
Variables
• Can hold persistent data inside our objects

• Can be used to represent the state of an 
object, or simply a temporary value for 
computation

• + variables:
    name (type).

Example:

+ variables:
counter (int).
angle, distance (float).
toFood (vector).



Types

• int

• float

• list

• object

• vector

• matrix



Assigning Variables

• myLight = new BraitenbergLight.

• myInt = 4.

• myInt *= 7.

• myInt++.



Using variables for 
planning

• Use a variable to specify a current state or 
goal

Example:

currentTarget (object).

if currentTarget: {
self pursue target currentTarget.

} else {
currentTarget = (self pick-target).

}



int and float

• int: a whole number (1, 4, -3, etc)

• float: a real number (1.2, -4.3, 3.14, etc)

• floats are also sometimes called doubles

• Mathematical operators: +, -, /, *, %

• ints and float can be converted, but converting 
from float to int loses precision



Vectors
• points or vectors in 3D space

• vectorVariable = (x, y, z)

• vectorVariable::x, ::y and ::z give 
access to individual vector components

Examples:

myVector = (1.0, 2.0, 3.0).

myVector::x = 9.0.

print myVector::y.



Vector arithmetic

• vector + vector, vector addition

• vector - vector, vector subtraction

• vector * float, vector scaling

• | vector |, vector length



Useful vector examples:

• The vector pointing from one agent to another:

(object2 get-location) - (object1 get-location).

• “Normalize” a vector:

vector / | vector |.

• Random vector:

random[(10, 20, 30)].



Random values

• random[maxValue].

• Works with ints, floats and vectors.

Examples:

x = random[10].

self set-color to random[(1.0, 1.0, 1.0)].

randomLocation = random[(10, 10, 10)] - (5, 5, 5).

self set-speed to random[1.0].



Lists
• Hold groups of variables (of any type)

• listVariable{n}, the Nth item in the list

• { x, y, z }, a list containing 3 items

Examples:

myList = { 1, 2, 3 }.

myList{0} = 5.

print myList{0} 



List operators

• push value onto list.
(adds value to the end of list). 

• pop list.
(removes and returns the last item in list). 

• | list |.
(the length of the list–the number of items it 
contains)



foreach-loop

• iterates through a list

• foreach item in list: ...

Example:

foreach myObject in myList: {
print (myObject get-location).

}



for-loop

• iterates through a series of numbers

• for initializer, test, iterator: 
...

Example:

for n=0, n<5, n = n + 1: {
print “the value of n = $n”.

}



while-loop

• Repeats an action while a statement is true

• while test: ...

Example:

while x < 10: {
print “x = $x”.
x++.

}



True or False?
• Compare values with “==”, “<=”, “<”, “>”, 

“>=” and “!=”

•  Numbers are “true” if they do not equal 
zero, otherwise they are “false”

• Objects are “true” if they hold a valid 
instance (created with new), otherwise they 
are “false”

• Vectors are “true” if their length is not zero, 
otherwise they are “false”

• Combine tests with “and” (&&), “or” (||)

• Negate a test with “!”



More about conditional 
statements

• Loop actions can be single statements, which 
require no braces:

• if x == 1: print “yes!”.

• foreach i in agents: print i.

• Loop actions with multiple statement must be 
wrapped in braces:

• if x == 1: {
    print “yes!”.
    print “I really love the variable x!”.
}



Defining methods

• Defines a behavior that your agent can 
execute

• Can be called internally, like from an agent’s  
iterate method

• Can be called externally by other agents



Defining methods
• to methodName:

    ...
• to methodName [ argument definitions ]:

    ...

• An argument definition consists of:
keyword name (type)

Examples:

+ to print-hello:
print “hello!”.

+ to print-message with-text message (string) with-number num (int):
print “the message is $message, the number is $num”.



Overriding methods
• Classes inherit behaviors from superclasses

• We can override these methods to 
customize our agent’s behaviors

• We call the superclass method if we want 
the original behavior in addition to our own

Examples:

+ to eat food theFood (object):
print “yummy!”.
super eat food theFood.

+ to eat food theFood (object):
print “I’m not hungry!”.



Local Variables
• Variables used by a method for computation

• Always initialized to zero (or analogous 
value)

• Not saved between invokations

Example:

+ to count to total (int):
counter (int).

for counter=0, counter<total, counter++: {
    print “counter = $counter”.
}



“Return” statements
• Stops the execution of a method

• “Returns” a value to the calling method

Example:
+ to get-closest-food:
    bestDistance (double).
    best, item (object).

    bestDistance = 200.

    foreach item in all Food: {

        if |(self get-location) - (item get-location)| < bestDistance: {
            best = item.
            bestDistance = |(self get-location) - (item get-location)|.
        }
    }       
                
    return best.



Things to try...

• Continue to develop simple agent behaviors

• Use class variables for planning and 
maintaining an agent’s “state”

• Define your own methods and begin to 
build a repertoire of agent behaviors 

• Make a “plan” using a list (plan to eat the 
food in a certain order)


