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1 Introduction

In [DO03] we explored partitioning regular k-gons into “circular” convex pieces. Circularity of a polygon is
measured by the aspect ratio: the ratio of the diameters of the smallest circumscribing circle to the largest
inscribed disk. We seek partitions with aspect ratio close to 1, ideally the optimal ratio. Although we start
with regular polygons, most of the machinery developed extends to arbitrary polygons.
For convex pieces, we showed in [DO03] that optimality can be achieved for an equilateral triangle only

by an infinite partition, and that for all k ≥ 5, the 1-piece partition is optimal. We left the difficult case of
a square unsettled, narrowing the optimal ratio to a small range. Here we turn our attention to partitions
that permit the pieces to be nonconvex. The results are cleanest if we do not demand that the pieces be
polygonal, but rather permit curved sides to the pieces. The results change dramatically. The equilateral
triangle has an optimal 4-piece partition, the square an optimal 13-piece partition, the pentagan an optimal
partition with more than 20 thousand pieces. For hexagons and beyond, we provide a general algorithm
that approaches optimality, but does not achieve it.

1.1 Notation

A nonconvex partition of a polygon P is a collection of sets Si satisfying

1. Each Si ⊆ P .

2. ∪iSi = P .

3. The sets have pairwise disjoint interiors.

These conditions alone are too broad for our purposes, as there is no constraints placed on the pieces. It is
reasonable to demand that each set be connected, but even this is too broad. The most natural constraint
for our purposes is to require the interior of each piece to be connected:

4. The interior of each Si is connected.

The aspect ratio of a piece is the ratio of the radius of the smallest circumcircle to the radius of the largest
inscribed disk. Aspect ratios will be denoted by symbol γ, modified by subscripts and superscripts as
appropriate: γ1(P ) is the one-piece γ; γ(P ) is the maximum of all the γ1(Si) for all pieces Si in a partition
of P ; γ∗(P ) is the minimum γ(P ) over all nonconvex partitions of P . Our goal is to find γ∗(P ) for the
regular k-gons. Both the partition and the argument “(P )” will often be dropped when clear from the
context.
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Throughout we consider all disks to be closed sets, including the points on their bounding circle. Disks
will be denoted either by symbols Di, i = 1, 2, 3, . . . , n; the subscript 0 will indicate the disk bound by an
inscribed/in-disk, and 1 for a circumscribed/out-circle.
Section 1.2 presents our results. Here we use γθ to denote the “one-angle lower bound,” a lower bound

derived from one angle of the polygon, ignoring all else. This presents a trivial lower bound on the aspect
ratio of any partition.

1.2 Table of Results

Our results are summarized in Table 1.2.

nonconvex, nonpolygonal
Polygon γ1 γθ γ∗ k∗

Equilateral Triangle 2.00000 1.50000 γθ 4

Square 1.41421 1.20711 γθ 13

Regular Pentagon 1.23607 1.11803 γθ ≤ 20476

Regular Hexagon 1.1547 1.07735 1.10418 finite

Regular Heptagon 1.10992 1.05496 1.08382 finite

Regular Octagon 1.08239 1.0412 γ8
1 = 1.08239 finite

Regular k-gon 1/ cos(π/k) 1+csc(θ/2)
2

≤ γ8
1 = 1.08239 finite

Table 1: Table of Results on Regular Polygons. γ1: one-piece partition; γ
k
1 : one piece ratio γ1 for regular

k-gon; γθ: single-angle lower bound; θ: angle at corner; γ
∗: optimal partition; k∗: number of pieces in

optimal partition.

2 Preliminary lemmas

We recall two two simple lemmas used in Table 1.2, proved in [DO03].

Lemma 1 (Regular Polygon). The aspect ratio γ1 of a regular k-gon is

γ1 =
1

cos(π/k)

Lemma 2 (One-Angle Lower Bound). If a polygon P contains a convex vertex of internal angle θ,
then the aspect ratio of a partition of P is no smaller than γθ, with

γθ =
1 + csc(θ/2)

2

3 Equilateral Triangle

An equilateral triangle has γ1 = 2. The lower bound provided by Lemma 2 is γθ = 1.5 (see Table 1.2).
Figure 1 shows a partition with 4 pieces that achieves γθ, and is therefore optimal. This partition has three
convex corner pieces, and one nonconvex central piece.
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Figure 1: Optimal partition of an equilateral triangle (4 pieces). Inscribed and circumscribed circles are
shown.

(a) (b)

Figure 2: (a) Optimal partition of a square (13 pieces) (b) Magnified view of one square corner.
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4 Square

A square has γ1 =
√
2 ≈ 1.41421. The lower bound provided by Lemma 2 is γθ = (1 +

√
2)/2 ≈ 1.20711

(see Table 1.2). Figure 2a shows a partition with 13 pieces that achieves γθ, and is therefore optimal.
The partition contains one large central nonconvex piece and four disks nestled in each corner of the

square. The corner pieces are nonconvex, with a small bite taken from each side by a convex piece that
covers the gap.
As k increases, γθ decreases and it becomes increasingly difficult to partition a k-gon into pieces with

optimal ratio. As hinted in the square partition, it becomes essential to be able to cover small gaps along
the interior of edges. Even for the pentagon, a less ad hoc procedure is needed. In the next section, we
devise a general algorithm that covers a subsegment of an edge with pieces with ratio close to optimal. This
will permit us to make progress for k > 4.

5 Covering an edge segment

Let S be an edge segment tangent to two disks D0
0 and D

1
0 at its endpoints. A covering of S is two collection

of disks, Di
0 and D

i
1, i = 0, 1, 2, 3, . . . with four properties:

1. Each disk Di
0 is tangent to S

2. The disks Di
0 have pairwise disjoint interiors:

∫

(Di
0) ∩

∫

(Dj
0) = ∅ for i 6= j.

3. The disks Di
1 collectively cover S: ∪iDi

1 ⊇ S.

4. Each Di
0 is inside the corresponding D

i
1: D

i
0 ⊆ Di

1 for all i.

For a given edge segment S, our goal is to find a covering of S of optimal ratio. In the following we present
an algorithm that finds a covering of S of ratio close to the optimal.

5.1 Algorithm (Edge Cover)

The algorithm presented in this section takes as input:

(a) An edge segment S = [a0, a1]

(b) Disks D0
0 and D

1
0 tangent to each other and to S at points a0 and a1, respectively

(c) Corresponding outcircles D0
1 ⊃ D0

0 and D
1
1 ⊃ D1

0

(d) The desired ratio factor γ > 1

and seeks to extend the sets {D0
0, D

1
0} and {D0

1, D
1
1} to a covering of S of ratio γ, if one exists.

For i ∈ {0, 1}, let ai be the point where Di
0 touches S and bi the point where D

i
1 intersects S. We

start by growing the largest possible indisk D2
0 that touches the uncovered segment piece at midpoint

a2 = (b0 + b1)/2. Clearly, D
2
0 can only grow until it touches either of the two adjacent indisks, D

0
0 or D

1
0.

We will show later that D2
0 hits the smaller of D

0
0 and D

1
0 first (see Figure 3a). Next we inflate D

2
0 by γ to

obtain D2
1 and displace D

2
1 vertically downwards until its topmost point touches the topmost point of D

2
0,

so as to capture as much of the uncovered edge segment as possible.
If D2

1 covers the entire triangular gap (as in Figure 3b), we are finished. Otherwise, recurse on the at
most two new edge segments created: [a0, a2] and [a2, a1]. Note that the uncovered gaps of these two edge
segments are identical and therefore their coverings will be identical.
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Figure 3: Algorithm (a) Iterative step: D2
0 centered on the midpoint a2 of [b0, b1] (b) Termination: D

2
1

covers the gap.

5.2 Analysis

Without loss of generality, we assume that D0
0 is at least as large as D

1
0. For analysis convenience, place

a coordinate system with the origin where D0
1 intersects the horizontal edge, as in Figure 4. At a certain

stage of the algorithm, all uncovered gaps in the original edge segment are symmetric and will be covered in
the same way. In our analysis, we focus on the uncovered gap adjacent to the origin; henceforth, the term
gap will refer to the leftmost uncovered gap of the edge segment, with leftmost understood.
Let Dn

0 be the indisk on the right side of the gap in iteration step n; D
0
0 always remains on the left side

of the gap. Refer to Figure 4. For any n, rn denotes the radius of D
n
0 and an is the point where D

n
0 touches

the x-axis. We define a useful quantity δn to represent the distance from an to where D
n
1 intersects the

x-axis: δn = rn
√

γ2 − (2− γ)2, or equivalently

δn = 2rn
√

γ − 1 (1)

In iteration step n+1, the algorithm grows an indisk Dn+1
0 tangent to the uncovered gap [0, an − δn] at its

midpoint an+1 = (an − δn)/2, until it hits either D
0
0 or D

n
0 . Using δn from (1), this is

an+1 =
an
2
− rn

√

γ − 1 (2)

Lemma 3 Dn+1
0 touches Dn

0 .
Proof: We determine rn+1 from the tangency requirement (an − an+1)

2 + (rn − rn+1)
2 = (rn + rn+1)

2, or
equivalently

rn+1 =
(an − an+1)

2

4rn
, (3)

and show that Dn+1
0 and D1

0 are disjoint:

(an+1 − a0)
2 + (r0 − rn+1)

2 > (r0 + rn+1)
2

Substituting the expression for rn+1 from (3) yields

an+1 − a0 > (an − an+1)
√

r0/rn > an − an+1,

since r0 > rn (note that r0 ≥ r1 and rn decreases as n increases). From (1) we get a0 = −2r0
√
γ − 1. This

along with (2) renders the inequality above true. 2
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0 from Dn

0 .

Our goal is to find the optimal γ for which the algorithm terminates in a finite number of steps.
This involves solving the coupled recurrence relations (2) and (3) and imposing the termination condition
an+1 − δn+1 ≤ 0, which ensures that the edge segment is completely covered in iteration step n + 1.
Substituting δn+1 from (1) yields

an+1 − 2rn+1

√

γ − 1 ≤ 0,
which together with (2) and (3) leads to an system of recurrent relations with two variables. Next we show
how to reduce these recurrence relations to only one recurrence relation in one variable, which is easily
solvable.

5.2.1 Rescaling the gap

The leftmost segment gap we wish to cover is always bounded to the left by D0
0, whose position remains

unchanged. This suggests a simple way to simplify the coupled recurrence relations (2) and (3): rescale Dn
0

at the end of the iteration step n, so as to ensure rn = 1 at the start of the iteration step n + 1. Initially,
we scale the disk D1

0 we start with by setting r
′

1 = r1 / r1 = 1 and

a
′

1 =
a1

r1
(4)

Let a
′

n and r
′

n denote the scaled variables at the end of iteration step n, with r
′

n = 1. Based on (2) and (3),
we determine in iteration step n+ 1

a
′

n+1 =
a

′

n

2
−

√

γ − 1 (5)

r
′

n+1 =
(a

′

n − a
′

n+1)
2

4
, (6)

and ensure r
′

n+1 = 1 by rescaling r
′

n+1 ←− r
′

n+1 / r
′

n+1 = 1 and

a
′

n+1 ←−
a

′

n+1

r
′

n+1

(7)

Substituting in (7) the expression for r
′

n+1 from (6) yields one recurrence relation for a
′

n of the form

a
′

n+1 = F (a
′

n) (8)
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with

F (x) = 4
2x− 4√γ − 1
(x+ 2

√
γ − 1)2 (9)

Lemma 4 establishes the relationship between the scaled a
′

n and its unscaled correspondent an:

Lemma 4 For each n, a
′

n = an / rn at the end of iteration step n.
Proof: The proof is by induction on n. The base case is n = 1, which is clearly true from (4). Assume
a

′

n = an / rn for any n ≤ s, for some s > 0. Now we show that a
′

s+1 = as+1 / rs+1. We use the induction

hypothesis a
′

s = as/rs in (8) to obtain a
′

s+1 = F (as/rs). From (2) and (3), we get

as+1

rs+1

=
4rs(as/2− rs

√
γ − 1)

(as − as+1)2

Substituting again as+1 from (2) in the expression above yields as+1/rs+1 = F (as/rs) = a
′

s+1, which proves
the lemma. 2

5.2.2 Computing optimal γ

The edge cover algorithm terminates when Dn
1 covers all points of the uncovered gap, which happens when

a
′

n ≤ δ
′

n. From (1) and the fact that r
′

n = 1, we derive the stopping condition

a
′

n ≤ 2
√

γ − 1 = δ
′

(10)

Our goal is to determine the optimal γ for which inequality (10) is satisfied for some finite n. Clearly, we
want a

′

n to move down to δ
′

, getting closer to δ
′

with each iteration step; that is, a
′

n+1 < a
′

n for all n.

However, we show that this does not happen for any γ and any edge segment [0, a
′

1]:

Theorem 5 The algorithm terminates in a finite number of steps only if one of the following is true:

(a) γ > γ∗ = 1.11340

(b) γ < γ∗ and F (a
′

1) < a
′

1 and F
′

(a
′

1) > 1

Proof: The proof consists of three parts. First we show that the equation F (x) = x has two positive roots
a∗1 > a∗2 > δ

′

. Next we prove that the iteration procedure a
′

n+1 = F (a
′

n) converges to a
∗
1, unless one of the

two conditions (a) and (b) stated above is met. The implication of this is that the edge cover algorithm
gets stuck at a∗1 and fails to make any further progress towards δ

′

; hence, it never stops. Finally, we show
that under either of the two conditions stated in the theorem, the algorithm terminates in a finite number
of steps.
Using (9), we reduce x = F (x) to a cubic equation

x3 + 4
√

γ − 1x2 + 4(γ − 3)x+ 16
√

γ − 1 = 0 (11)

which can be solved by use of Cardano’s method [Gul97]. Solving for x involves the determinant

∆ = −64
27
(4γ2 − 79γ + 83) (12)

This quadratic polynomial has one root of interest

γ∗ =
79− 17

√
17

8
= 1.11340 (13)

and a second root outside the domain of interest. We omit to show here the complicated expressions for
the roots of equation (11). Figure 5 shows with solid curves how these roots vary with γ. The dashed line
in Figure 5 shows the finishing point δ

′

. Note that for any γ ∈ [1, γ∗], the equation x = F (x) has three real
roots: two positive roots a∗1 > a∗2 > δ

′

, and one negative root. Figure 6 shows a magnified view of the two
positive roots in the vicinity of γ∗ = 1.11340.
We now show that for any γ ∈ [1, γ∗], the iteration procedure an+1 = F (an) converges to a

∗
1, unless

condition (b) of the theorem holds. From the three regions delimited by the contours of the two positive
roots a∗1 and a

∗
2 in Figure 6, observe the following:
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(a) if F (a
′

1) < a1
′, then a

′

1 lies in region I above the curve F (a∗1) = a∗1; therefore, F (a
′

n) < a
′

n for some
N > 0 and all n ≤ N . Also note that F

′

(x) < 1 in a neighborhood containing both a∗1 and a
′

N , which

guarantees that an converges to a
∗
1 < a

′

1.

(b) if F (a
′

1) > a1
′ and F

′

(a
′

1) < 1, then a
′

1 lies in region II delimited by the contours of the two positive
roots; therefore, F (a

′

n) > a
′

n for some N > 0 and all n ≤ N . Again, since F
′

(x) < 1 in a neighborhood
containing both a∗1 and a

′

N , an converges to a
∗
1 > a

′

1.

(c) if F (a
′

1) < a1
′ and F

′

(a
′

1) > 1, then a
′

1 lies in region III below the curve F (a∗2) = a∗2. Hence,
F (a

′

n) < a
′

n for all n and therefore a
′

n reaches δ
′

in a countable number of steps. Also note that the
same is true for any γ > γ∗ (region IV in Figure 6).

Finally, we show that if the algorithm terminates, then a
′

n reaches δ
′

in a finite number of steps. In other
words, there exists a constant ε > 0 such that

an+1 < an − ε

is satisfied for any iteration step n. This is equivalent to

F (x) < x− ε (14)

An analysis similar to the one of equation (11) shows that there exists ε > 0 that satisfies (14) for all x.
This ensures that the number n of iteration steps is bounded above by (a

′

1 − δ
′

)/ε. 2

1.1  1.12 1.14 1.16 1.18 1.2 1.22 1.24 1.26
0

2

4
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14

16

18

20

γ* γ

n

    γ* = 1.11340055

Figure 7: Edge cover ratio γ versus number of iterations.

Figure 7 shows the number of iteration steps it takes to cover a segment tangent on its endpoints to two
unit radius disks tangent to each other. Note that for any γ ≥ 1.126, the edge segment can be covered in
one step only; for any 1.116 ≤ g < 1.126, the edge segment can be covered in two steps; and so on. As γ
approaches the critical value γ∗, the number of steps increases exponentially.
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5.3 Triangular gap partition

Lemma 6 Let D0
0 and D1

0 be two disks tangent to each other and to an edge segment S at its endpoints. If
D2

0 covers the intersection point between D0
1 and D1

1, then a covering produced by the Edge Cover algorithm
for S covers all points of the triangular gap delimited by S, D0

0 and D1
0.

Proof: Let tn be the intersection point between D
0
1 and D

n
1 closer to S in iteration step n (see Figure 8).

Note that tn is the apex of the triangular gap left uncovered in iteration step n, which we attempt to cover
in iteration step n+ 1. If for any n, Dn+1

0 covers tn, then clearly the circles D
i
1 collectively cover all points

of the original triangular gap.

t
1
=q

1
 

q
2
 

D
1
0 

D
1
1

D
0
1 

D
1
2 

t
2
 

L 

Figure 8: Dn
0 covers tn for all n ≥ 1.

As discussed earlier, the Edge Cover algoritm terminates only if a
′

n+1 < a
′

n for all n. Using Lemma 4,
this is equivalent to

an+1

an
<

rn+1

rn
(15)

This tells us that an decreases at a faster rate than rn with increasing n. Let qn be the intersection point
betweenDn

1 and the line L that passes through t1 and origin, with q1 ≡ t1. Refer to Figure 8. An implication
of (15) is that that qn moves lower inside D

n
0 with increasing n. This implies that if q1 lies inside D

1
0, then

qn lies inside D
n
0 for all n. Also note that tn always lies below L, therefore Dn

0 covers tn for all n. 2

Lemma 7 Let D0
0 and D1

0 be two disks tangent to each other and to an edge segment S at its endpoints. If
the covering Di

0, D
i
1, i = 0, 1, 2, . . ., produced by the edge cover algorithm covers all points of the triangular

gap T delimited by D0
0, D

1
0 and S, then there exists

-1-

a partition of T into pieces Ti, i = 0, 1, 2, . . . , such that: [1]: An example
would be nice

1. Piece Ti contains D
i
0: Ti ⊇ Di

0

2. Piece Ti is contained inside Di
1: Ti ⊆ Di

1

3. The pieces Ti collectively cover T : ∪iTi ⊇ T
Proof: Start by assigning points uniquely covered to the only piece that covers it: Ti = T ∩ (Di

1−∪i6=jD
j
1).

Next grow each Ti at a uniform rate from their boundaries, but do not permit growth beyond the out-
circle boundary. Growth of each set is only permitted to consume so-far unassigned points; once a point is
assigned, it is off-limits for growth. Then T1, T2, . . ., is a partition of T . 2
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6 Pentagon

A pentagon has γ1 = 1/ cos(π/5) ≈ 1.23607. The lower bound provided by Lemma 2 is γθ ≈ 1.11803 (see
Table 1.2). Figure 2a shows a partition that achieves γθ, therefore it is optimal.

(a) (b)

Figure 9: (a) Optimal partition of a pentagon (20476 pieces) (b) Magnified view of one pentagon corner.

We start with the pentagon’s inscribed circle D0
0 and inflate it by γθ to obtain D

0
1. In each corner of the

pentagon we nestle five largest possible disks D1
0 and inflate each by γθ to obtain D

1
1. We choose to make

D1
0 and D

1
1 touch each other at the intersection with the corner’s bisector, so as to create two symmetrical

gaps on each side of D1
0. Cover each of the uncovered edge segments using the edge cover algorithm. The

algorithm uses 12 iteration steps; therefore, the number of partition pieces is 20476 = 5 ∗ (212 − 1) + 1,
the second term counting the big central piece. It is easy to verify that D2

0 covers the intersection point
between D0

1 and D
1
1; therefore, conform Lemma 6, the algorithm covers all points interior to the pentagon.

7 Hexagon and beyond

A hexagon has γ1 = 1/ cos(π/6) ≈ 1.1547. The lower bound provided by Lemma 2 is γθ ≈ 1.07735 (see
Table 1.2), which is below the critical value γ∗ of Theorem 5. Intuitively, this means that it is difficult,
if not impossible, to achieve γθ for k-gons for any k ≥ 6. We use the edge cover algorithm described in
Section 5.1 to construct partitions of k-gons, k ≥ 6, and compute the best γ that can be achieved using this
algorithm.
For a fixed γ, we partition a k-gon into pieces with ratio γ as follows. As before, we start with the

k-gon’s inscribed disk D0
0 and inflate it by γ to obtain D

0
1. In each corner of the k-gon we place the largest

possible indisk D1
0 and inflate it by γ to obtain D

1
1. We displace D

1
1 along the corner’s bisector just enough

to capture the corner, as shown in Figure 10. In this way we create two symmetrical triangular gaps on
each side of D1

0, for a total of 2k triangular gaps that remain to be covered. Cover each such triangular gap
using the algorithm from section 5.1.
We now show how to compute the best balancing γ for this particular covering. Without loss of generality,

we consider a k-gon with unit radius indisk and a coordinate system set with the origin at the left corner
of the bottom horizontal edge. Let θ = π/2−π/k denote half of the k-gon’s angle. We need to know where
D0

1, the inflated central circle, cuts the x-axis closer to origin:

b0 = cot(θ)−
√

γ2 − 1 (16)
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Figure 10: Disk D0
0 nestled in one corner of the k-gon.

Next, we need to compute the corner indisk D1
0:

r1 =
1− sin(θ)
1 + sin(θ)

(17)

The indisk D1
0 is tangent to the x-axis at point

a1 = r1 cot(θ) (18)

From this, we can compute the point b1 where D
1
1 intersects the x-axis, closer to origin:

b1 = 2r1γ cos(θ)

The edge segment [b1, b0] is covered using the algorithm from Section 5.1. Based on Lemma 6, the gap is
fully covered if the indisk D2

0 centered at point (a2, r2), with

a2 = (b0 + b1)/2
r2 = (a1 − a2)

2/4r1,

covers the apex of the triangular gap. Note that the initial scaled gap value used in equation (8) is
a

′

0 = (b0 − a1)/r1. Substituting the expressions for b0 (16), r1 (17) and a1 (18), this expands to

a
′

0 =
1 + sin(θ)

1− sin(θ) (cot(θ)−
√

γ2 − 1)− cot(θ)

We now solve for γ that satisfies






F (a
′

0) < a
′

0

F
′

(a
′

0) > 0
(a2 − tx)

2 + (r2 − ty)
2 ≤ r2

2

(19)

where (tx, ty) is the intersection point between outcircles D0
1 and D1

1. Conform Theorem 5, the first two
inequalities in (19) ensure that the edge cover algorithm terminates in a finite number of steps. Conform
Lemma 6, the third inequality in (19) ensures that the algorithm covers the entire triangular gap.
Solving (19) for γ and k = 6, 7 and 8 yields the ratio values shown in Table 1.2. The top curve in

Figure 11 shows how the ratio γ∗ that satisfies (19) varies with k. The bottom curve represents the single-
angle lower bound ratio γθ, which is best any algorithm could achieve. As is clear from Figure 11, the ratio
achieved by our algorithm is close to the optimal.
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Figure 11: (a) Optimal ratio γ∗ and single-angle lower bound γθ versus number of vertices k of regular
k-gons.

8 Discussion

We leave open the question of whether optimal paritions can be achieved for k ≥ 6 with a finite number of
pieces.
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