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Abstract

We study straight-line drawings of graphs with few segments and few slopes. Op-

timal results are obtained for all trees. Tight bounds are obtained for outerplanar

graphs, 2-trees, and planar 3-trees. We prove that every 3-connected plane graph on

n vertices has a plane drawing with at most 5n/2 segments and at most 2n slopes. We

prove that every cubic 3-connected plane graph has a plane drawing with three slopes

(and three bends on the outerface). Drawings of non-planar graphs with few slopes are

also considered. For example, interval graphs, co-comparability graphs and AT-free

graphs are shown to have have drawings in which the number of slopes is bounded by

the maximum degree. We prove that graphs of bounded degree and bounded treewidth

have drawings with O(log n) slopes. Finally we prove that every graph has a drawing

with one bend per edge, in which the number of slopes is at most one more than the

maximum degree.
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1 Introduction

A common requirement for an aesthetically pleasing drawing of graph is that the edges are

straight. This paper studies the following additional requirements of straight-line graph

drawings:

1. minimise the number of segments in the drawing

2. minimise the number of distinct edge slopes in the drawing

First we formalise these notions. Consider a mapping of the vertices of a graph to

distinct points in the plane. Now represent each edge by the closed line segment between

its endpoints. Such a mapping is a (straight-line) drawing if each edge does not intersect

any vertex, except for its own endpoints. By a segment in a drawing, we mean a maximal

set of edges that form a line segment. The slope of a line L is the angle swept from the

X-axis in an anticlockwise direction to L (and is thus in [0, π)). The slope of an edge

or segment is the slope of the line that extends it. Of course two edges have the same

slope if and only if they are parallel. A crossing in a drawing is a pair of edges that

intersect at some point other than a common endpoint. A drawing is plane if it has no

crossings. A plane graph is a planar graph with a fixed combinatorial embedding and a

specified outerface. We emphasise that a plane drawing of a plane graph must preserve

the embedding and outerface. That every plane graph has a plane drawing is a famous

result independently due to Wagner [53] and Fáry [21].

In this paper we prove lower and upper bounds on the minimum number of segments

and slopes in (plane) drawings of graphs. A summary of our results is given in Table 1.

A number of comments are in order when considering these results: (1) The minimum

number of slopes in a drawing of (plane) graph G is at most the minimum number of

segments in a drawing of G. (2) Upper bounds for plane graphs are stronger than for

planar graphs, since for planar graphs one has the freedom to choose the embedding and

outerface. On the other hand, lower bounds for planar graphs are stronger than for plane

graphs. (3) Deleting an edge in a drawing cannot increase the number of slopes, whereas

it can increase the number of segments. Thus, the upper bounds for slopes are applicable

to all subgraphs of the mentioned graph families, unlike the upper bounds for segments.

The paper is organised as follows. In Section 2 we prove some elementary lower bounds

on the number of segments and slopes in a drawing. We also show that it is NP-complete

to determine whether a graph has a plane drawing on two slopes.

Section 3 studies plane drawings of graphs with small treewidth. In particular, we

consider trees, outerplanar graphs, 2-trees, and planar 3-trees. For any tree, we construct

a plane drawing with the minimum number of segments and the minimum number of

slopes. For outerplanar graphs, 2-trees, and planar 3-trees, we determine bounds on the

minimum number of segments and slopes that are tight in the worst-case.

Section 4 studies plane drawings of 3-connected plane and planar graphs. In the case

of slope-minimisation for plane graphs we obtain a bound that is tight in the worst case.

However, our lower bound examples have linear maximum degree. We drastically improve

the upper bound in the case of cubic graphs. We prove that every 3-connected plane cubic

graph has a plane drawing with three slopes, except for three edges on the outerface that
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Table 1: Summary of results (ignoring additive constants). Here n is the number of

vertices, η is the number of vertices of odd degree, and δ and ∆ are the minimum and

maximum degree. In the upper half of the table, the drawings are plane. The lower bounds

are existential, except for trees, for which the lower bounds are universal.

graph family # segments # slopes

≥ ≤ ≥ ≤
trees η/2 η/2 ⌈∆/2⌉ ⌈∆/2⌉
maximal outerplanar n n - n

plane 2-trees 2n 2n 2n 2n

plane 3-trees 2n 2n 2n 2n

plane 2-connected 5n/2 - 2n -

planar 2-connected 2n - n -

plane 3-connected 2n 5n/2 2n 2n

planar 3-connected 2n 5n/2 n 2n

plane 3-connected cubic - n + 2 3 3

all graphs η/2 - max{δ, ⌈∆/2⌉} -

complete graph
(n
2

)

n n

balanced complete bipartite graph Θ(n2) n/2 n/2

bandwidth b - - Ω(b) O(b2)

interval graphs - - ⌈∆/2⌉ O(∆2)

co-comparability graphs - - ⌈∆/2⌉ O(∆2)

AT-free graphs - - ⌈∆/2⌉ O(∆2)

bounded degree, bounded treewidth - - - O(log n)

have their own slope. As a corollary we prove that every 3-connected plane cubic graph

has a plane ‘drawing’ with three slopes and three bends on the outerface.

The remainder of the paper studies non-plane drawings with few slopes. Section 5 deals

with complete multipartite graphs, and Section 6 considers drawings of arbitrary graphs.

For example, we prove that every graph with bounded degree and bounded treewidth has

a drawing with O(log n) slopes. In Section 7 we consider 1-bend drawings with few slopes.

1.1 Related Research

We now outline some related research from the literature.

• As illustrated in Figure 1, Eppstein [18] characterised those planar graphs that have

plane drawings with a segment between every pair of vertices. In some sense, these

are the plane drawings with the least number of slopes.

• Drawings of lattices and posets with few slopes have been considered by Czyzow-

icz et al. [6, 7, 8] and Freese [23].

• A famous result by Ungar [51], settling an open problem of Scott [46], states that
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(a)

(b)

(c)

(d)

(e)

Figure 1: The plane graphs with a segment between every pair of vertices.

n non-collinear points determine at least n − 1 distinct slopes. The configurations

of n points that determine exactly n − 1 distinct slopes have been investigated by

Jamison [27, 28]. Jamison [30] generalised the result of Ungar by proving that any

set of non-collinear points has a spanning tree whose edges have distinct slopes.

• Wade and Chu [52] recognised that drawing arbitrary graphs with few slopes is an

interesting problem. They defined the slope-number of a graph G to be the minimum

number of slopes in a drawing of G. However, the results of Wade and Chu [52] were

only for complete graphs, and these results were well known in the discrete geometry

literature (see Section 5).

• The geometric thickness of a graph G is the minimum k such that G has a drawing

in which every edge receives one of k colours, and monochromatic edges do not cross

(see [10, 16, 19]). That is, each colour class is a plane subgraph. In any drawing,

edges with the same slope do not cross. Thus the geometric thickness of G is a lower

bound on the minimum number of slopes in a drawing of G.

• A drawing is convex if all the vertices are on the convex hull, and no three vertices are

collinear. The book thickness of a graph (also called pagenumber and stacknumber)

is the same as geometric thickness except that the drawing must be convex (see

[15] for numerous references). Since edges with the same slope do not cross, the

book thickness of G is a lower bound on the minimum number of slopes in a convex

drawing of G.

• Plane orthogonal drawings with two slopes (and few bends) have been extensively

studied [1, 2, 40, 41, 42, 43, 44, 49, 50]. For example, Ungar [50] proved that every

cyclically 4-edge-connected plane cubic graph has a plane drawing with two slopes

and four bends on the outerface. Thus our result for 3-connected plane cubic graphs

(Corollary 3) nicely complements this theorem of Ungar.

• The maximum number of vertices in a grid that determine a set of slopes, no two of
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which are the same, has been studied by Erdős et al. [20], Peile and Taylor [39], and

Zhang [55].

• Martin [33, 34, 35] has theoretical results on graph drawings related to slope.

• Multi-dimensional graph drawings with few segments or few slopes is also of interest.

Since an orthogonal projection preserves parallel lines, and since there always is a

‘nice’ orthogonal projection from d ≥ 3 dimensions into the plane, the best bounds on

the number of slopes and segments are obtained in two dimensions. Here a projection

is ‘nice’, if no vertex-vertex or vertex-edge occlusions occur; see [5, 17, 26]. Thus

multi-dimensional drawings with few segments or few slopes are only interesting if

the vertices are restricted to not all lie in a single plane. Under thus assumption,

Pach et al. [37, 38] recently proved that the minimum number of slopes in a three-

dimensional drawing of the complete graph Kn is 2n − 3. The proof is based on a

generalisation of the above-mentioned result of Ungar [51]. In related work, Onn

and Pinchasi [36] studied the minimum number of edge-slopes in a d-dimensional

convex polytope.

1.2 Definitions

We consider undirected, finite, and simple graphs G with vertex set V (G) and edge set

E(G). The number of vertices and edges of G are respectively denoted by n = |V (G)| and

m = |E(G)|. The maximum degree of G is denoted by ∆(G).

For all S ⊆ V (G), the (vertex-) induced subgraph G[S] has vertex set S and edge set

{vw ∈ E(G) : v,w ∈ S}. For all S ⊆ V (G), let G\S be the subgraph G[V (G)\S]. For all

v ∈ V (G), let G\ v = G\{v}. For all A,B ⊆ V (G), let G[A,B] be the bipartite subgraph

of G with vertex set A ∪ B and edge set {vw ∈ E(G) : v ∈ A \ B,w ∈ B \ A}.
For all S ⊆ E(G), the (edge-) induced subgraph G[S] has vertex set {v ∈ V (G) :

∃ vw ∈ S} and edge set S. For all pairs of vertices v,w ∈ V (G), let G ∪ vw be the graph

with vertex set V (G) and edge set E(G) ∪ {vw}.
Let G be a graph and let T be a tree. An element of V (T ) is called a node. Let

{Tx ⊆ V (G) : x ∈ V (T )} be a set of subsets of V (G) indexed by the nodes of T . Each Tx

is called a bag. The pair (T, {Tx : x ∈ V (T )}) is a tree decomposition of G if:

•
⋃

x∈V (T )

Tx = V (G) (that is, every vertex of G is in at least one bag),

• ∀ edge vw of G, ∃ node x of T such that v ∈ Tx and w ∈ Tx, and

• ∀ nodes x, y, z of T , if y is on the path from x to z in T , then Tx ∩ Tz ⊆ Ty.

The width of a tree decomposition is one less than the maximum cardinality of a bag. A

path decomposition is a tree-decomposition where the tree T is a path T = (x1, x2, . . . , xm),

which is simply identified by the sequence of bags T1, T2, . . . , Tm where each Ti = Txi
. The

pathwidth (respectively, treewidth) of a graph G is the minimum width of a path (tree)

decomposition of G.

For each integer k ≥ 1, k-trees are the class of graphs defined recursively as follows.

The complete graph Kk+1 is a k-tree, and the graph obtained from a k-tree by adding
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a new vertex adjacent to each vertex of an existing k-clique is also a k-tree. It is well

known that the treewidth of a graph G equals the minimum k such that G is the spanning

subgraph of a k-tree.

For example, the graphs of treewidth one are the forests. Graphs of treewidth two,

called series-parallel, are planar since in the construction of a 2-tree, each new vertex can

be drawn close to the midpoint of the edge that it is added onto. Maximal outerplanar

graphs are examples of 2-trees.

2 Lower Bounds

The following result is immediate, as illustrated in Figure 2.

Lemma 1. Let u, v and w be three non-collinear vertices in a drawing D of a graph G. Let

d(u) denote the number of edges incident to u that intersect the interior of the triangle uvw,

and similarly for v and w. Then D has at least d(u)+d(v)+d(w)+ |E(G)∩{uv, vw, uw}|
slopes.

u

v w

Figure 2: A triangle forces many different slopes.

We have the following lower bounds.

Lemma 2. The number of segments in a drawing of a graph is at least half the number

of odd degree vertices.

Proof. If a vertex is internal on every segment then it has even degree. Thus each vertex

of odd degree is an endpoint of some segment. Thus the number of vertices of odd degree

is at most twice the number of segments. (The number of odd degree vertices is always

even.)

Lemma 3. The number of slopes in a drawing of a graph is (a) at least half the maximum

degree, and (b) at least the minimum degree. The number of slopes in a convex drawing

of a graph is (c) at least the maximum degree.

Proof. At most two edges incident to a single vertex can have the same slope. This proves

(a). In a drawing D of a (finite) graph, there is a line L such that D∩L consists of exactly

one vertex v. Thus all of the edges incident to v have distinct slopes. This proves (b).

Every edge incident to a single vertex in a convex drawing has distinct slope. This proves

(c).
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2.1 Computational Complexity

Lemma 4. A graph has a (plane) drawing on two slopes if and only if it has a (plane)

drawing on any two slopes.

Proof. It suffices to prove that a (plane) drawing Da of G with slopes 0 and α can be

converted into a (plane) drawing Db of G with slopes 0 and β. Create a grid P0,α on Da

as follows. At each vertex v ∈ V (G) draw two lines, one with slope 0 and one with slope

α. Each vertex v has some coordinate P0,α(i, j) and each edge follows straight gridlines.

Now create a grid P0,β with slopes 0 and β. Place each vertex that was at P0,α(i, j) at

P0,β(i, j). Clearly, in P0,β all the edges follow straight gridlines. Furthermore, no edge

contains a vertex in its interior and two edges cross in P0,α(i, j) if and only if they cross

in P0,β(i, j). Thus we obtain a (plane) drawing Db of G with slopes 0 and β.

Garg and Tamassia [24] proved that it is NP-complete to decide whether a graph has

a rectilinear planar drawing (that is, with vertical and horizontal edges). Thus Lemma 4

implies:

Corollary 1. It is NP-complete to decide whether a graph has a plane drawing with two

slopes.

3 Planar Graphs with Small Treewidth

3.1 Trees

Theorem 1. Let T be a tree with maximum degree ∆, and with η vertices of odd degree.

The minimum number of segments in a drawing of T is η/2. The minimum number of

slopes in a drawing of T is ⌈∆/2⌉. Moreover, T has a plane drawing with η/2 segments

and ⌈∆/2⌉ slopes.

Proof. The lower bounds are from Lemmata 2 and 3(a). The upper bound will follow from

the following hypothesis, which we prove by induction on the number of vertices: “Every

tree T with maximum degree ∆ has a plane drawing with ⌈∆/2⌉ slopes, in which every

odd degree vertex is an endpoint of exactly one segment, and no even degree vertex is an

endpoint of a segment.” The hypothesis is trivially true for a single vertex. Let x be a

leaf of T incident to the edge xy. Let T ′ = T \ x. Suppose T ′ has maximum degree ∆′.

First suppose that y has even degree in T , as illustrated in Figure 3(a). Thus y has odd

degree in T ′. By induction, T ′ has a plane drawing with ⌈∆′/2⌉ ≤ ⌈∆/2⌉ slopes, in which

y is an endpoint of exactly one segment. That segment contains some edge e incident to

y. Draw x on the extension of e so that there are no crossings. In the obtained drawing

D, the number of slopes is unchanged, x is an endpoint of one segment, and y is not an

endpoint of any segment. Thus D satisfies the hypothesis.

Now suppose that y has odd degree in T , as illustrated in Figure 3(b). Thus y has

even degree in T ′. By induction, T ′ has a plane drawing with ⌈∆′/2⌉ slopes, in which y is

not an endpoint of any segment. Thus the edges incident to y use degT ′(y)/2 ≤ ⌈∆/2⌉−1

slopes. If the drawing of T ′ has any other slopes, let s be one of these slopes, otherwise

let s be an unused slope. Add edge xy to the drawing of T ′ with slope s so that there are

8



xye

(a)

xy

(b)

Figure 3: Adding a leaf x to a drawing of a tree: (a) deg(y) even and (b) deg(y) odd.

no crossings. In the obtained drawing D, there is a new segment with endpoints x and

y. Since both x and y have odd degree in T , and since x and y were not endpoints of

any segment in the drawing of T ′, the induction hypothesis is maintained. The number of

slopes in D is max{⌈∆′/2⌉,degT ′(y)/2 + 1} ≤ ⌈∆/2⌉.

3.2 Outerplanar Graphs

A planar graph G is outerplanar if G admits a combinatorial embedding with all the

vertices on the boundary of a single face. An outerplanar graph G is maximal if G ∪ vw

is not outerplanar for any pair of non-adjacent vertices v,w ∈ V (G). A plane graph is

outerplanar if all the vertices are on the boundary of the outerface. A maximal outerplanar

graph has a unique outerplanar embedding.

Theorem 2. Every n-vertex maximal outerplanar graph G has an outerplanar drawing

with at most n segments. For all n ≥ 3, there is an n-vertex maximal outerplanar graph

that has at least n segments in any drawing.

Proof. We prove the upper bound by induction on n with the additional invariant that

the drawing is star-shaped. That is, there is a point p in (the interior of) some internal

face of D, and every ray from p intersects the boundary of the outerface in exactly one

point.

For n = 3, G is a triangle, and the invariant holds by taking p to be any point in the

internal face. Now suppose n > 3. It is well known that G has a degree-2 vertex v whose

neighbours x and y are adjacent, and G′ = G\v is maximal outerplanar. By induction, G′

has a drawing D′ with at most n−1 segments, and there is a point p in some internal face

of D′, such that every ray from p intersects the boundary of D′ in exactly one point. The

edge xy lies on the boundary of the outerface and of some internal face F . Without loss

of generality, xy is horizontal in D′, and F is below xy. Since G′ is maximal outerplanar,

F is bounded by a triangle rxy.

For three non-collinear points a, b and c in the plane, define the wedge (a, b, c) to be

the infinite region that contains the interior of the triangle abc, and is enclosed on two

sides by the ray from b through a and the ray from b through c. By induction, p is in the

wedge (y, x, r) or in the wedge (x, y, r). By symmetry we can assume that p is in (y, x, r).

Let R be the region strictly above xy that is contained in the wedge (x, p, y). The

line extending the edge xr intersects R. As illustrated in Figure 4, place v on any point

in R that is on the line extending xr. Draw the two incident edges vx and vy straight.

This defines our drawing D of G. By induction, R ∩ D′ = ∅. Thus vx and vy do not

create crossings in D. Every ray from p that intersects R, intersects the boundary of D

in exactly one point. All other rays from p intersect the same part of the boundary of

9



D as in D′. Since p remains in some internal face, D is star-shaped. By induction, D′

has n − 1 segments. Since vx and rx are in the same segment, there is at most at one

segment in D \ D′. Thus D is a star-shaped outerplanar drawing of G with n segments.

This concludes the proof of the upper bound.

p

r

x
y

R

p

r

x
y

v

Figure 4: Construction of a star-shaped drawing of an outerplanar graph.

For the lower bound, let Gn be the maximal outerplanar graph on n ≥ 3 vertices whose

weak dual (that is, dual graph disregarding the outerface) is a path and the maximum

degree of Gn is at most four, as illustrated in Figure 5.

Figure 5: The graph G14.

We claim that every drawing of Gn has at least n segments (even if crossings are

allowed). We proceed by induction on n. The result is trivial for n = 3. Suppose that

every drawing of Gn−1 has at least n − 1 segments, but there exists a drawing D of Gn

with at most n − 1 segments. Let v be a degree-2 vertex in Gn adjacent to x and y. One

of x and y, say x, has degree three in Gn. Observe that Gn \ v is isomorphic to Gn−1.

Thus we have a drawing of Gn with exactly n − 1 segments, which contains a drawing of

Gn \ v with n− 1 segments. Thus the edge vx shares a segment with some other edge xr,

and the edge vy shares a segment with some other edge ys. Since vxy is a triangle, r 6= y,

s 6= x and r 6= s. Since x has degree three, y is adjacent to r, as illustrated in Figure 6.

That accounts for all edges incident to y and x. Thus xy is a segment in D.

Now construct a drawing D′ of Gn−1 with x moved to the position of v in the drawing

of Gn. The drawing D consists of D′ plus the edge xy. Since xy is a segment in D, D′

has one less segment than D. Thus D′ is a drawing of Gn−1 with at most n− 2 segments,

which is the desired contradiction.

Open Problem 1. Is there a polynomial time algorithm to compute an outerplanar

drawing of a given outerplanar graph with the minimum number of segments?

3.3 2-Trees and Planar 3-Trees

Lemma 5. Every n-vertex 2-tree has a plane drawing with at most 2n− 3 segments. For

all n ≥ 3, there is an n-vertex plane 2-tree that has at least 2n−3 slopes (and thus at least

2n − 3 segments) in every plane drawing.

10



r

x

s

y

v

(a) Gn

r

y

x

s

(b) Gn−1

Figure 6: Construction of a drawing of Gn−1 from a drawing of Gn.

Proof. The upper bound follows from the Fáry/Wagner theorem since every 2-tree is

planar and has 2n − 3 edges. Consider the 2-tree Gn with vertex set {v1, v2, . . . , vn} and

edge set {v1v2, v1vi, v2vi : 3 ≤ i ≤ n}. Fix a plane embedding of Gn with the edge v1v2

on the triangular outerface, as illustrated in Figure 7(a). The number of slopes is at least

(n − 3) + (n − 3) + 0 + 3 = 2n − 3 by Lemma 1.

v1

v2 (a)

v1 v2

(b)

Figure 7: The graph G8 in Lemma 5.

Open Problem 2. Does every n-vertex 2-tree have a (plane) drawing with at most

(2 − ǫ)n segments, for some ǫ > 0? Note that the graph Gn from Lemma 5 has a plane

drawing with 3n/2 − 2 segments, as illustrated in Figure 7(b).

We now turn our attention to drawings of planar 3-trees.

Theorem 3. Every n-vertex plane 3-tree has a plane drawing with at most 2n−2 segments.

For all n ≥ 4, there is an n-vertex plane 3-tree with at least 2n − 2 slopes (and thus at

least 2n − 2 segments) in every drawing.

Proof. We prove the upper bound by induction on n with the hypothesis that “every plane

3-tree with n ≥ 4 vertices has a plane drawing with at most 2n − 2 segments, such that

for every internal face F there is an edge e incident to exactly one vertex of F , and the

extension of e intersects the interior of F .” The base case is trivial since K4 is the only

3-tree on four vertices, and any plane drawing of K4 satisfies the hypothesis.

Suppose that the claim holds for plane 3-trees on n − 1 vertices. Let G be a plane

3-tree on n vertices. Every k-tree on at least k+2 vertices has two non-adjacent simplicial

vertices of degree exactly k [13]. In particular, G has two non-adjacent simplicial degree-3

vertices, one of which is not on the outerface. Thus G can be obtained from G \ v by

adding v inside some internal face (p, q, r) of G \ v, adjacent to p, q and r¶. By induction,

G \ v has a drawing with 2n − 4 segments in which there is an edge e incident to exactly

¶This implies that the planar 3-trees are precisely those graphs that are produced by the LEDA ‘random’

maximal planar graph generator. This algorithm, starting from K3, repeatedly adds a new vertex adjacent

to the three vertices of a randomly selected internal face.
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one of {p, q, r}, and the extension of e intersects the interior of the face. Position v in the

interior of the face anywhere on the extension of e, and draw segments from v to each of

p, q and r. We obtain a plane drawing of G with 2n − 2 segments. The extension of vp

intersects the interior of (v, q, r); the extension of vq intersects the interior of (v, p, r); and

the extension of vr intersects the interior of (v, p, q). All other faces of G are faces of G\v.

Thus the inductive hypothesis holds for G, and the proof of the upper bound is complete.

For each n ≥ 4 we now provide a family Gn of n-vertex plane 3-trees, each of which

require at least 2n − 2 segments in any drawing. Let G4 = {K4}. Obviously every plane

drawing of K4 has six segments. For all n ≥ 5, let Gn be the family of plane 3-trees G

obtained from some plane 3-tree H ∈ Gn−1 by adding a new vertex v in the outerface of

H adjacent to each of the three vertices of the outerface. Any drawing of G contains a

drawing of H, which contributes at least 2n − 4 segments by induction. In addition, the

two edges incident to v on the triangular outerface of G are each in their own segment.

Thus G has at least 2n − 2 segments.

4 3-Connected Plane Graphs

The following is the main result of this section.

Theorem 4. Every 3-connected plane graph with n vertices has a plane drawing with at

most 5n/2 − 3 segments and at most 2n − 10 slopes.

The proof of Theorem 4 is based on the canonical ordering of Kant [31], which is a

generalisation of a similar structure for plane triangulations introduced by de Fraysseix

et al. [9]. Let G be a 3-connected plane graph. Kant [31] proved that G has a canonical

ordering defined as follows. Let σ = (V1, V2, . . . , VK) be an ordered partition of V (G).

That is, V1 ∪V2 ∪ · · · ∪VK = V (G) and Vi ∩Vj = ∅ for all i 6= j. Define Gi to be the plane

subgraph of G induced by V1 ∪ V2 ∪ · · · ∪ Vi. Let Ci be the subgraph of G induced by the

edges on the boundary of the outerface of Gi. As illustrated in Figure 8, σ is a canonical

ordering of G if:

• V1 = {v1, v2}, where v1 and v2 lie on the outerface and v1v2 ∈ E(G).

• VK = {vn}, where vn lies on the outerface, v1vn ∈ E(G), and vn 6= v2.

• Each Ci (i > 1) is a cycle containing v1v2.

• Each Gi is biconnected and internally 3-connected; that is, removing any two interior

vertices of Gi does not disconnect it.

• For each i ∈ {2, 3, . . . ,K − 1}, one of the following condition holds:

1. Vi = {vi} where vi is a vertex of Ci with at least three neighbours in Ci−1, and

vi has at least one neighbour in G \ Gi.

2. Vi = (s1, s2, . . . , sℓ, vi), ℓ ≥ 0, is a path in Ci, where each vertex in Vi has at

least one neighbour in G \ Gi. Furthermore, the first and the last vertex in Vi

have one neighbour in Ci−1, and these are the only two edges between Vi and

Gi−1.
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v1 v2

vi Vi

p1

p2
p3

Gi−1

(a)
v1 v2

s1

sℓ

vi

Vi

p1 p2

Gi−1

(b)

Figure 8: The canonical ordering of a 3-connected plane graph.

The vertex vi is called the representative vertex of the set Vi, 2 ≤ i ≤ K. The vertices

{s1, s2, . . . , sℓ} ⊆ Vi are called division vertices. Let S ⊂ V (G) be the set of all division

vertices. A vertex u is a successor of a vertex w ∈ Vi if uw is an edge and u ∈ G \ Gi. A

vertex u is a predecessor of a vertex w ∈ Vi if uw is an edge and u ∈ Vj for some j < i.

We also say that u is a predecessor of Vi. Let P (Vi) = (p1, p2, . . . , pq) denote the set of

predecessors of Vi ordered by the path from v1 to v2 in Ci−1 \ v1v2. Vertex p1 and pq

are the left and right predecessors of Vi respectively, and vertices p2, p3, . . . pq−1 are called

middle predecessors of Vi.

Theorem 5. Let G be an n-vertex m-edge plane 3-connected graph with a canonical or-

dering σ. Define S as above. Then G has a plane drawing D with at most

m − max {⌈n/2⌉ − |S| − 3, |S|}

segments, and at most

m − max {n − |S| − 4, |S|}
slopes.

Proof. We first define D and then determine the upper bounds on the number of segments

and slopes in D. For every vertex v, let X(v) and Y (v) denote the x and y coordinates of

v, respectively. If a vertex v has a neighbour w, such that X(w) < X(v) and Y (w) < Y (v),

then we say vw is a left edge of v. Similarly, if v has a neighbour w, such that X(w) > X(v)

and Y (w) < Y (v), then we say vw is a right edge of v. If vw is an edge such that

X(v) = X(w) and Y (v) < Y (w), than we say vw is a vertical edge above v and below w.

We define D inductively on σ = (V1, V2, . . . , VK) as follows. Let Di denote a drawing

of Gi. A vertex v is a peak in Di, if each neighbour w of v has Y (w) ≤ Y (v) in Di. We

say that a point p in the plane is visible in Di from vertex v ∈ Di, if the segment pv does

not intersect Di except at v. At the ith induction step, 2 ≤ i ≤ K, Di will satisfy the

following invariants:

Invariant 1: Ci \ v1v2 is strictly X-monotone; that is, the path from v1 to v2 in Ci \ v1v2

has increasing X-coordinates.

Invariant 2: Every peak in Di, i < K, has a successor.

13



Invariant 3: Every representative vertex vj ∈ Vj, 2 ≤ j ≤ i has a left and a right edge.

Moreover, if |P (Vj)| ≥ 3 then there is a vertical edge below vj.

Invariant 4: Di has no edge crossings.

For the base case i = 2, position the vertices v1, v2 and v3 at the corners of an

equilateral triangle so that X(v1) < X(v3) < X(v2) and Y (v1) < Y (v2) < Y (v3). Draw

the division vertices of V2 on the segment v1v3. This drawing of D2 satisfies all four

invariants. Now suppose that we have a drawing of Di−1 that satisfies the invariants.

There are two cases to consider in the construction of Di, corresponding to the two cases

in the definition of the canonical ordering.

Case 1. |P (Vi)| ≥ 3: If vi has a middle predecessor vj with |P (Vj)| ≥ 3, let w = vj .

Otherwise let w by any middle predecessor of vi. Let L be the open ray {(X(w), y) :

y > Y (w)}. By invariant 1 for Di−1, there is a point in L that is visible in Di−1 from

every predecessor of vi. Represent vi by such a point, and draw segments between vi and

each of its predecessors. That the resulting drawing Di satisfies the four invariants can be

immediately verified.

Case 2. |P (Vi)| = 2: Suppose that P (Vi) = {w, u}, where w and u are the left and

the right predecessors of Vi, respectively. Suppose Y (w) ≥ Y (u). (The other case is

symmetric.) Let P be the path between w and u on Ci−1 \v1v2. As illustrated in Figure 9,

let Ai be the region {(x, y) : y > Y (w) and X(w) ≤ x ≤ X(u)}.

Ai

L

c

u

w

vi = c′

P
Di−1

Figure 9: Illustration for Case 2.

Assume, for the sake of contradiction, that Di−1 ∩ Ai 6= ∅. By the monotonicity of

Di−1, P ∩ Ai 6= ∅. Let p ∈ P ∩ Ai. Since Y (p) > Y (w) ≥ Y (u), P is X-monotone and

thus has a vertex between w and u that is a peak. By the definition of the canonical

ordering σ, the addition of Vi creates a face of G, since Vi is added in the outerface of

Gi−1. Therefore, each vertex between w and u on P has no successor, and is thus not a

peak in Di−1 by invariant 2, which is the desired contradiction. Therefore Di−1 ∩Ai = ∅.
Let L be the open ray {(X(u), y) : y > Y (u)}. If w 6∈ S, then by invariant 3, w has

a left and a right edge in Di−1. Let c be the point of intersection between L and the line

extending the left edge at w. If w ∈ S, then let c be any point in Ai on L. By invariant 1,

there is a point c′ 6∈ {c, w} on wc such that c′ is visible in Di−1 from u. Represent vi by c′,

and draw two segments viu and viw. These two segments do not intersect any part of Di−1

(and neither is horizontal). Represent any division vertices in Vi by arbitrary points on
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the open segment wvi ∩Ai. Therefore, in the resulting drawing Di, there are no crossings

and the remaining three invariants are maintained.

This completes the construction of D. The following claim will be used to bound the

number of segments and slopes in D. It basically says that a division vertex (and v2) can

be the higher predecessor for at most one set Vi with |P (Vi)| = 2.

Claim 1. Let Vi, Vj ∈ σ with i < j and |P (Vi)| = |P (Vj)| = 2. Let wi be the higher of the

two predecessors of Vi in Di−1, and let wj be the higher of the two predecessors of Vj in

Dj−1. If wi ∈ S or wi = v2, then wi 6= wj .

Proof. Suppose that wi ∈ Vk, k < i. First assume that wi ∈ S. Then each division vertex

lies on some non-horizontal segment and it is not an endpoint of that segment. Thus wi

is not a peak in Dk, and therefore it is not a peak in every Dℓ, ℓ ≥ k. For all ǫ > 0, let

A′
ǫ = {(x, y) : y > Y (wi), X(wi) − ǫ ≤ x < X(wi)}, and

A′′
ǫ = {(x, y) : y > Y (wi), X(wi) < x ≤ X(wi) + ǫ} .

Then for all small enough ǫ, either A′
ǫ ∩ Dk 6= ∅ or A′′

ǫ ∩ Dk 6= ∅. Without loss of

generality, A′
ǫ ∩ Dk = ∅ and A′′

ǫ ∩ Dk 6= ∅. Then at iteration i > k, the region Ai, as

defined in Case 2 of the construction of Di, contains A′
ǫ for all small enough ǫ. Thus,

A′
ǫ ∩ Di 6= ∅ for all small enough ǫ. Since j ≥ i + 1, A′

ǫ ∩ Dj−1 6= ∅ or A′′
ǫ ∩ Dj−1 6= ∅ for

all small enough ǫ. Therefore, wi 6= wj (since Vj is drawn by Case 2 of the construction

of Dj , where it is known that Aj ∩ Dj−1 = ∅). The case wi = v2 is the same, since the

region A′′
ǫ ∩ Di = ∅, for every ǫ and every 1 ≤ i ≤ K, so only region A′

ǫ is used, and thus

the above argument applies.

For the purpose of counting the number of segments and slopes in D assume that we

draw edge v1v2 at iteration step i = 1 and G2 \ v1v2 at iteration i = 2. In every iteration i

of the construction, 2 ≤ i ≤ K, at most |P (Vi)| new segments and slopes are created. We

call an iteration i of the construction segment-heavy if the difference between the number

of segments in Di and Di−1 is exactly |P (Vi)|, and slope-heavy if the difference between

the number of slopes in Di and Di−1 is exactly |P (Vi)|. Let hs and hℓ denote the total

number of segment-heavy and slope-heavy iterations, respectively. Then D uses at most

1 +

K
∑

i=2

(|P (Vi)| − 1) + hs (1)

segments, and at most

1 +

K
∑

i=2

(|P (Vi)| − 1) + hℓ (2)

slopes.

We first express
∑K

i=2 |P (Vi)| in terms of m and |S|, and then establish an upper bound

on hs and hℓ. For i ≥ 2, let Ei denote the set of edges of Gi with at least one endpoint

in Vi, and let ℓi denote the number of division vertices in Vi. Then m = 1 +
∑K

i=2 |Ei| =

1 +
∑K

i=2(ℓi + |P (Vi)|) = 1 + |S| + ∑K
i=2 |P (Vi)|. Thus

∑K
i=2 |P (Vi)| = m − |S| − 1. Since

the trivial upper bound for hs and hℓ is K − 1, and by (1) and (2), we have that D uses

at most 1 +
∑K

i=2 |P (Vi)| = 1 + m − |S| − 1 = m − |S| segments and slopes.
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We now prove a tighter bound on hs. Let R denote the set of representative vertices of

segment-heavy steps i with |P (Vi)| ≥ 3. Consider a step i such that |P (Vi)| ≥ 3. If vi has

at least one predecessor vj with |P (Vj)| ≥ 3, then vi is drawn on the line that extends the

vertical edge below vj, and thus step i introduces at most |P (Vi)|− 1 new segments and is

not segment-heavy. Therefore, step i is segment-heavy only if no middle predecessor w of

vi is in R. Thus for each segment-heavy step i with |P (Vi)| ≥ 3, there is a unique vertex

w 6∈ R. In other words, for each vertex in R, there is a unique vertex in V (G) \ R. Thus

|R| ≤ ⌊n/2⌋. Since the number of segment-heavy steps i with |P (Vi)| ≥ 3 is equal to |R|,
there is at most ⌊n/2⌋ such steps.

The remaining steps, those with |P (Vi)| = 2, introduce |P (Vi)| segments only if the

higher of the two predecessors of Vi is in S or is v2. (It cannot be v1, since Y (v1) < Y (v)

for every vertex v 6= v1.) By the above claim, there may be at most |S|+ 1 such segment-

heavy steps. Therefore, hs ≤ ⌊n/2⌋+ |S|+ 1. By (1) and since K = n− 1− |S|, D has at

most m − ⌈n/2⌉ + |S| + 3 segments.

Finally, we bound hℓ. There may be at most one slope-heavy step i with |P (vi)| ≥ 3,

since there is a vertical edge below every such vertex vi by invariant 3. As in the above

case for segments, there may be at most |S| + 1 slope-heavy steps i with |P (vi)| = 2.

Therefore, hℓ ≤ |S| + 2. By (2) and since K = n − 1 − |S|, we have that D has at most

m − n + |S| + 4 slopes.

Proof of Theorem 4. Whenever a set Vi is added to Gi−1, at least |Vi| − 1 edges that

are not in G can be added so that the resulting graph is planar. Thus |S| =
∑

i(|Vi| −
1) ≤ 3n − 6 − m. Hence Theorem 5 implies that G has a plane drawing with at most

m−n/2+ |S|+ 3 ≤ 5n/2− 3 segments, and at most m−n + |S| − 4 ≤ 2n− 10 slopes.

We now prove that the bound on the number of segments in Theorem 4 is tight.

Lemma 6. For all n ≡ 0 (mod 3), there is an n-vertex planar triangulation with maxi-

mum degree six that has at least 2n− 6 segments in every plane drawing, regardless of the

choice of outerface.

Proof. Consider the planar triangulation Gk with vertex set {xi, yi, zi : 1 ≤ i ≤ k}
and edge set {xiyi, yizi, zixi : 1 ≤ i ≤ k} ∪ {xixi+1, yiyi+1, zizi+1 : 1 ≤ i ≤ k − 1} ∪
{xiyi+1, yizi+1, zixi+1 : 1 ≤ i ≤ k − 1}. Gk has n = 3k vertices. Gk is the famous

‘nested-triangles’ graph. We say {(xi, yi, zi) : 1 ≤ i ≤ k} are the triangles of Gk. This

graph has a natural plane embedding with the triangle xiyizi nested inside the triangle

(xi+1, yi+1, zi+1) for all 1 ≤ i ≤ k − 1, as illustrated in Figure 10.

We first prove that if (xk, yk, zk) is the outerface then Gk has at least 6k segments in

any plane drawing. First observe that no two edges in the triangles can share a segment.

Thus they contribute 3k segments.

We claim that the six edges between triangles (xi, yi, zi) and (xi+1, yi+1, zi+1) con-

tribute a further three segments. Consider the two edges xixi+1 and zixi+1 incident on

xi+1. We will show that at least one of them contributes a new segment. Let Rx be the

region bounded by the lines containing xiyi and xizi that shares only xi with triangle

(xi, yi, zi). Similarly, let Rz be the region bounded by the lines containing xizi and yizi

that shares only zi with the same triangle. We note that these two regions are disjoint.

Furthermore, if edge xixi+1 belongs to a segment including edges contained in triangle
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Figure 10: The graph G4 in Lemma 6.

(xi, yi, zi), then xi+1 lies in region Rx. Similarly, if zixi+1 belongs to a segment including

edges contained in triangle (xi, yi, zi), then xi+1 lies in region Rz. Both cases cannot be

true simultaneously so either edge xixi+1 or edge zixi+1 contributes a new segment to the

drawing. Symmetric arguments apply the edges incident on yi+1 and zi+1 so the edges

between triangles contribute at least three segments.

Thus in total we have at least 3k+3(k−1) = 2n−3 segments. Now suppose that some

face, other than (xk, yk, zk), is the outerface. Thus the triangles are split into two nested

sets. Say there are p triangles in one set and q in the other. By the above argument, any

drawing has at least (2p − 3) + (2q − 3) = 2n − 6 segments.

We now prove that the bound on the number of slopes in Theorem 4 is tight up to an

additive constant.

Lemma 7. For all n ≥ 3, there is an n-vertex planar triangulation Gn that has at least

n+2 slopes in every plane drawing. For a particular choice of outerface, there are at least

2n − 2 slopes in every plane drawing.

Proof. Let Gn be the graph with vertex set {v1, v2, . . . , vn} and edge set {v1vi, v2vi : 3 ≤
i ≤ n} ∪ {vivi+1 : 1 ≤ i ≤ n − 1}. Gn is a planar triangulation. Every 3-cycle in

Gn contains v1 or v2. Thus v1 or v2 is in the boundary of the outerface in every plane

drawing of Gn. By Lemma 1, the number of slopes in any plane drawing of Gn is at least

(n − 3) + 1 + 1 + 3 = n + 2. As illustrated in Figure 11(a), if we fix the outerface of Gn

to be (v1, v2, vn), then the number of slopes is at least (n − 3) + (n − 3) + 1 + 3 = 2n − 2

slopes by Lemma 1

As illustrated in Figure 11(b), the graph Gn in Lemma 7 has a plane drawing (using

a different embedding) with only ⌈3n/2⌉ slopes.

Since deleting an edge from a drawing cannot increase the number of slopes, and every

plane graph can be triangulated to a 3-connected plane graph, Theorem 4 implies:

Corollary 2. Every n-vertex plane graph has a plane drawing with at most 2n − 10

slopes.
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Figure 11: The graph G8 from Lemma 7.

Open Problem 3. Is there some ǫ > 0, such that every n-vertex planar triangulation

has a plane drawing with (2 − ǫ)n + O(1) slopes?

On the other hand, Theorem 4 does not imply any upper bound on the number of

segments for all planar graphs. A natural question to ask is whether Theorem 4 can be

extended to plane graphs that are not 3-connected. We have the following lower bound.

Lemma 8. For all even n ≥ 4, there is a 2-connected plane graph with n vertices (and

5n/2 − 4 edges) that has as many segments as edges in every drawing.

Proof. Let Gn be the graph with vertex set {v,w, xi, yi : 1 ≤ i ≤ (n − 2)/2} and edge set

{vw, xiyi, vxi, vyi, wxi, wyi : 1 ≤ i ≤ (n−2)/2}. Consider the plane embedding of Gn with

the cycle (v,w, yn) as the outerface, as illustrated in Figure 12. Since the outerface is a

triangle, no two edges incident to v can share a segment, and no two edges incident to w

can share a segment. Consider two edges e and f both incident to a vertex xi or yi. The

endpoints of e and f induce a triangle. Thus e and f cannot share a segment. Therefore

no two edges in Gn share a segment.

Figure 12: The graph G8 in Lemma 8.

Note that the drawing technique from Figure 7 can be used to draw the graph Gn in

Lemma 8 with only 2n + O(1) segments.

Open Problem 4. What is the minimum c such that every n-vertex plane (or planar)

graph has a plane drawing with at most cn + O(1) segments?

4.1 Cubic 3-Connected Plane Graphs

A graph in which every vertex has degree three is cubic. It is easily seen that Theorem 5

implies that every cubic plane 3-connected graph on n vertices has a plane drawing with

at most 5n/4 + O(1) segments. This result can be improved as follows.

Lemma 9. Every cubic plane 3-connected graph G on n vertices has a plane drawing with

at most n + 2 segments.
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Proof. Let D be the plane drawing of G from Theorem 5. Recall the definitions and the

arguments for counting segments in Theorem 5. By (1), the number of segments is at

most

1 + hs +
K

∑

i=2

(|P (Vi)| − 1) .

By the properties of the canonical ordering for plane cubic graphs, |P (Vi)| = 2 for all

2 ≤ i ≤ K − 1, and |P (VK)| = 3. Thus |R| ≤ 1. As in Theorem 5, the number of

segment-heavy steps with |P (Vi)| = 2 is at most |S|+ 1. Thus hs ≤ |S|+ 2. Therefore the

number of segments in D is at most

1 + (|S| + 2) + (K − 2) + 2 = |S| + 3 + K = |S| + 3 + n − 1 − |S| = n + 2 ,

as claimed.

Our bound on the number of slopes in a drawing of a 3-connected plane graph (Theo-

rem 4) can be drastically improved when the graph is cubic.

Theorem 6. Every cubic 3-connected plane graph has a plane drawing in which every

edge has slope in {π/4, π/2, 3π/4}, except for three edges on the outerface.

Proof. Let σ = (V1, V2, . . . , VK) be a canonical ordering of G. We re-use the notation from

Theorem 5, except that a representative vertex of Vi may be the first or last vertex in Vi.

Since G is cubic, |P (Vi)| = 2 for all 1 < i < K, and every vertex not in {v1, v2, vn} has

exactly one successor. We proceed by induction on i with the hypothesis that Gi has a

plane drawing Di that satisfies the following invariants.

Invariant 1: Ci \ v1v2 is X-monotone; that is, the path from v1 to v2 in Ci \ v1v2 has

non-decreasing X-coordinates.

Invariant 2: Every peak in Di, i < K, has a successor.

Invariant 3: If there is a vertical edge above v in Di, then all the edges of G that are

incident to v are in Gi.

Invariant 4: Di has no edge crossings.

Let D2 be the drawing of G2 constructed as follows. Draw v1v2 horizontally with

X(v1) < X(v2). This accounts for one edge whose slope is not in {π/4, π/2, 3π/4}. Now

draw v1v3 with slope π/4, and draw v2v3 with slope 3π/4. Add any division vertices on

the segment v1v3. Now v3 is the only peak in D2, and it has a successor by the definition

of the canonical ordering. Thus all the invariants are satisfied for the base case D2.

Now suppose that 2 < i < K and we have a drawing of Di−1 that satisfies the invari-

ants. Suppose that P (Vi) = {u,w}, where u and w are the left and the right predecessors

of Vi, respectively. Without loss of generality, Y (w) ≤ Y (u). Let the representative vertex

vi be last vertex in Vi. Position vi at the intersection of a vertical segment above w, and

a segment of slope π/4 from u, and add any division vertices on uvi, as illustrated in

Figure 13(a). Note that there is no vertical edge above w by invariant 3 for Di−1. (For
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Figure 13: Construction of a 3-slope drawing of a cubic 3-connected plane graph.

the case in which Y (u) < Y (w), we take the representative vertex vi to be the first vertex

in Vi, and the edge wvi has slope 3π/4, as illustrated in Figure 13(b).)

Clearly the resulting drawing Di is X-monotone. Thus invariant 1 is maintained. The

vertex vi is the only peak in Di that is not a peak in Di−1. Since vi has a successor by

the definition of the canonical ordering, invariant 2 is maintained. The vertical edge wvi

satisfies invariant 3, since vi is the sole successor of w. Thus invariant 3 is maintained. No

vertex between u and w (on the path from u to w in Ci−1 \ v1v2) is higher than the higher

of u and w. Otherwise there would be a peak, not equal to vn, with no successor, and

thus violating invariant 2 for Di−1. Thus the edges in Di \Di−1 do not cross any edges in

Di. In particular, there is no edge ux in Di−1 with slope π/4 and Y (x) > Y (u).

It remains to draw the vertex vn. Suppose vn is adjacent to v1, u, and w, where

X(v1) < X(u) < X(w). By invariants 1 and 3 applied to v1, u and w, there is point p

vertically above u that is visible from v1 and w. Position vn at p and draw its incident

edges. We obtain the desired drawing of G. The edge vnu has slope π/2, while vnv1 and

vnw are the remaining two edges whose slope is not in {π/4, π/2, 3π/4}.

Note that in Theorem 6 we could have chosen any set of three slopes instead of

{π/4, π/2, 3π/4}. By Lemma 1, the bound of six on the number of slopes in Theorem 6 is

optimal for any 3-connected cubic plane graph whose outerface is a triangle. It is easily

seen that there is such a graph on n vertices for all even n ≥ 4.

Corollary 3. Every cubic 3-connected plane graph has a plane ‘drawing’ with three slopes

and three bends on the outerface.

Proof. Apply the proof of Theorem 6 with two exceptions. First the edge v1v2 is drawn

with one bend. The segment incident to v1 has slope 3π/4, and the segment incident to

v2 has slope π/4. The second exception regards how to draw the edges incident to vn.

Suppose vn is adjacent to v1, u, and w, where X(v1) < X(u) < X(w). There is a point s

above v1, a point p above u, and a point t above w, so that the slope of sp is π/4 and the

slope of tp is 3π/4. Place vn at p, draw the edge vnu vertical, draw the edge v1vn with one

bend through s (with slopes {π/2, π/4}), and draw the edge wvn with one bend through

t (with slopes {π/2, 3π/4}).

Open Problem 5. Does there exist a function f such that every plane graph with

maximum degree ∆ has a plane drawing with f(∆) slopes? This is open even for maximal

outerplanar graphs.
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5 Complete Multipartite Graphs

In a drawing of the complete graph Kn, no three vertices are collinear. Thus the number

of segments is
(

n
2

)

. The answer for slopes is more interesting and well known.

Lemma 10. The minimum number of slopes in a drawing of the complete graph Kn is n.

Proof. The lower bound of n follows from Lemma 1 by taking any three consecutive

vertices on the convex hull. More generally, Jamison [29] proved that if a drawing of Kn

has k vertices on the convex hull then the number of slopes is at least k(n − 2)/(k − 2).

For the upper bound, consider a drawing of a graph G on a regular n-gon with vertex

ordering (v1, v2, . . . , vn). Scott [46] observed that the number of slopes is

|{(i + j) mod n : vivj ∈ E(G)}| . (3)

Thus for Kn on a regular n-gon, the number of slopes is n, as illustrated in Figure 14.

In fact, Jamison [29] proved that every drawing of Kn with exactly n slopes is affinely

equivalent to a regular n-gon.

v1

v2

v3

v4

v5

v6

v7

v8

(a) n even

v1

v2

v3
v4

v5

v6

v7
v8

v9

(b) n odd

Figure 14: Drawings of Kn with n slopes.

Note that Wade and Chu [52], seemingly unaware of the earlier work of Scott and

Jamison, rediscovered that the minimum number of slopes in a drawing of the complete

graph Kn is n. They also presented an algorithm to test if Kn can be drawn using a given

set of slopes.

Lemma 11. The minimum number of slopes in a drawing of Kn,n is n.

Proof. Since Kn,n is n-regular, the number of slopes in any drawing of Kn,n is at least n

by Lemma 3(b). For the upper bound, position the vertices of Kn,n on a regular 2n-gon

(v1, v2, . . . , v2n), alternating between the colour classes, as illustrated in Figure 15. Thus

vivj is an edge if and only if i+ j is odd. By (3), the number of slopes is |{(i+ j) mod 2n :

1 ≤ i < j ≤ 2n, i + j is odd}| = n.

Lemma 12. The minimum number of slopes in a convex drawing of the complete bipartite

graph Ka,b is max{a, b}.
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v1

v2

v3

v4

v5

v6

v7

v8

Figure 15: Drawing of K4,4 with 4 slopes.

Proof. Without loss of generality a ≤ b. Then Ka,b has maximum degree b, and the

number of slopes in a convex drawing is at least b by Lemma 3(c). The upper bound

follows from Lemma 11 since Ka,b ⊆ Kb,b.

Lemma 12 is not necessarily optimal for non-convex drawings.

Lemma 13. Every complete bipartite graph Ka,b has a drawing with ⌈b/2⌉+ a− 1 slopes.

Proof. Without loss of generality a ≤ b and b is even. Suppose V (Ka,b) = {v1, v2, . . . , va}∪
{u1, u2, . . . , ub/2}∪{w1, w2, . . . , wb/2}, and E(Ka,b) = {viuj, viwj : 1 ≤ i ≤ a, 1 ≤ j ≤ b/2}.
Position each vertex uj at (j, 1); position each vertex vi at (b/2 + i, 0); and position each

vertex wj at (b/2 + a + j,−1). Then every edge is parallel with one of the b/2 + a − 1

edges {v1uj : 1 ≤ j ≤ b/2} ∪ {u1vi : 2 ≤ i ≤ a}, as illustrated in Figure 16.

v1 v2

v3

u1 u2 u3 u4 u5 u6

w1 w2 w3 w4 w5 w6

Figure 16: Drawing of K3,12 with 8 slopes (highlighted).

Whether every complete multipartite graph with maximum degree ∆ has a convex

drawing with ∆ + O(1) slopes is an interesting open problem. We have the following

partial solution.

Lemma 14. Given integers p ≥ 0 and k ≥ 2, where k − 1 is a power of two, let G be the

complete k-partite graph G = K2p,2p,2p+1,...,2p+1. Then G has a convex drawing with ∆(G)

slopes.

Proof. Let n = (k − 1)2p+1 be the number of vertices in G. Note that n is a power of

two, and ∆(G) = n− 2p. Let V (G) = {0, 1, . . . , n − 1}. In what follows a ≡ b means that

a ≡ b (mod n/2p), and a ≡ ±b means that a ≡ b or a ≡ −b. For all 0 ≤ i ≤ k − 1, let
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Pi = {j ∈ V (G) : i ≡ ±j}. Below we prove that {P0, P1, . . . , Pk−1} is a partition of V (G)

with |P0| = |Pk−1| = 2p, and |Pi| = 2p+1 for all 1 ≤ i ≤ k − 2. Thus {P0, P1, . . . , Pk−1}
defines a valid assignment of the vertices to the colour classes. To obtain the drawing of

G, place the vertices in numerical order on the vertices of a regular n-gon.

For each vertex j ∈ V (G), let j′ = j mod n/2p. If 0 ≤ j′ ≤ n/2p+1, then j ∈ Pj′ .

Otherwise, n/2p+1 < j′ < n/2p, and j ∈ Pn/2p−j′ . Thus, each vertex belongs to at

least one Pi. Suppose that j ∈ Pi ∩ Ph. Thus i ≡ ±j and h ≡ ±j, implying i ≡ ±h.

Since 0 ≤ i ≤ n/2p+1, we have h = i. Thus, each vertex belongs to exactly one Pi, and

{P0, P1, . . . , Pk−1} is a partition of V (G). The set P0 has size 2p because it is the set of all

multiples of n/2p in {0, 1, . . . , n − 1}. Similarly, Pk−1 has size 2p because it is the set of

all odd multiples of n/2p+1 in {0, 1, . . . , n − 1}. The remainder of the Pi’s have the same

size, 2p+1, by symmetry.

To prove that the number of slopes |{(i + j) mod n : ij ∈ E(G)}| = n − 2p, by (3), it

suffices to prove that i + j ≡ 0 implies ij 6∈ E(G). Suppose that i ∈ Ph. Thus h + i ≡ 0

or h − i ≡ 0. In the first case, we have h + i ≡ i + j, implying h − j ≡ 0. In the second

case, we have h − i + (i + j) ≡ 0, implying h + j ≡ 0. In both cases j ∈ Ph, implying

ij 6∈ E(G).

Corollary 4. Given integers p ≥ 0, q ≤ 2p, and k ≥ 2, where k − 1 is a power of two,

let G be the complete k-partite graph G = Kq,2p,2p+1,...,2p+1 . Then G has a convex drawing

with ∆(G) slopes.

Proof. Let G′ be the complete k-partite graph K2p,2p,2p+1,...,2p+1. Then G is a subgraph of

G′, and ∆(G) = ∆(G′) = (k − 2)2p+1 + 2p. The result follows from Lemma 14.

6 Drawings of General Graphs with Few Slopes

The following is the fundamental open problem regarding graph drawings with few slopes.

Open Problem 6. Is there a function f such that every graph with maximum degree ∆

has a drawing with at most f(∆) slopes? This is open even for ∆ = 3.

A number of comments regarding Open Problem 6 are in order:

• The best lower bound that we are aware of is ∆ + 1 for the complete graph.

• There is no such function f for convex drawings. Malitz [32] proved that there are ∆-

regular n-vertex graphs with book thickness Ω(
√

∆n1/2−1/∆). Since book thickness

is a lower bound on the number of slopes in a convex drawing, every convex drawing

of such a graph has Ω(
√

∆n1/2−1/∆) slopes.

• An affirmative solution to Open Problem 6 would imply that geometric thickness

is bounded by maximum degree, which is an open problem due to Eppstein [19].

Duncan et al. [16] recently proved that graphs with maximum degree at most four

have geometric thickness at most two.

In this section we provide an affirmative solution to Open Problem 6 for a class of

intersection graphs that includes interval graphs and permutation graphs. For graphs of
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bounded degree and bounded treewidth we prove a O(log n) bound on the number of

slopes.

Our results are based on the following structure. Let H be a (host) graph. The vertices

of H are called nodes. An H-partition of a graph G is a function f : V (G) → V (H) such

that for every edge vw ∈ E(G) we have f(v) = f(w) or f(v)f(w) ∈ E(H). In the latter

case, we say vw is mapped to the edge f(v)f(w). The width of f is the maximum of

|f−1(x)|, taken over all nodes x ∈ V (H), where f−1(x) = {v ∈ V (G) : f(v) = x}|.
The following general result describes how to produce a drawing of a graph G given an

H-partition of G and a drawing of H.

Lemma 15. Let H be a graph admitting a drawing D with s distinct slopes and ℓ distinct

edge lengths. Let G be a graph admitting an H-partition of width k. Then G has a drawing

with ksℓ(k − 1) + k + s slopes.

Proof. The general approach is to scale D appropriately, and then replace each node of H

by a copy of the drawing of Kk on a regular k-gon given in Lemma 10. The only difficulty

is to scale D so that we obtain a valid drawing of G.

Let {θ1, θ2, . . . , θs} be the set of slopes of the edges of D. Let {β1, β2, . . . , βk} be the

set of slopes of the edges in the drawing of Kk on a regular k-gon given in Lemma 10. Let

∠(φ1, φ2) denote the size in radians of the minimum angle formed by lines of slope φ1 and

φ2. Let ǫ = min{∠(θi, βj)/2 : 1 ≤ i ≤ s, 1 ≤ j ≤ k, θi 6= βj}. Now rotate the drawing of

Kk by ǫ radians in an arbitrary direction, and recompute the βj ’s. Thus ∠(θi, βj) ≥ ǫ for

all i and j.

Replace each node x in D by a disc Bx of uniform radius r centred at x, where r is

chosen small enough so that: (1) Bx ∩By = ∅ for all distinct nodes x and y in D; and (2)

for every edge xy ∈ E(H) with slope θi, every segment with endpoints in Bx and By and

with slope φ intersects no other Bz, and ∠(φ, θi) < ǫ. Position a regular k-gon on each

Bx (using the orientation determined above), and position the vertices f−1(x) of G at its

vertices. Since ∠(θi, βj) ≥ ǫ, the slope of any edge vw of G that is mapped to xy does not

equal any βj . Hence vw does not pass through any other vertex of G.

Each copy of Kk contributes the same k slopes to the drawing of G. For each edge

xy ∈ E(H), for all 1 ≤ i ≤ k, the edge of G from the ith vertex on Bx to the ith vertex

on By (if it exists) has the same slope as the edge xy in D. Thus these edges contribute s

slopes to the drawing of G. Consider two edges e1 and e2 of H that have the same slope

and the same length in D. The edges of G that are mapped to e1 use the same set of

slopes as the edges of G that are mapped to e2. There are at most k2 − k edges of G that

are mapped to a single edge of H and were not counted above. Thus in total we have at

most k + s + sℓ(k2 − k) slopes.

6.1 Drawings Based on Paths

Lemma 15 suggests looking at host graphs that admit drawings with few slopes and few

edge lengths. Obviously a path has a drawing with one slope and one edge length. The

path-partition-width of a graph G, denoted by ppw(G), is the minimum k such that G has

a P -partition of width k, for some path P . Lemma 15 with s = ℓ = 1 implies:

Corollary 5. Every graph G has a drawing with ppw(G)2 + 1 slopes.
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Path-partition-width is closely related to the classical graph parameter bandwidth.

The width of a vertex ordering (v1, v2, . . . , vn) of a graph G is the maximum of |i − j|,
taken over all edges vivj ∈ E(G). The bandwidth of G, denoted by bw(G), is the minimum

width of a vertex ordering of G.

Lemma 16. For every graph G, 1
2(bw(G) + 1) ≤ ppw(G) ≤ bw(G).

Proof. Let (v1, v2, . . . , vn) be a vertex ordering of G with width b = bw(G). For all

0 ≤ i ≤ ⌊n/b⌋, let Bi = {vib+1, vib+2, . . . , vib+b}. Then (B0, B1, . . . , B⌊n/b⌋) defines a

path-partition of G with width b. Thus ppw(G) ≤ bw(G).

Now suppose (B1, B2, . . . , Bm) is a path-partition of G with width k = ppw(G). Let

(v1, v2, . . . , vn) be a vertex ordering of G such that i < j whenever vi ∈ Bp and vj ∈ Bq

and p < q. For every edge vivj ∈ E(G) with vi ∈ Bp and vj ∈ Bq, we have |p − q| ≤ 1.

Thus |i − j| ≤ 2k − 1. Hence the width of (v1, v2, . . . , vn) is at most 2k − 1. Therefore

bw(G) ≤ 2ppw(G) − 1.

Corollary 5 and Lemma 16 imply that every graph G has a drawing with bw(G)2 + 1

slopes. This bound can be tweaked as follows.

Theorem 7. Every graph G has a drawing with at most 1
2bw(G) (bw(G) + 1) + 1 slopes.

Proof. Observe that in the construction of the path-partition in the proof of Lemma 16,

the edges of each G[Bi, Bi+1] are a subset of {{vib+j , v(i+1)b+ℓ} : 1 ≤ j ≤ b, 1 ≤ ℓ ≤ j}.
If we consistently assign the vertices in each Bi to the regular b-gon in Lemma 15, then

each G[Bi, Bi+1] will use the same set of slopes, since each G[Bi, Bi+1] is a subgraph of

the same graph. The number of slopes in G[Bi, Bi+1] is 1+
∑b

j=1(j−1), since each vertex

vj ∈ Bi is incident to j edges with endpoints in Bi+1, one of which is horizontal. Thus the

total number of slopes in the resulting drawing of G is b+1+ 1
2(b−1)b = 1

2b(b+1)+1.

Figure 17: Drawing of a graph with bandwidth four with eleven slopes.

The following examples of Theorem 7 are corollaries of results by Fomin and Golovach

[22] and Wood [54] that bound bandwidth in terms of maximum degree.

• Every interval graph G has bw(G) ≤ ∆(G) [22, 54], and thus has a drawing with at

most 1
2∆(G) (∆(G) + 1) + 1 slopes.

• Every co-comparability graph G (which includes the permutation graphs) has bw(G) ≤
2∆(G) − 1 [54], and thus has a drawing with at most ∆(G) (2∆(G) − 1) + 1 slopes.

• Every AT-free graph G has bw(G) ≤ 3∆(G) [54], and thus has a drawing with at

most 3
2∆(G) (3∆(G) + 1) + 1 slopes.
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6.2 Drawings Based on Trees

A T -partition for some tree T is called a tree-partition. Tree partitions have been exten-

sively studied [4, 11, 12, 14, 25, 47]. Thus, Lemma 15 motivates the study of drawings of

trees with few slopes and few distinct edge lengths.

Lemma 17. Every tree T with pathwidth k ≥ 1 has a plane drawing with max{∆(T )−1, 1}
slopes and 2k − 1 distinct edge lengths.

The proof of Lemma 17 is loosely based on an algorithm of Suderman [48] for drawing

trees on layers. We will need the following lemma.

Lemma 18 ([48]). Every tree T has a path P such that T \ V (P ) has smaller pathwidth

than T , and the endpoints of P are leaves of T .

Proof. Say T has pathwidth k. Let P be any path whose endpoints are in the first and

last bag of a path decomposition of T with width k. Then P contains a vertex in every

bag, and T \ V (P ) has pathwidth at most k − 1. Obviously P can be extended until its

endpoints are leaves.

A path P satisfying Lemma 18 is called a backbone of T .

Proof of Lemma 17. We refer to T as T0. Let n0 be the number of vertices in T0, and let

∆0 = ∆(T0). The result holds trivially for ∆0 ≤ 2. Now assume that ∆0 ≥ 3. Let S be

the set of slopes

S =

{

π

2

(

1 +
i

∆0 − 2

)

: 0 ≤ i ≤ ∆0 − 2

}

.

We proceed by induction on n with the hypothesis: “There is real number ℓ = ℓ(n0,∆0),

such that for every tree T with n ≤ n0 vertices, maximum degree at most ∆0, and

pathwidth k ≥ 1, and for every vertex r of T with degree less than ∆0, T has a plane

drawing D in which:

• r is at the top of D (that is, no point in D has greater Y-coordinate than r),

• every edge of T has slope in S,

• every edge of T has length in {ℓ0, ℓ1, . . . , ℓ2k−1}, and

• if r is contained in some backbone of T , then every edge of T has length in {ℓ0, ℓ1, . . . , ℓ2k−2}.”

The result follows from the induction hypothesis, since we can take r to be the endpoint

of a backbone of T0, in which case deg(r) = 1 < ∆0, and thus every edge of T0 has length

in {ℓ0, ℓ1, . . . , ℓ2k−2}.
The base case with n = 1 is trivial. Now suppose that the hypothesis is true for trees

on less than n vertices, and we are given a tree T with n vertices and pathwidth k, and r

is a vertex of T with degree less than ∆0.

If r is contained in some backbone B of T , then let P = B. Otherwise, let P be a

path from r to an endpoint of a backbone B of T . Note that P has at least one edge.

As illustrated in Figure 18, draw P horizontally with unit-length edges. Every vertex in

P has at most ∆0 − 2 neighbours in T \ V (P ), since r has degree less than ∆0 and the
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endpoints of a backbone are leaves. At each vertex x ∈ P , the children {y0, y1, . . . , y∆0−3}
of x are positioned below P and on the unit-circle centred at x, so that each edge xyj has

slope π
2 (1 + j/(∆0 − 2)) ∈ S.

P

Figure 18: Drawing of T with few slopes and few edge lengths.

Every connected component T ′ of T \V (P ) is a tree rooted at some vertex r′ adjacent

to a vertex in P . By the above layout procedure, r′ has already been positioned in the

drawing of T . If T ′ is a single vertex, then we no longer need to consider this T ′.

We consider two types of subtrees T ′, depending on whether the pathwidth of T ′ is

less than k. Suppose that the pathwidth of T ′ is k (it cannot be more). Then T ′ ∩ B 6= ∅
since B is a backbone of T . Thus T ′ ∩ B is a backbone of T ′ containing r′. Thus we can

apply the stronger induction hypothesis in this case.

Every T ′ has less vertices than T , and every r′ has degree less than ∆0 in T ′. Thus

by induction, every T ′ has a drawing with r′ at the top, and every edge of T ′ has slope in

S. Furthermore, if the pathwidth of T ′ is less than k, then every edge of T ′ has length in

{ℓ0, ℓ1, . . . , ℓ2k−3}. Otherwise r′ is in a backbone of T ′, and every edge of T ′ has length in

{ℓ0, ℓ1, . . . , ℓ2k−2}.
There exists a scale factor ℓ < 1, depending only on n0 and ∆0, so that by scaling the

drawings of every T ′ by ℓ, the widths of the drawings are small enough so that there is

no crossings when the drawings are positioned with each r′ at its already chosen location.

(Note that ℓ is the same value at every level of the induction.) Scaling preserves the slopes

of the edges. An edge in any T ′ that had length ℓi before scaling, now has length ℓi+1.

Case 1. r is contained in some backbone B of T : By construction, P = B. So every T ′

has pathwidth at most k − 1, and thus every edge of T ′ has length in {ℓ1, ℓ2, . . . , ℓ2k−2}.
All the other edges of T have unit-length. Thus we have a plane drawing of T with edge

lengths {ℓ0, ℓ1, . . . , ℓ2k−2}, as claimed.

Case 2. r is not contained in any backbone of T : Every edge in every T ′ has length

in {ℓ1, ℓ2, . . . , ℓ2k−1}. All the other edges of T have unit-length. Thus we have a plane

drawing of T with edge lengths {ℓ0, ℓ1, . . . , ℓ2k−1}, as claimed.

Theorem 8. Let G be a graph with n vertices, maximum degree ∆, and treewidth k. Then

G has a drawing with O(k3∆4 log n) slopes.

Proof. Ding and Oporowski [11] proved that for some tree T , G has a T -partition of width

at most max{24k∆, 1}. Let w = max{24k∆, 1}. For each node x ∈ V (T ), there are at

most w∆ edges of G incident to vertices mapped to x. Hence we can assume that T is a

forest with maximum degree at most w∆, as otherwise there is an edge of T with no edge

of G mapped to it, in which case the edge of T can be deleted. Similarly, T has at most
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n vertices. Scheffler [45] proved that T has pathwidth at most log(2n + 1); see [3]. By

Lemma 17, T has a drawing with at most w∆−1 slopes and at most 2 log(2n+1)−1 distinct

edge lengths. By Lemma 15, G has a drawing in which the number of slopes is at most

w(w∆− 1)(2 log(2n+1)− 1)(w− 1)+ (w∆− 1)+w ∈ O(w3∆ log n) ⊆ O(k3∆4 log n).

Corollary 6. Every n-vertex graph with bounded degree and bounded treewidth has a

drawing with O(log n) slopes.

7 1-Bend Drawings

While it is an open problem whether every graph has a drawing in which the number of

slopes is bounded by the maximum degree, there is a simple solution to this problem if

we allow bends. A 1-bend drawing of a graph G is a drawing of the subdivision of G with

one subdivision vertex per edge.

Theorem 9. Every graph G has a 1-bend drawing with ∆(G) + 1 slopes.

Proof. Let S be a set of ∆(G) + 1 distinct slopes. Suppose the vertices of G have been

positioned in the plane. For each vertex v of G and each slope ℓ ∈ S, we consider there

to be a slope line through v with slope ℓ. Position the vertices of G at distinct points in

the plane so that: (1) each slope line intersects exactly one vertex, and (2) no three slope

lines intersect at a single point, unless all three are the slope lines of a single vertex. This

can be achieved by positioning each vertex in turn, since at each step, there are finitely

many forbidden positions.

Consider each slope line to be initially unused. Each edge is drawn with one bend, using

one slope line at each of its endpoints, in which case, we say these slope lines become used.

Now draw each edge vw of G in turn. At most deg(v)− 1 slope lines at v are used, and at

most deg(w) − 1 slope lines at w are used. Since |S| ≥ deg(v) + 1 and |S| ≥ deg(w) + 1,

there are two unused slope lines at v, and two unused slope lines at w. Thus there is an

unused slope line at v that intersects an unused slope line at w. Position the bend for vw

at this intersection point.

We now prove that this defines a drawing of G′. Suppose on the contrary that there is

an edge vu of G′ and a vertex w of G′ that intersects vu, and v 6= w 6= u. Without loss of

generality, v is a vertex of G and u is a subdivision vertex. Since each slope line intersects

exactly one vertex of G, w is a subdivision vertex of some edge w1w2 of G. Since edges

are only drawn on unused slope lines, w1 6= v and w2 6= v. Therefore, the three slope lines

containing the edges w1w, w2w and vu intersect in one point, and all three do not belong

to the same vertex. This is a desired contradiction.

8 Open Problems

Here are a few of the numerous open problems related to this research.

Open Problem 7. Is there a polynomial time algorithm to test if a graph has a drawing

in which the number of segments equals half the number of odd degree vertices?
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Open Problem 8. Given an edge-colouring of a graph G, what is the complexity of

determining whether G has a drawing in which monochromatic edges have the same slope?

Open Problem 9. What is the minimum number of lines that cover a drawing of a

given graph G? Obviously, the minimum number of slopes in a drawing of G is at most

the minimum number of lines that cover a drawing of G, which is at most the minimum

number of segments in a drawing of G.
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[14] V. Dujmović and D. R. Wood, Tree-partitions of k-trees with applications in

graph layout. In H. Bodlaender, ed., Proc. 29th Workshop on Graph Theoretic

Concepts in Computer Science (WG’03), vol. 2880 of Lecture Notes in Comput. Sci.,

pp. 205–217, Springer, 2003.
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