programming in breve

CS263: Artificial Intelligence in 3D Virtual Worlds

Object-orientation

We program with objects

Objects do computations and hold data
A class is a specific type of object

We create instances of these classes

Classes inherit behaviors from their parent
classes

An agent in the simulated world is an
instance of the class “Real”

Instances of the “Abstract’ class do not
appear in the world

breve Class Hierarchy

(Object)

rd S

=9 =)

== ><)) (=

)

i i s A

The “Controller”

Must be a subclass of “Control”

Created automatically when the simulation
starts

Provides services to agents

Coordinates communication between
agents and the simulation software

Implementing objects
® Methods (code)

® Data (variables)

ParentClass : ClassName {
+ variables:

+ to 1init:

+ to ...:

an "agent” in breve

init & i1terate

® init:code run when object is created

® iterate:code run at every iteration

+ to init:

+ to iterate:

super 1lterate.

print-statement

® prints expressions to the output log

® print expression.

® print expression, expression, ...
Examples:
print 4 + 5.

print “the answer is”, X.

print “the object is $self”.

Creating an instance

® Uses an object definition to create an
instance of that object

® Also called “instantiating” an object

e new (bj ect Nane.

Examples:

new BraitenbergVehicle.

10 new BraitenbergLights.

Summary so far...

We create agent objects and specify their
behaviors (using the init and iterate
methods)

We create a controller object to setup the
simulation and make instances of other objects
(from its init method)

We can print expressions using print and
created new instances using new

WUBWorld...

“Connect to Server” (command-K) from
Finder

Find server “Urza”

Login as ¢s263, password cs263
Select “Course Storage”

Open cs263/Handouts

Drag “VWUBWorld” to desktop

Exercise

® Start from the myWUBWorldTemplate.tz
file

® Create an Agent subclass
® Add init & iterate methods

® make the Agent’s init method print out
“Hello, world!”
® |nstantiate your Agent using the controller

What you'll need...

+ to net hodnane: declare a method
new: instantiate an object

print: printa message

Calling instance methods

® “tell” an instance to preform an action
® can pass in and return data

e | nstance nethod [keywords and
val ues].

Examples:

leftSensor link to rightWheel.
self set-color to (1, 0, 0).
self do-stuff with-x 100 with-y 200.

time = (controller get-time).

Built-in instance variables

® self,the object itself
® controller,the controller object

® super, the parent object (of the class
“superclass”™)

® super iterate: says to also use the
iterate behavior of the parent class

“WUBWorldControl”

* subclass of Control
* the parent class for our simulation controller
 useful methods:

e get-time

e watch item caneraTlar get

e aim-camera at caneralLocati on

“Agent”

* the parent class for our Agents

* subclass of Mobile

e Useful methods:
* turn-left
e turn-right
e set-speed to fl oat Val ue
« get-angle to vector Val ue
e get-closest-food
* detect-edge

1 f-statement

® Tests whether an expression is true

e if expression: { ... }
else { ... }

Examples:

if (self get-angle to (0, 0, 0)) < 0: {
self turn-left.

} else {
self turn-right.

}

if x == 1: print “yippee!!!l”.

Summary

® We call methods to tell agents to do things

® \VWe make use of behaviors inherited from

parent classes (Mobile, WWUBAgent, Control,
etc.)

® Ve can use “‘if”’ statements to make
decisions on how to behave

Things to try...

Make the Agent follow a specific pattern
(circle, figure-8, etc.)

Make the Agent find the food
Make the Agent follow the edges

Create a second agent and play “tag”

