
Building Braitenberg Vehicles in breve

22nd July 2004

a tutorial

The breve Simulation Environment

http://www.spiderland.org

1



Figure 1: two simple Braitenberg vehicles

Introduction

Braitenberg vehicles are small robots that can exhibit complex behaviors with
very simple circuitry. The vehicles typically have small box-shaped bodies with
one wheel on each side. At the front of the vehicle are sensors, which detect
different types of stimuli (for example, light) from the environment. These
sensors are connected directly to the vehicle’s wheels so that the wheels turn
when the sensors are activated. Two simple Braitenberg vehicles are shown in
figure 1.

The concept is simple, but Braitenberg showed that these vehicles could
appear to exhibit interesting and complex behaviors such as “love” or “hate”,
depending on how the sensors were connected to the wheels. This tutorial
describes how to create simulated Braitenberg vehicles in breve. Follow the
directions outlined in the following steps in order to create a basic Braitenberg
vehicle. You should read through each step in its entirety before making changes
to the code. You should also be careful to type in each line exactly as it appears
in this tutorial—punctuation and capitalization are especially important.

2



Step 1: Open a Braitenberg template file

The first step in creating a Braitenberg Vehicle in breve is to launch the breve
application (version 1.5 or later) and open a template file for Braitenberg ve-
hicles. You can find this template by selecting the menu item “Demos ->

Braitenberg -> BraitenbergTemplate.tz”. This should open a window
containing the following text:

1 @use Braitenberg.

2

3 Controller myBraitenbergControl.

4

5 BraitenbergControl : myBraitenbergControl {

6 + variables:

7 vehicle (object).

8 leftSensor, rightSensor (object).

9 leftWheel, rightWheel (object).

10 light (object).

11

12 + to init:

13 light = new BraitenbergLight.

14 light move to (10, 1, 0).

15

16 vehicle = new BraitenbergVehicle.

17 self watch item vehicle.

18 }

This is a template for a Braitenberg vehicle simulation. What does the code
do so far? All breve simulations require a controller object, which will specify
how the simulation is set up. We tell breve the name of the controller at line
3. At line 5, we start to define the object, called myBraitenbergControl. Inside
this controller object, we create a method called init (starting at line 12). This
method will be run automatically when the object is created—so anything inside
the method will be automatically run when the simulation starts. Inside this init

method, we do two things: we create a BraitenbergLight object (line 13), and
we create a BraitenbergVehicle object (line 16). In addition, we associate names
with these objects by assigning them to some of the variables we’ve specified.
Later on, we can refer to these objects by their names—the BraitenbergVehicle
object will be known as vehicle and the BraitenbergLight object will be known
as light.

If you click on the “Play” button, you should see the simulation start, and
that the light and the vehicle are added to the simulated world (though the light
is off-camera to the right slightly). Stop the simulation and return to your code
to begin the next step.

3



Step 2: Add wheels to the vehicle

You probably noticed that the vehicle you created had no wheels. You might
be saying that vehicles without wheels are, in fact, not vehicles. But instead
of arguing about words, let’s do something about it. Let’s add wheels to our
vehicle.

In order to do this, we’ll need to “tell” the vehicle to add some new wheels.
Remember that we’ve attached the name vehicle to our vehicle, so here’s how
we tell it to create a new wheel:

vehicle add-wheel at (X, Y, Z).

X, Y, and Z will specify the location of the new wheel on the vehicle—remember
that we’re working in 3-dimensional space.

A typical Braitenberg vehicle might have wheels halfway between the front
of the vehicle and the back, halfway between the top and the bottom, with one
on each side. In breve, Braitenberg vehicles are 4.0 units long, .75 units high
and 3.0 units wide. The X, Y and Z values we pick have to be relative to the
center of the vehicle, which has the coordinates (0, 0, 0). So relative to the
center of the vehicle, what are the X, Y and Z coordinates of our wheels?

The first two measurements are easy, since we want them to be halfway
between the front and back, and halfway between the top and bottom, they
should already be lined up with the middle of the vehicle. This means that the
X and Y values should be 0. As for the Z values, we’ll want one wheel on the
left side, and one wheel on the right. Since the vehicle is 3.0 units wide, our Z
values will be 1.5 and -1.5.

So we’ll want to add two lines to our program, after all the other commands
in the init method (but before the ”}” line):

vehicle add-wheel at (0, 0, -1.5).

vehicle add-wheel at (0, 0, 1.5).

As with the vehicle and the light, we’ll need to attach names to them, so we’ll
modify these lines slightly:

leftWheel = (vehicle add-wheel at (0, 0, -1.5)).

rightWheel = (vehicle add-wheel at (0, 0, 1.5)).

Run the simulation again. The vehicle should now have wheels. Stop the simu-
lation and proceed to step 3.

4



Step 3: Add sensors to your vehicle

Adding sensors to your vehicle is a lot like adding wheels, so we won’t go into
too much detail. Sensors are added with the command:

vehicle add-sensor at (X, Y, Z).

This time, however, we want the new objects placed at the front of the vehicle,
with one on each side. So what values should be used for X, Y and Z this time?
You’ll probably end up with commands something like this:

vehicle add-sensor at (2.0, 0, -1.5).

vehicle add-sensor at (2.0, 0, 1.5).

As with the code we used to create the wheels, we’ll put these commands after
all of the others in the init method. And once again, we’ll want to attach names
to the sensors so that we can use them later. So modify the sensor lines to look
like this:

leftSensor = (vehicle add-sensor at (2.0, 0, -1.5)).

rightSensor = (vehicle add-sensor at (2.0, 0, 1.5)).

Run the simulation again, and you should see the new sensors attached to the
vehicle. Stop the simulation and proceed to step 4.

5



Step 4: Link the sensors to the wheels

At this point, we have a fully assembled Braitenberg vehicle, but it doesn’t
move! In order to make the vehicle react to stimuli in the environment, we’ll
need to link the sensors to the wheels. We have the names of the sensors and
the names of the wheels, so we just tell each sensor to link itself to a wheel. We
can link the sensors to either wheel, linking either to the wheels on the same
side, or on opposite sides. If we wanted to simulate Braitenberg’s Aggressor, for
example, we would link the sensors to the opposite wheels:

leftSensor link to rightWheel.

rightSensor link to leftWheel.

Run the simulation again and you’ll see that the vehicle now moves. The vehicle
rolls toward (and then through) the light. You can even use the arrow tool to
select the light and move it away from the vehicle. You’ll see that the vehicle will
chase after it, as long as it’s visible to the vehicle’s sensors. Stop the simulation
and proceed to step 5.

6



Step 5: Customize the sensors & wheels

Now we’ve got a functioning Braitenberg vehicle! By customizing the configura-
tions of the sensors and the wheels, we can get all sorts of interesting behaviors.
We’ll customize the vehicle by changing the starting velocity of its wheels and
by changing the strength of the connections between the sensors and wheels.

On the vehicle we’ve created so far, the wheels start with a speed of 0, and
then accelerate in response to sensor input. The speed of a wheel in the absence
of light is called the natural velocity of the wheel in breve. We can tell each
wheel to set its natural velocity like this:

leftWheel set-natural-velocity to .5.

rightWheel set-natural-velocity to .5.

This means that the wheels will start with a speed of .5 even when there is no
sensor input. Of course, the natural velocities we give the wheels do not need to
be equal, nor do they need to be positive. Choosing asymmetrical or negative
natural velocities can lead to more interesting vehicle behaviors.

As for the strength of the connection between a sensor and a wheel, this
value will determine how strongly the wheel will react in response to sensor
input—the higher the value, the stronger the reaction. In breve, the strength
of this connections is called the sensor bias. We can change the bias associated
with a sensor like this:

leftSensor set-bias to 3.0.

rightSensor set-bias to 3.0.

In this example, we set the bias to be three times as strong as the starting value
(which defaults to 1.0). This means that the vehicle will react more strongly to
the light, making it faster and making its behavior more dramatic.

As with the natural velocity of the wheels, we can choose any bias values
we’d like. By using negative bias values, we cause the wheels to slow down (and
even turn backwards) in response to light. Picking different bias values for the
left and right wheels will cause “asymmetrical” vehicle behaviors.

7



Step 6: Things to try...

• ... add additional lights to make the vehicle move in a specific pattern,
like a figure-eight or a circle.

• ... modify the weights, wheel positions and velocities to create new be-
haviors, like PARANOID, WHIMSICAL or CONFUSED.

• ... program the lights to move around by themselves (see the documenta-
tion for the class “Mobile”).

• ... continually modify weights and wheel velocities over the course of the
simulation (add an “iterate” method to the myBraitenbergControl class).

• ... add a second vehicle with a different behavior.

8


