the intersection of three lines at the vertex. But for v in

particular, three of edges incident to v are infinite rays. We pause to justify this

claim.

Let π be the vertical plane supporting the hull at v; it does not including

any face of the hull, because v is strictly leftmost. Let A, B, and C be the three

lines of the arrangement that meet at v. None of those lines lie in π, because π

includes no hull faces. Therefore, each penetrates π and v, and π partitions the

three lines into six rays. Three of those rays must be infinite, because there are

no vertices of the arrangement left of v. The claim is established.

As these three rays are clipped off in the skeleton, v has only degree 3 in the

skeleton. By Lemma 2.3.1, v corresponds to a brick b, which also therefore has

degree 3 in the brick graph. Finally, it is clear that the vertex of the brick that

dually corresponds to the infinite cone with those three infinite rays as ribs is

“exposed,” and therefore satisfies the definition of a corner. Thus b is a corner,

and the same holds true for the other vertices of the hull of the skeleton. 2

Corollary 2.3.3 A zonohedron built from bricks is 4-colorable.

Proof: Remove a corner, apply induction, and reglue the corner brick, using

the color not used among its three neighbors. 2

Because all the properties we used generalize to arbitrary dimensions, we

have also established this:

Theorem 2.3.4 A zonotope in d dimensions built from n bricks has at least d

corner bricks if n ≥ d + 1. If n < d + 1, all of its bricks are corners. Such a

zonotope is (d+ 1)-colorable.
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We have not found this theorem in the literature, but have no doubt it is

known to zonotope experts.

Because we feel that zonohedra are in some sense the worst case for coloring,

we believe this:

Conjecture 2.3.1 All objects built from bricks are 4-colorable.
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Chapter 3

Orthogonal Bricks

In this section we will look at objects built from orthogonal bricks, parallelop-

ipeds whose faces are all rectangles. When working with orthogonal bricks, we

can assume without loss of generality that all faces are parallel to the coordinate

planes. This assumption simplifies the reasoning. In particular, it makes our

original question about corner bricks almost trivial.

Theorem 3.0.5 Every object P built from orthogonal bricks has at least one

corner brick.

Proof: Let B be the bounding box for the object P . The top view of B is a

rectangle R. All four sides of R must touch some brick. Let b be the rightmost

brick amongst those that touch the front edge of R. Brick b must be exposed

above (because it is visible in the top view), exposed to the right (because it is

rightmost), and exposed to the front (because it touches the front face of B).

Therefore b is a corner brick.

2

Corollary 3.0.6 Every object built from orthogonal bricks is 4-colorable.

Proof: The set of all objects built from orthogonal bricks forms a strongly

shellable class, because removal of any brick leaves an object built from orthog-

onal bricks. Theorem 3.0.5 shows they have a corner brick, and a corner brick is

by definition a (≤ 3)-brick. Lemma 1.1.1 then applies and establishes the claim.

2
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Chapter 4

Crack Lemma

In looking at objects built from orthogonal bricks, it is often useful to look at

those bricks with the same x, y, or z extent, bricks where the cracks align. Call

an arc of the brick graph an x-arc if the two adjacent bricks share a face parallel

to yz; and similarly for y- and z-arcs.

Let π = (b1, b2, . . . , bk) be a path of bricks, i.e., a collection of bricks which

induce a path in the brick graph G. Call the path an xy-path if all the arcs of

the path are either x- or y-arcs; and similarly define yz- and xz-paths. Call the

z-extent of a brick to be the interval of z-values it covers; and similarly for x-

and y-extents.

Lemma 4.0.7 In an xy-path of bricks in G, the z-extent of every brick in the

path is identical.

Proof: The proof is by induction on the number of bricks in the path. Let

π = (b1, b2, . . . , bk) be the xy-path of bricks.

1. Base case, k = 2. Let the arc between b1 and b2 be an x-arc wlog. Then,

by the definition of an object built from bricks, b1 and b2 must share the

whole of a yz-face between them. This means both their y- and z-extents

must be identical.

2. General case. Suppose the lemma holds up to k − 1. Thus the z-extent

of b1 is the same as that of bk−1. There are two possibilities: Either bk
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connects to bk−1 via an x-arc or via a y-arc. In the former case, they

must share a yz-face and therefore have identical y- and z-extents; in the

latter case, they must share a xz-face and therefore have identical x- and

z-extents. In either case, they have the same z-extents.

2

A coordinate plane is one whose normal is parallel to either the x, y, or z

axes; we will identify them by their normals. Say that a plane P cuts a brick b

if P includes a point strictly interior to b.

Lemma 4.0.8 If a coordinate z-plane P cuts every brick in a set of bricks B,

and if the open (geometric) set Q = int(P ∩ B) is connected, then there is an

xy-path in G between any two bricks b1 ∈ B and bk ∈ B.

Proof: We first observe that any two bricks “adjacent” in Q are connected by

an x- or y-arc in G. For if int(P ∩ (b1 ∪ b2)) is a connected set, then the two

bricks must share a face, either an xz- or a yz-face, corresponding to an x- or

y-arc in G

It now follows that the connected set Q induces a connected subgraph in G

whose nodes are the bricks in B and whose arcs are all x- or y-arcs. A path in

this subgraph between b1 and bk then is an xy-path in G connecting them. (In

particular, a shortest path (fewest arcs) is a simple path.) See Fig. 4.1. 2

b
1

b
k

P

Figure 4.1: Coordinate plane P intersects a set of bricks B.
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Chapter 5

Orthogonal Balls are

2-Colorable

In this section we prove this theorem:

Any ball O (i.e., any genus-zero object) built from orthogonal bricks

is 2-colorable.

5.1 Genus Definition

Before we discuss the 2-colorability of balls, it is first useful to say a few things

about how we are defining the genus of any particular object built from bricks.

Let O be an object built by bricks, and let ε > 0 be a number much smaller

than any brick side length. Define Oε to be the object reduced in size by ε,

meaning that all faces move inwards ε. We define the genus of object O to be

the genus of the surface of Oε, where the latter genus is the familar concept

from topology. Thus, vertex-to-vertex and edge-to-edge contacts do not affect

the genus of an object. See Fig. 5.1. Note that this shrinking is necessary to

obtain a surface, for a surface requires the neighborhood of each point to be

homeomorphic to a disk. The genus of the surface may be computed via Euler’s

formula (on either O or Oε—the results will clearly be the same).
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Figure 5.1: A genus-0 object built from bricks. The central rectangle is not a

hole when the object’s boundaries are displaced inward by ε.

It should be noted that most of the theorems we will prove about genus-zero

objects would still apply, with modified proofs, if we allowed edge-to-edge and

vertex-to-vertex connections to alter the genus.

5.2 2-Colorings

Lemma 5.2.1 Any genus-zero 2D collection of rectangular bricks is 2-colorable.

Proof: The proof is by induction. Let R be the collection of rectangles. Let

b be the x-most, y-most brick, i.e., the highest brick touching the right side of

the bounding rectangle. Remove b, producing R′ = R \ b. Removal of a brick

on the boundry of a genus zero object cannot increase the genus, though it may

cut the object into disconnected pieces. Therefore, R′ has genus zero as well,

and the induction hypothesis applies.

Consider all of the ways that the at most two neighbors of b, b1 and b2 can

be colored. If b has just one neighbor or if b1 and b2 have the same color, b can

be colored with the opposite color. If the two neighbors have opposite colors,

then since the induction hypothesis gives us a proper 2-coloring, then we know

b1 and b2 cannot share a neighbor, and so the space diagonally to the left and

beneath b, call it c, has no brick. See Figure 5.2.

There are now two possible cases. The first is that there is no path in
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the brick graph of R′ between b1 and b2, meaning that the brick graph has

been divided into two disconnected pieces. Then all of the colors in the piece

containing b2 can be reversed without affecting the color of b1. Thus, b1 and b2

can be made the same color, and b can be colored the opposite as above. The

second case is that there is a path in R′ between b1 and b2. However, that would

mean that when b is included, there is a cylce in R which surrounds c, making

the genus of R greater than zero, contradicting our original hypothesis. 2

b
1

b
2

b

c

Figure 5.2: A situation where a clash might occur. Note that if there exists a

path from b1 to b2 other than through b, such as the one along the dotted line,

then the grey area becomes a hole in the object, and the object is no longer

genus-zero.

Say that a collection of bricks form an xy-layer (or just a layer) if a z-

plane cuts each brick. A connected layer is a layer for which the brick graph

is connected. By Lemmas 4.0.8 and 4.0.7, the top of all bricks in a connected

layer lie at the same z-value. (Note this does not necessarily hold for layers with

several connected components.)

We now turn attention to layers that are not genus zero. Let γ be a cycle in

a layer. Two bricks in γ are called opposing if they are both cut by either a x-

or a y-coordinate plane, i.e., they include points at the same height z, and with

either the same y- or x-coordinate respectively.

Lemma 5.2.2 Let O be a genus-zero object containing a connected layer A

that has genus greater than zero. Then any pair of opposing bricks in a cy-
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cle surrounding a hole of A have the same extent orthogonal to their plane of

opposition, i.e., their “cracks” align.

Proof: Let b1 and bk be two bricks of γ that are cut by a y-coordinate plane P ,

i.e., one parallel to the xz-plane. We now argue that there is a path in P ∩ O

connecting b1 to bk, either above A or below A.

Suppose otherwise; suppose there is no path connecting the bricks above A

in P ∩ O, and none below A. Then we could thread a rope through the top of

A, staying entirely inside P , through the interior of the cycle γ, and out the

bottom of A. See Figure 5.3. Closing the loop exterior to the object then shows

that O has genus at least 1, a contradiction.

A

P

b
1

b
k

z

x

y

γ

Figure 5.3: A rope showing that the object has genus at least 1.

Now Lemma 4.0.7 applies and shows that all the bricks in the path in P

have the same y-extent, and in particular, b1 and bk do. 2

This lemma will permit us to “fill in” holes in a layer.

Define the intersection of two adjacent layers A and B to be those bricks

in layer A which share a face with a brick in layer B, and those bricks in layer

B which share a face with a brick in layer A. We will need one more lemma,
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related to the intersection of two layers, to reach our theorem:

Lemma 5.2.3 The intersection of two genus-zero layers in a genus-zero object

is connected.

Proof: First note that by Lemma 5.2.2 we can assume that all layers in a

genus-zero object are genus-zero, since we can fill in the holes of those that are

not.

Now, suppose that that there exist two adjacent layers A and B such that

the intersection of A and B is not connected. Then there exists two bricks b1

and bk in layer B (and their corresponding adjacent bricks a1 and ak in layer A)

such that there exists no path between them in the intersection. However, since

by definition layer A and layer B are connected, then there does exist a path

πA in layer A from a1 to ak and a path πB in layer B from b1 to bk. Without

loss of generality, we may assume that none of the bricks in either path are in

the intersection, since otherwise we could move b1 and bk to the last bricks in

the paths which are in the intersection.

Now, assume that layer A is below layer B and lay a rope across the brick

in πA adjacent to a1 and thread it on top of the A layer until you reach a place

where the rope can be threaded down to beneath the B layer. See Figure 5.4.

This rope will be external to the object, since because layer B is genus zero,

it cannot wrap around and trap the rope, and since the entire object is genus

zero, there cannot be a cycle of layers which might trap the rope either. The

same applies to layer A. However, this rope has now been threaded through the

object, showing that the genus is greater than zero, a contradiction. Therefore,

the intersection of any two adjacent layers must be connected. 2

Theorem 5.2.4 Any ball O (i.e., any genus-zero object) built from orthogonal

bricks is 2-colorable.

Proof: Let P be a z-plane that cuts the lowest brick of O. In general P ∩O will

contain several connected components. We imagine sweep P upwards over O.

Each connected component in one layer becomes a node in a layer graph GL.

Two nodes of this graph are connected by an arc if the corresponding connected

layers have a non-empty intersection. See Fig. 5.5.
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Figure 5.4: Threading a rope through two layers with a disconnected intersec-

tion.

(Note that each object has three layer graphs, one for each possible sweeping

coordinate plane.)

Because O is genus zero, GL cannot contain any cycle. Therefore it is bi-

partite. Therefore it may be 2-colored. Let the colors be a and b. Thus each

connected layer is assigned a “super” color by this assignment.

Let A be one connected layer. We now argue that its brick graph is 2-

colorable. If it is genus zero, it is 2-colorable by Lemma 5.2.1. If it is not genus

zero, then opposing bricks around a cycle have the same extent by Lemma 5.2.2.

This permit us to “fill in” holes in A with bricks that match that extent. This

renders A genus zero, and it is again 2-colorable.

Finally, we use the super 2-coloring by {a, b} to create a 2-coloring of the

brick graph. Let A and B be two connected layers adjacent in GL. Color each

brick b2 ∈ B the opposite the color of its adjacent brick b1 ∈ A (if there is such a

brick). We will never get any clashes, since if two bricks in B are both adjacent

to bricks in A, then there will be a path between them such that every brick in

the path is adjacent to a brick in A by Lemma 5.2.3. Thus, the 2-colorings of

the layers will mesh smoothly together, and the entire graph is 2-colorable. 2
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C1

C2

P

Figure 5.5: Sweeping P up through the layers.
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Chapter 6

Objects of Higher Genus

Let O, an object built from orthogonal bricks, be an object of arbitrary genus.

Call a hole in O a dividing hole if a plane parallel to one of the coordinate planes

passes through the hole in such a way that the plane is cut into two disconnected

pieces by the hole.

Theorem 6.0.5 If an object built from orthogonal bricks has no dividing holes,

then it is 2-colorable.

Proof: In any given layer, look at a cycle around a hole, and let b1 and bk be

bricks which are cut by a plane P parallel to a coordinate plane. Since the hole

is not a dividing hole, the hole does not cut P into disconnected pieces, so there

must be a path between b1 and bk. Thus, Lemma 4.0.7 applies, allowing us to

“fill in” the hole, giving a genus-zero object. 2

Objects built from orthogonal bricks are not 2-colorable in general; in fact,

one can find an example in 2D of a genus-one object built from orthogonal bricks

which is 3-chromatic because of the existence of an odd cycle. See Figure 6.1.

By Sibley and Wagon’s theorem, every 2D object built from orthogonal

bricks is 3-colorable, but in 3D, it becomes more difficult to see if that is still

the case.
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Figure 6.1: An example of a 3-chromatic graph built from orthogonal bricks.
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Chapter 7

Shine-Through Holes

In this section we will look at some special cases of objects built from orthogonal

bricks which are 3-colorable. Define a hole to be shine-through if it is such that

a light oriented parallel to one of the three coordinate axis will be able to shine

through to the other side. Note that shine-through holes are dividing holes.

Theorem 7.0.6 If an object built from orthogonal bricks has only shrine-through

holes which are all oriented in the same direction, then it is 3-colorable.

Proof: Assume, without loss of generality, that the holes are oriented parallel

to the z-axis. Then, starting with the left-most hole, cut the object from the

lower left corner to the front of the object. Do this for every hole. If while

cutting the hole, you run into another hole, simply finish the cut there. See

Figure 7.1. When all of these holes have been cut, you will be left with a genus

0 object, which is 2-colorable. Two-color the object.

In order to repair the cuts, there are two cases. The first is that the coloring

on both sides of the cut matches up, so that the two halves can be simply

merged. The second is that the coloring schemes clash, so a change has to be

made. Merge and erase all the cuts which can be merged, the assign A or B to

the remaining cuts in an alternating fashion, starting with the left-most. Then,

on the A cuts, on the row of cells immidiately to the left of the cut, change

all of those colored 1 to color 3, and on the right side of the cut, change all of

those colored 2 to color 3. On the B cuts, do the reverse, changing 2 to 3 on
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left side and 1 to 3 on the left side. Each of these changes will locally eliminate

the clash, and the fact that they are done in an alternating way will insure that

they never cause a clash with each other. See Figure 7.2. 2

A

B

A

B

Figure 7.1: Cutting the cycles to get a genus 0 object.
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Figure 7.2: Repairing along the cuts. Even when the cuts are very close, there

are no clashes.

A similar proof can be worked out for objects with shine-through holes which

are oriented in two directions:

Theorem 7.0.7 If an object built from orthogonal bricks has only shrine-through

holes which are all oriented in one of two directions, then it is 3-colorable.

Proof: Assume, without loss of generality, that all holes are parallel to either

the z-axis or the y-axis. Then, consider the holes in different orientations sepa-

rately, and follow the same scheme as above, making all cutting planes parallel
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to the yz plane. The only difficulty that may arise here is if holes in two differ-

ent directions intersect. The crack lemma will not hold here, since there is no

path in a yz plane which connects bricks on opposing sides of the hole. Thus,

the crack which we are cutting along on the top of the hole may fail to exist

at the bottom of the hole. If this happens, then simply treat four “quadrants”

of the hole as separate holes and cut them using different cuts, as illustrated in

Figure 7.3. Now, since all of the cutting planes are parallel, we can assign them

A or B in an alternating fashion, as described in the theorem above, and then

use the repair scheme described above to repair the cuts. 2

x
y

z

x
y

z

(a) (b)

A

B

a1

a2

Figure 7.3: An orthogonal object object built from bricks constructed by drilling

two holes through a cube. (a) Hole A, parallel to y, and hole B, parallel to z,

intersect. Cracks a1 and a2 of A do not align. (Not all cracks are shown in

the figure.) (b) The yz quarter-planes incident to a1 and a2 are therefore not

coplanar.

Another way to 3-color an object of orthogonal bricks with shine-through

holes is to cut the shape up into larger, two-colorable shapes we call superblocks.

Define two holes to be well-separated if a cut can be made from the right side

of each to the boundry without intersecting the other.

Lemma 7.0.8 If an object made of orthogonal bricks can be cut into an 2-

colorable arrangement of 2-colorable superblocks, then the object itself is 3-
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colorable.

Proof: Two-color bricks in the individual superblocks using colors 1 and 2 and

then color the arrangement of superblocks using colors A and B. Then, merge

the superblocks. If the colors do not clash, simply merge the cuts. If they do,

change the coloring in the following fashion:If the block is colored A, change 1

to 3; if the block is colored B, change 2 to 3. 2

Theorem 7.0.9 If all the holes of an object built from orthogonal bricks are

shine-through and well-separated, the object is 3-colorable.

Proof: Cut each hole from the right side to the boundry, making a grid-like

arrangement of superblocks. This arrangement will be 2-colorable, since it is

simply a grid, and thus the 3-colorability follows from lemma 7.0.8. 2

In fact, it is not actually neccessary for the holes to be well-separated in

every direction. It is enough for one direction to have well-separated hole to

guarentee that the superblock arrangement will be 2-colorable.

Theorem 7.0.10 If all of the holes of an object built from orthogonal bricks

are shine-through and well-separated in at least one of the three axis directions

the object is 3-colorable.

Proof: Assume that the holes in the z direction are well-seperated. In the z

direction, cut the holes into superblocks as described above. In the x and y

directions, cut the holes to both boundries using cutting planes parallel to the

xy plane. When two holes intersect in such a way that the cut to the boundry

from one of them cannot be continued to the other side, because the crack no

longer exists, simply shift the cut to the right until a crack is found where it

can continue. This will lead to a jagged, but still two-colorable arrangment of

superblocks in each layer, every layer on top of it will be identical, making the

entire arrangment of superblocks two colorable, leading to a 3-coloring for the

object. 2
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Chapter 8

The General Case

While this focus on shrine-through holes may seem arbitrary, shine-through

holes are not as specific a case as they may at first appear. By Theorem 6.0.5

and the application of the crack lemma, non-dividing holes can be “filled in,”

so the only holes we have to worry about are dividing holes. Shine-through

holes are the easiest examples of dividing holes, since they divide planes in

two directions rather than just one. However, many of our theorems for shine-

through holes could be modified to be used with dividing holes, as with the

theorem below:

Theorem 8.0.11 If all of the dividing holes of an object divide parallel planes,

the object is 3-colorable.

Proof: Identical to the proofs of Theorem 7.0.6 and Theorem 7.0.7. For each

hole, use a plane divided by that hole as a cutting plane. 2

Corollary 8.0.12 Every genus-one object built from orthogonal bricks is 3-

colorable.

So if there exists a 4-chromatic object built from orthogonal bricks, what

might it look like? Our theorems do not cover obejcts with shine-through holes

which are “crowded” (not well-seperated) in all three directions or “crooked”

(not shine-through) holes which do not divide parallel planes. We do believe

that these objects are 3-colorable, however, and that perhaps modified versions

of our proofs might cover more of them.
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Although we cannot offer a general proof which works for arbitrary genus,

given the high number of specific cases for which we can prove 3-colorability, we

offer the following conjecture:

Conjecture 8.0.1 All objects built from orthogonal bricks are 3-colorable.

In some ways, it would be surprising if this conjecture is true. In two dimen-

sions, all genus-zero objects built from orthogonal bricks are 2-colorable, while

objects of arbitrary genus are 3-colorable. It would be interesting if these theo-

rems transfered directly to three dimentions without any need to add additional

colors, and it leads to some interesting speculation about what the case might

be in higher dimentions.
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